Comparison of Surface Water‐Groundwater Exchange Fluxes Derived From Hydraulic and Geochemical Methods and a Regional Groundwater Model - INSU - Institut national des sciences de l'Univers Accéder directement au contenu
Article Dans Une Revue Water Resources Research Année : 2021

Comparison of Surface Water‐Groundwater Exchange Fluxes Derived From Hydraulic and Geochemical Methods and a Regional Groundwater Model

Résumé

Intercomparison of surface water‐groundwater (SW‐GW) exchange fluxes at the regional scale is rarely undertaken, mainly because estimates are method and scale‐dependent and usually associated with large errors. In the present study, we compare SW‐GW exchange fluxes calculated from a multitracer mass balance in the river, an application of Darcy's law using near‐river piezometers and a surface‐subsurface flow model calibrated at the catchment scale. SW‐GW exchange fluxes are estimated for 7 km long reaches along the 140 km long Campaspe River, a tributary of the Murray River, Australia. Differences are found in the directions and magnitudes of the exchange fluxes estimated by the different methods. The application of Darcy's law in near‐river piezometers seems the most appropriate method to infer SW‐GW flow directions and temporal variability. The tracer mass balance is limited to gaining reaches but gives quantitative estimates of the fluxes. While numerical models should overcome deficiencies associated with some of the intrinsic assumptions of the two field‐methods, the regional‐scale calibration is subject to high uncertainties in the simulated heads near the river, resulting in uncertainty of SW‐GW exchange fluxes. In particular, we show that loosely quantified river abstractions and irrigation patterns directly impact the simulated SW‐GW fluxes. In gaining reaches, additional river chemistry data improved model calibration and SW‐GW flux estimates. While numerical models are crucial for water management, their reliability to estimate SW‐GW fluxes can be limited by their complexity and lacking data availability. Therefore, we recommend comparing numerical model results with easily implemented field‐based methods.
Fichier principal
Vignette du fichier
bouchez-2021.pdf (2.11 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

insu-03163350 , version 1 (09-03-2021)

Identifiants

Citer

Camille Bouchez, Peter G Cook, Daniel Partington, Craig T. Simmons. Comparison of Surface Water‐Groundwater Exchange Fluxes Derived From Hydraulic and Geochemical Methods and a Regional Groundwater Model. Water Resources Research, 2021, 57 (3), pp.e2020WR029137. ⟨10.1029/2020WR029137⟩. ⟨insu-03163350⟩
60 Consultations
177 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More