T. M. Alves, . Kurtev, . Kuncho, G. F. Moore, and M. Strasser, Assessing the internal character, reservoir potential, and seal competence of mass-transport deposits using seismic texture: A geophysical and petrophysical approach, AAPG Bulletin, vol.98, issue.4, pp.793-824, 2014.

A. Berthelot, A. H. Solberg, . Gelius, and -. Leiv, Texture attributes for detection of salt, Journal of Applied Geophysics, vol.88, pp.52-69, 2013.

C. M. Bishop, M. Svensén, . Williams, and K. I. Christopher, GTM: The Generative Topographic Mapping, Neural Computation, vol.10, issue.1, pp.215-234, 1998.

S. Chopra, . Marfurt, and J. Kurt, Seismic facies analysis using generative topographic mapping, SEG Technical Program Expanded Abstracts, 2014.

D. A. Clausi and Y. Zhao, Grey level co-occurrence integrated algorithm (GL-CIA): A superior computational method to rapidly determine co-occurrence probability texture features, Computers & Geosciences, vol.29, issue.7, pp.837-850, 2003.

M. De-matos, . Castro, P. Osorio, . Léo, P. Johann et al., Unsupervised seismic facies analysis using wavelet transform and self-organizing maps, GEOPHYSICS, vol.72, issue.1, pp.9-21, 2007.

A. De-silva, . Mihirana, . Leong, and H. W. Philip, Grammar-Based Feature Generation for Time-Series Prediction, SpringerBriefs in Applied Sciences and Technology, 2015.

C. Eichkitz, . Georg, . Davies, . John, . Amtmann et al., Grey level co-occurrence matrix and its application to seismic data, First Break, vol.33, pp.71-77, 2015.

D. Gao, Application of seismic texture model regression to seismic facies characterization and interpretation, The Leading Edge, vol.27, issue.3, pp.394-397, 2008.

R. M. Haralick, K. Shanmugam, and . Dinstein, Its'Hak. 1973. Textural Features for Image Classification, IEEE Transactions on Systems, Man, and Cybernetics, vol.3, issue.6, pp.610-621

H. Hashemi, P. De-beukelaar, B. Beiranvand, and M. Seiedali, Clustering Seismic Datasets for Optimized Facies Analysis Using a SSCSOM Technique, 79th EAGE Conference and Exhibition, 2017.

T. Kohonen, Learning Vector Quantization for Pattern Recognition, 1986.

L. Bouteiller, P. Charléty, and J. , Procédé pour la détection d'objets géologiques dans une image sismique, 2018.

. Long, . Zhiling, . Alaudah, . Yazeed, M. Qureshi et al., Characterization of migrated seismic volumes using texture attributes: a comparative study, 2015.

Y. Lu, . Cohen, . Ira, X. Zhou, . Sean et al., Feature selection using principal feature analysis, vol.301, 2007.

I. Marroquín, . Dimitri, J. Brault, . Hart, and S. Bruce, A visual data-mining methodology for seismic facies analysis: Part 1 -Testing and comparison with other unsupervised clustering methods, GEOPHYSICS, vol.74, issue.1, pp.1-11, 2009.

P. , L. Bouteiller-references, A. , and T. M. , Submarine slide blocks and associated soft-sediment deformation in deep-water basins: A review. Marine and Petroleum Geology, MTDs identification and characterization, vol.67, pp.262-285, 2015.

T. M. Alves, K. Kurtev, G. F. Moore, and M. Strasser, Assessing the internal character, reservoir potential, and seal competence of mass-transport deposits using seismic texture: A geophysical and petrophysical approach, Bulletin, vol.98, issue.4, pp.793-824, 2014.

É. F. Araújo, C. G. Silva, A. T. Reis, R. Perovano, C. Gorini et al., Movimentos de massa multiescala na bacia da foz do Amazonas -margem equatorial brasileira, Rev. Bras. Geof, vol.27, issue.3, pp.485-508, 2009.

J. A. Bondy and U. S. Murty, Graph theory, 2008.

J. Bourget, S. Zaragosi, N. Ellouz-zimermann, N. Mouchot, T. Garlan et al., Turbidite system architecture and sedimentary processes along topographically complex slopes: The Makran convergent margin, Marine and Petroleum Geology, vol.58, issue.2, pp.1132-1151, 2009.

