Multi-model study of mercury dispersion in the atmosphere: atmospheric processes and model evaluation - INSU - Institut national des sciences de l'Univers Accéder directement au contenu
Article Dans Une Revue Atmospheric Chemistry and Physics Année : 2017

Multi-model study of mercury dispersion in the atmosphere: atmospheric processes and model evaluation

Oleg Travnikov
  • Fonction : Auteur
Hélène Angot
Paulo Artaxo
  • Fonction : Auteur
Mariantonia Bencardino
  • Fonction : Auteur
Johannes Bieser
  • Fonction : Auteur
Francesco d'Amore
  • Fonction : Auteur
Ashu Dastoor
  • Fonction : Auteur
Francesco de Simone
  • Fonction : Auteur
María del Carmen Diéguez
  • Fonction : Auteur
Ralf Ebinghaus
  • Fonction : Auteur
Xin Bin Feng
  • Fonction : Auteur
Christian N. Gencarelli
  • Fonction : Auteur
Ian M. Hedgecock
  • Fonction : Auteur
Olivier Magand
Lynwill Martin
  • Fonction : Auteur
Volker Matthias
  • Fonction : Auteur
Nikolay Mashyanov
  • Fonction : Auteur
Nicola Pirrone
  • Fonction : Auteur
Ramesh Ramachandran
  • Fonction : Auteur
Katie Alana Read
  • Fonction : Auteur
Andrei Ryjkov
  • Fonction : Auteur
Noelle E. Selin
  • Fonction : Auteur
Fabrizio Sena
  • Fonction : Auteur
Shaojie Song
  • Fonction : Auteur
Francesca Sprovieri
  • Fonction : Auteur
Dennis Wip
  • Fonction : Auteur
Ingvar Wängberg
  • Fonction : Auteur
Xin Yang
  • Fonction : Auteur

Résumé

Current understanding of mercury (Hg) behavior in the atmosphere contains significant gaps. Some key characteristics of Hg processes, including anthropogenic and geogenic emissions, atmospheric chemistry, and air-surface exchange, are still poorly known. This study provides a complex analysis of processes governing Hg fate in the atmosphere involving both measured data from ground-based sites and simulation results from chemical transport models. A variety of long-term measurements of gaseous elemental Hg (GEM) and reactive Hg (RM) concentration as well as Hg wet deposition flux have been compiled from different global and regional monitoring networks. Four contemporary global-scale transport models for Hg were used, both in their state-of-the-art configurations and for a number of numerical experiments to evaluate particular processes. Results of the model simulations were evaluated against measurements. As follows from the analysis, the interhemispheric GEM gradient is largely formed by the prevailing spatial distribution of anthropogenic emissions in the Northern Hemisphere. The contributions of natural and secondary emissions enhance the south-to-north gradient, but their effect is less significant. Atmospheric chemistry has a limited effect on the spatial distribution and temporal variation of GEM concentration in surface air. In contrast, RM air concentration and wet deposition are largely defined by oxidation chemistry. The Br oxidation mechanism can reproduce successfully the observed seasonal variation of the RM / GEM ratio in the near-surface layer, but it predicts a wet deposition maximum in spring instead of in summer as observed at monitoring sites in North America and Europe. Model runs with OH chemistry correctly simulate both the periods of maximum and minimum values and the amplitude of observed seasonal variation but shift the maximum RM / GEM ratios from spring to summer. O3 chemistry does not predict significant seasonal variation of Hg oxidation. Hence, the performance of the Hg oxidation mechanisms under study differs in the extent to which they can reproduce the various observed parameters. This variation implies possibility of more complex chemistry and multiple Hg oxidation pathways occurring concurrently in various parts of the atmosphere.
Fichier principal
Vignette du fichier
acp-17-5271-2017.pdf (7.47 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

insu-03706526 , version 1 (28-06-2022)

Licence

Paternité

Identifiants

Citer

Oleg Travnikov, Hélène Angot, Paulo Artaxo, Mariantonia Bencardino, Johannes Bieser, et al.. Multi-model study of mercury dispersion in the atmosphere: atmospheric processes and model evaluation. Atmospheric Chemistry and Physics, 2017, 17, pp.5271-5295. ⟨10.5194/acp-17-5271-2017⟩. ⟨insu-03706526⟩
36 Consultations
10 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More