A. Chemenda, T. Bois, S. Bouissou, and E. Tric, Numerical modelling of the gravity-induced destabilization of a slope: The example of the La Clapière landslide, southern France, Geomorphology, vol.109, pp.86-93, 2009.

I. R. Clark and J. A. Cartwright, Interactions between submarine channel systems and deformation in deepwater fold belts: Examples from the Levant Basin, Eastern Mediterranean sea. Marine and Petroleum Geology, vol.26, pp.1465-1482, 2009.

. Dalla, G. Valle, F. Gamberi, P. Rocchini, D. Minisini et al., 3D seismic geomorphology of mass transport complexes in a foredeep basin: Examples from the Pleistocene of the Central Adriatic Basin (Mediterranean Sea), Sedimentary Geology, vol.294, pp.127-141, 2013.

J. Damuth and R. Embley, Mass-transport processes on Amazon Cone: western equatorial Atlantic, vol.65, pp.629-643, 1981.

J. Damuth, R. D. Flood, R. O. Kowsmann, R. H. Belderson, and M. A. Gorini, Anatomy and growth pattern of Amazon deep-sea fan as revealed by long-range side-scan sonar (GLORIA) and highresolution seismic studies, AAPG Bulletin, vol.72, issue.8, pp.885-911, 1988.

A. Elverhoi, H. Breien, F. V. Blasio, . De, C. B. Harbitz et al., Submarine landslides and the importance of the initial sediment composition for run-out length and final deposit, Ocean Dynamics, vol.60, issue.4, pp.1027-1046, 2010.

J. Figueiredo, C. Hoorn, . Van-der, P. Ven, and E. Soares, Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas Basin, Geology, vol.37, issue.7, pp.619-622, 2009.

J. Frey-martínez, Seismic Interpretation of Mass Transport Deposits: Implications for Basin Analysis and Geohazard Evaluation, Submarine Mass Movements and Their Consequences, pp.553-568, 2010.

J. Frey-martínez, C. Bertoni, J. Gérard, and H. Matías, Processes of Submarine Slope Failure and Fluid Migration on the Ebro Continental Margin: Implications for Offshore Exploration and Development, Mass-Transport Deposits in Deepwater Settings, pp.181-198, 2011.

C. Gorini, B. U. Haq, D. Reis, A. Tadeu, C. G. Silva et al., Late Neogene sequence stratigraphic evolution of the Foz do Amazonas Basin, Brazil, Terra Nova, vol.26, issue.3, pp.179-185, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00910787

C. Goujon, B. Dalloz-dubrujeaud, and N. Thomas, Bidisperse Granular Flow on Inclined Rough Planes, Traffic and Granular Flow'05, pp.147-156, 2007.

T. R. Gruber, A translation approach to portable ontology specifications, Knowledge Acquisition, vol.5, issue.2, pp.199-220, 1993.

J. S. Laberg, M. Strasser, T. M. Alves, S. Gao, K. Kawamura et al., Internal deformation of a muddy gravity flow and its interaction with the seafloor (site C0018 of IODP Expedition, Nankai Trough, SE Japan). Landslides, vol.333, issue.3, pp.849-860, 2017.

A. Lacoste, B. C. Vendeville, R. Mourgues, L. Loncke, and M. Lebacq, Gravitational instabilities triggered by fluid overpressure and downslope incision -Insights from analytical and analogue modelling, Journal of Structural Geology, vol.42, pp.151-162, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02377303

S. Lafuerza, N. Sultan, M. Canals, J. Frigola, S. Berné et al., Overpressure within upper continental slope sediments from CPTU data, Int J Earth Sci, vol.98, issue.4, pp.751-768, 2009.

H. J. Lee, J. Locat, P. Desgagns, J. D. Parsons, B. G. Mcadoo et al., Submarine Mass Movements on Continental Margins, Continental Margin Sedimentation, pp.213-274, 2007.

S. E. Lee, P. J. Talling, G. G. Ernst, and A. J. Hogg, Occurrence and origin of submarine plunge pools at the base of the US continental slope, Marine Geology, vol.185, issue.3-4, pp.363-377, 2002.

D. Leynaud, J. Mienert, and M. Vanneste, Submarine mass movements on glaciated and nonglaciated European continental margins: A review of triggering mechanisms and preconditions to failure. Marine and Petroleum Geology, vol.26, pp.618-632, 2009.

W. Li, T. M. Alves, M. Urlaub, A. Georgiopoulou, I. Klaucke et al., ) Morphology, age and sediment dynamics of the upper headwall of the Sahara Slide Complex, Northwest Africa: Evidence for a large Late Holocene failure, Marine Geology, vol.393, pp.109-123, 2017.

Z. Malik, A. Rezgui, B. Medjahed, M. Ouzzani, and A. Sinha, Semantic integration in Geosciences, Int. J. Semantic Computing, issue.03, pp.301-330, 2010.

A. Mangeney-castelnau, F. Bouchut, J. P. Vilotte, E. Lajeunesse, A. Aubertin et al., On the use of Saint Venant equations to simulate the spreading of a granular mass, J. Geophys. Res, issue.B9, p.110, 2005.

K. J. Marfurt and T. M. Alves, Pitfalls and limitations in seismic attribute interpretation of tectonic features, vol.Interpretation, pp.5-15, 2015.

M. Maslin, C. Vilela, N. Mikkelsen, and P. Grootes, Causes of catastrophic sediment failures of the Amazon Fan, Quaternary Science Reviews, vol.24, pp.2180-2193, 2005.

R. Merris, Graph theory, 2001.

J. Mienert, Methane Hydrate and Submarine Slides, Encyclopedia of Ocean Sciences, pp.790-798, 2009.

L. Moscardelli, L. Wood, R. Mourgues, and P. R. Cobbold, Sandbox experiments on gravitational spreading and gliding in the presence of fluid overpressures, Journal of Structural Geology, vol.20, issue.1, pp.887-901, 2006.

R. Mourgues, A. Lacoste, and C. Garibaldi, The Coulomb critical taper theory applied to gravitational instabilities, J. Geophys. Res. Solid Earth, vol.119, issue.1, pp.754-765, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02377298

R. Mourgues, E. Lecomte, B. Vendeville, and S. Raillard, An experimental investigation of gravity-driven shale tectonics in progradational delta, Tectonophysics, vol.474, issue.3-4, pp.643-656, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00489724

T. Mulder and J. Alexander, Abrupt change in slope causes variation in the deposit thickness of concentrated particle-driven density currents, Marine Geology, vol.175, issue.1-4, pp.221-235, 2001.

T. Mulder and J. Alexander, The physical character of subaqueous sedimentary density flows and their deposits, Sedimentology, vol.48, issue.2, pp.4-12, 2001.

C. H. Nelson, C. Escutia, J. E. Damuth, and D. C. Twichell, Interplay of Mass-Transport and Turbidite-System Deposits in Different Active Tectonic and Passive Continental Margin Settings: External and Local Controlling Factors, Mass-transport deposits in deepwater settings, pp.39-66, 2011.

O. Ogiesoba and U. Hammes, Seismic interpretation of mass-transport deposits within the upper Oligocene Frio Formation, south Texas Gulf Coast, Bulletin, vol.96, issue.5, pp.845-868, 2012.

K. O. Omosanya and T. M. Alves, Ramps and flats of mass-transport deposits (MTDs) as markers of seafloor strain on the flanks of rising diapirs, Marine Geology, vol.340, pp.82-97, 2013.

A. Ortiz-karpf, D. M. Hodgson, C. A. Jackson, -. Mccaffrey, and W. D. , Mass-transport complexes as markers of deep-water fold-and-thrust belt evolution: Insights from the southern Magdalena fan, offshore Colombia, Basin Res, vol.57, issue.4, p.294, 2016.

M. Owen, S. Day, and M. Maslin, Late Pleistocene submarine mass movements: Occurrence and causes, Quaternary Science Reviews, vol.26, issue.7-8, pp.958-978, 2007.

H. W. Posamentier and O. J. Martinsen, The Character and Genesis of Submarine Mass-Transport Deposits: Insights from Outcrop and 3D Seismic Data, Mass-transport deposits in deepwater settings, pp.7-38, 2011.

O. Pouliquen, J. Delour, and S. B. Savage, Fingering in granular flows, Nature, vol.386, issue.6627, pp.816-817, 1997.

A. T. Reis, E. Araujo, C. G. Silva, A. M. Cruz, C. Gorini et al., Effects of a regional décollement level for gravity tectonics on late Neogene-Quaternary large-scale slope instabilities in the Foz do Amazonas Basin, Brazil. Marine and Petroleum Geology, vol.75, pp.29-52, 2016.

A. T. Reis, R. Perovano, C. G. Silva, B. C. Vendeville, E. Araujo et al., Twoscale gravitational collapse in the Amazon Fan: A coupled system of gravity tectonics and masstransport processes, Journal of the Geological Society, vol.167, issue.3, pp.593-604, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00683592

F. Reitsma, J. Laxton, S. Ballard, W. Kuhn, and A. Abdelmoty, Semantics, ontologies and eScience for the geosciences, Computers & Geosciences, vol.35, issue.4, pp.706-709, 2009.

S. E. Richardson, R. J. Davies, M. B. Allen, and S. F. Grant, Structure and evolution of mass transport deposits in the South Caspian Basin, vol.23, pp.702-719, 2011.

M. Rodger, A marine geophysical study of the Amazon continental margin, 2009.

A. Roy, A. S. Romero-peláez, T. J. Kwiatkowski, and K. J. Marfurt, Generative topographic mapping for seismic facies estimation of a carbonate wash, vol.2, pp.31-47, 2014.

D. E. Sawyer, P. B. Flemings, J. Buttles, and D. Mohrig, Mudflow transport behavior and deposit morphology: Role of shear stress to yield strength ratio in subaqueous experiments, Marine Geology, pp.28-39, 2012.

R. C. Shipp, P. Weimer, and H. W. Posamentier, Mass-Transport Deposits in Deepwater Settings: An Introduction, Mass-transport deposits in deepwater settings, pp.3-6, 2011.

C. C. Silva, A. T. Reis, R. J. Perovano, M. A. Gorini, M. V. Santos et al., Multiple Megaslide Complexes and Their Significance for the Miocene Stratigraphic Evolution of the Offshore Amazon Basin, Submarine Mass Movements and their Consequences, pp.49-60, 2016.

C. G. Silva, E. Araújo, A. T. Reis, R. Perovano, C. Gorini et al., Megaslides in the Foz do Amazonas Basin, Brazilian Equatorial Margin, Submarine Mass Movements and Their Consequences, pp.581-591, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00688089

Q. Sun, T. Alves, X. Xie, J. He, W. Li et al., Free gas accumulations in basal shear zones of mass-transport deposits, An important geohazard on continental slope basins. Marine and Petroleum Geology, vol.81, pp.17-32, 2017.

J. P. Sutton and R. M. Mitchum, Upper Quaternary Seafloor Mass-Transport Deposits at the Base of Slope, Offshore Niger Delta, Mass-Transport Deposits in Deepwater Settings, pp.85-110, 2011.

P. J. Talling, D. G. Masson, E. J. Sumner, and G. Magesini, Subaqueous sediment density flows: Depositional processes and deposit types, Sedimentology, vol.59, issue.7, pp.1937-2003, 2012.

R. Urgeles and A. Camerlenghi, Submarine landslides of the Mediterranean Sea: Trigger mechanisms, dynamics, and frequency-magnitude distribution, J. Geophys. Res. Earth Surf, vol.118, issue.4, pp.2600-2618, 2013.

M. Urlaub, P. J. Talling, and D. G. Masson, Timing and frequency of large submarine landslides: Implications for understanding triggers and future geohazard, Quaternary Science Reviews, vol.72, pp.63-82, 2013.

M. Vanneste, N. Sultan, S. Garziglia, C. F. Forsberg, and J. Heureux, Seafloor instabilities and sediment deformation processes: The need for integrated, multi-disciplinary investigations, Marine Geology, vol.352, pp.183-214, 2014.

D. J. Varnes, Landslide Types and Processes. Landslides and engineering practice, vol.24, pp.20-47, 1958.

P. Verney, Interprétation géologique de données sismiques par une méthode supervisée basée sur la vision cognitive, Informatique, 2009.

C. Wang, X. Ma, and J. Chen, Ontology-driven data integration and visualization for exploring regional geologic time and paleontological information, Computers & Geosciences, vol.115, pp.12-19, 2018.

A. B. Watts, M. Rodger, C. Peirce, C. J. Greenroyd, and R. W. Hobbs, Seismic structure, gravity anomalies, and flexure of the Amazon continental margin, NE Brazil, J. Geophys. Res, vol.114, issue.B7, p.17, 2009.

M. J. Woodhouse, A. R. Thornton, C. G. Johnson, B. P. Kokelaar, and J. M. Gray, Segregationinduced fingering instabilities in granular free-surface flows, J. Fluid Mech, vol.709, pp.543-580, 2012.

S. Wu, Z. Qin, D. Wang, X. Peng, Z. Wang et al., Analysis on Seismic Characteristics and Triggering Mechanisms of Mass Transport Deposits on the Northern Slope of the South China Sea, Chinese J. Geophys, vol.54, issue.6, pp.1056-1068, 2011.

, Integrating information from seismic data into sedimentary-processes modeling

P. L. Bouteiller, , 2016.

, Object retrieval in seismic data, Journées des Doctorants de l'Ecole Doctorale Géosciences

P. L. Bouteiller, J. Charléty, F. Delprat-jannaud, and C. Gorini, , 2016.

. Smai-sigma-conference, Signal, Image, Géométrie, Modélisation, Approximation) 2016. Marseille, France. Image processing for Mass Transport Deposits identification in seismic data

P. L. Bouteiller, , 2016.

, Image processing for Mass Transport Deposit retrieval in seismic data

P. L. Bouteiller, F. Delprat-jannaud, J. Charléty, C. Gorini, and D. Granjeon, , 2017.

, A new conceptual methodology for interpretation of mass transport processes from seismic data, SIAM Conference on Mathematical and Computational Issues in the Geosciences, 2017.

P. L. Bouteiller, S. Lafuerza, J. Charléty, A. T. Reis, D. Granjeon et al., Peer-reviewed article submitted February 28; revisions received June 25; revised submission sent, Journal of Marine and Petroleum Geology, 2018.

, Understanding mass transport processes in sedimentary basins from their signatures on seismic data: a knowledge-based approach

P. L. Bouteiller, , 2018.

, Procédé pour la détection d'objets géologiques dans une image

P. L. Bouteiller and J. Charléty, Patent application. Referenced as Le Bouteiller & Charléty, 2018.

P. L. Bouteiller, J. Charléty, F. Delprat-jannaud, C. Gorini, and D. Granjeon, SIAM Conference on Imaging Science, 2018.

, Mixing unsupervised and knowledge-based analysis for heterogeneous object delineation in seismic data

P. L. Bouteiller, J. Charléty, F. Delprat-jannaud, D. Granjeon, C. Gorini-;-le et al., Oral presentation. EAGE Annual Conference and Exhibition, 2018.

, Semi-supervised multi-facies object retrieval in seismic data

P. L. Bouteiller and J. Charléty, Mathematical Geosciences. List of Figures 1.1 Main features of a passive continental margin. Tilted fault blocks, dikes, salt (or evaporites), reef and lagoon deposits, are signatures of the passive margin formation and past evolution. Shallow marine sediments, slump blocks, turbidites and deep marine sediments are continuing deposited sediments in the basin, Peer-reviewed article submitted October 1, p.12, 2015.

, Among them: slope failures, impact of debris flows on infrastructure, dissociation of hydrates, shallow-gas pockets, overpressure, fluid escape features (gas chimneys, mud volcanoes), diapirism, seismicity, and highly destructive tsunamis. From Vanneste et al. (2014)

, Schematic description of the three domains in an MTD. This scheme does not cover all kinds of MTDs

, Subaerial mass-transport in the Austrian Alps; extensional and compressional features are seen, as well as lateral shear. These features are also seen in submarine mass transports. From Posamentier & Martinsen (2011). (b) Map (A), seismic profile (B) and interpreted seismic profile (C): MTD in brown, Mass transport examples. (a), 2016.

. Sawyer, Mudflow features characteristic of Flow factor. A, C, E: lateral view of source area, p.19, 2012.

, Schematic cross-sections illustrating gravity-driven deformational processes, including those that form mass-transport deposits. Modified from Posamentier & Martinsen (2011)

. Mourgues, for sand-like material. ? is the slope angle of the free surface; ? * b is the overpressure ratio of the basal detachment surface, with value zero if no overpressure and 1 if overpressure equals hydrostratic pressure. The dashed line represents the solution for a compressive state of stress. The black bold line represents the solution for a gravity-driven extensional state of stress (the one studied in this PhD project): this line is the limit where the Flow factor (inverse of the Factor of Safety FS here) is F f = 1. The grey area shows domains of slope instability triggered by gravity only, From Mourgues et al, p.26, 2014.

. Elverhoi, In their article, clay portion ranges from 5 to 25%, but the authors precise that these critical values may change depending on the kind of clay and the scale of the experiment / field data, 2010.

M. , Modified from the Schlumberger Oilfield Glossary. (b) Display of seismic data (not depth-converted), positive amplitudes shaded for enhanced inter-trace continuity. Each trace results from the operation of stacking signals from all receivers. TWT: two-way traveltime. Modified from the US EPA web archive, Marine seismic acquisition: example for 2D data. (a) The acquisition ship drags a system of sources (air guns) and receivers (hydrophones on the streamer), p.33, 1977.

, Seismic facies A, interpreted as shelf-margin deltas/shoreface deposits; (B) seismic facies B, interpreted as slope clinoforms with tangential (oblique) geometry; (C) seismic facies C, interpreted as slope clinoforms with sigmoidal geometry; (D) seismic facies D, interpreted as turbidites; (E) seismic facies E, interpreted as mass-transport deposits; (F) seismic facies F, Seismic stratigraphic features on an example 2D seismic section, as interpreted by Berton & Vesely (2016): '(A), 2016.

. Reis, Amapá Lower Complex (ALC), the deepest mass transport complex of Amapá, is mapped in blue; Amapá Upper Complex (AUC), more recent, is mapped in orange, The Amapá and Pará-Maranhão Megaslides (ALC-AUC / PMM) were studied by, p.37, 1981.

, The base of the carbonate platform dates back approximately to the early Eocene (60 to 56 Ma). The 7-8 Ma horizon corresponds to the end of the top of the carbonate platform, and base of siliciclastic sedimentation. The dark lines connecting the slope and basin regions within the Limoeiro Formation are examples of an extensional-compressional tectonic system, 13 Interpretation of a 2D seismic profile accross the Amazon basin: horizons corresponding to the main evolution stages of the basin, p.39, 2018.

. Silva, Synthetic schema of the main types of transport mechanisms in the Amazon River Mouth basin, according to the literature, p.42, 1981.

, Seismic section extracted from the 3D cube. Most recent, upslope sedimentary series are shown, together with several horizons. Progradation is the deposition of sediments gradually further in the basinward direction

. .. , 44 1.16 2D seismic profile compared with a 3D section extracted from the 3D cube. Most recent, downslope sedimentary series are shown, together with horizon G (2.4 Ma) from Gorini et al. (2014) (yellow line). The top-left image displays the context of the 3D section extract shown on the right; this greencontoured extract corresponds spatially to the green-contoured region of the 2D section, aggradation is the deposition of sediments that gradually builds upwards. No MTD is visible on this section

, The algorithm clearly yields a distinction between the geometry and texture parts of both natural and seismic images. However, the geometry component of the seismic image does not reveal the expected geological structure. Images obtained by applying algorithm and code from Le Guen (2014)

, Axes of the scatter plot correspond to GLCM contrast (abscissa) for a reference vector drawn in light blue, and GLCM energy (ordinate) for a reference vector drawn in orange

, (a) The level-set formulation of the delineation problem states that the contour line is the zero-level set of a function ?. ? is modified iteratively to fit a contour in the image while respecting a regularization constraint (e.g., on the total curvature or length of the contour). (b) Example of application: detection of freely swimming fish in a SONAR image; initial image, and zero-level-set contour after 4, 10 and 16 iterations, p.64, 2001.

. Al.-;-from and . Shafiq, 66 2.4 A typical seismic facies classification using the interpreter trained probabilistic neural net, where multiple seismic facies classes have been identified. The seismic classification scheme on the right consists of high amplitude (HA), moderate amplitude (MA), low amplitude (LA), continuous (C) and semi-continuous (SC) seismic facies. Training patches are contoured in green lines, Examples of geometrical segmentation methods for seismic image partitioning: (a) salt body delineation via level-set and manual constraint based on a specifically-designed seismic attribute, from Haukås et, 2002.

, Comparison between a k-means clustering map (left) and a SOM clustering map (right) of a Frio Channel gas play (South Texas), 2003.

. Roy, 76 2.9 Illustration of the method presented in this section. (a) One seismic section and the available prior probabilities on MTD occurrence. (b) The same section where every pixel is colored according to its GTM cluster label (a number between 1 and 49), and the posterior probabilities computed from our method. A 2D colormap is used for GTM labels to account for the 2D topographic "ranking" given by GTM. (c) Retrieval of probabilities for several sections, Generative Topographic Mapping: principle and characteristic of the Magnification Factors, vol.118, 1998.
URL : https://hal.archives-ouvertes.fr/in2p3-00724073

, 119 2.14 Illustration of the orientation filtering results for the 23 largest objects of the processed full-stack dataset. Vectors are normed and represent the orientation of the objects. Blue vectors correspond to MTDs, red vectors correspond to non-MTD objects, and green vectors correspond to unsure or unexpected objects. The light blue contour is a sketch of the cone used for filtering out most non-MTD objects. Note that the 3D view does not render the whole direction of vectors or cone, Posterior probabilities on one inline of the seismic cube used in our study, for the four datasets

, 125 2.17 An example of application of the Chan-Vese algorithm (Chan & Vese (2001)) on one 2D attribute image of the seismic volume: initial (left) and final (right) state of the contour (red line). Parameters to be tuned include the initial position of the contour (here chosen as split into multiple contours for accelerating the convergence, Crossplots comparing the volume, aspect ratio, and divergence to uniform (DTU in this report), of the largest connected components retrieved by our method. (a) full-stack dataset, (b) near-offset dataset, (c) mid-offset dataset, (d) far-offset dataset, p.126, 2007.

. Bergmann, represented by 7 textural attribute images. 20, resp. 25, class centers were picked manually on the reference image in cases (b), resp. (c), An example of application of the (supervised) iterative multiplicative filtering for data labeling by, 2017.

, Example of use of the International Stratigraphic Chart to retrieve Geologic Timescale Elements: the query was the word 'Cretaceous' to be 'within the label' of the elements searched. Results include all elements of the ontology having the word Cretaceous in their label. From Linked Data API (2017): link to the webpage, last accessed Sept, vol.10, 2018.

. .. , 2 Proposed architecture for an ontology for interpretation of major surfaces in a seismic block, p.136, 2009.

, Studied horizon parts shown on a seismic image; two different parts of the image give different information shown by the two graphs below the image, and resulting in interpretation of the horizons' relative ages (right). (b) Four descriptors depicted for all considered parts of horizons: two different quantitative descriptor (left and right), two different categorical descriptors (middle); the fifth rectangle on the right is the ontology proposal, Example of horizon interpretation in the ontology proposed by Verney, vol.137, 2009.

, Cluster labels (numbers from 1 to 49) are indicated. High values of MF indicate a stretched region of the manifold, corresponding to 'natural' boundaries between groups of points in the data space, Magnification factors (MF) map of the GTM manifold for the full-stack dataset, p.139

, Example for the deformed facies: seismic amplitude image (left), selection of clusters (middle), all selected clusters grouped into one facies (right). (b) Interpreted facies groups used in our study, drawn on the 2D grid of 49 cluster centers. The deformed facies, for example, is defined by clusters 4, Interpreting facies groups from the GTM-defined clusters. (a), vol.5, p.140

, Proposed workflow joining our two contributions into a global methodology for mass transport process interpretation from seismic data, p.201

, Result of the object postprocessing on one seismic section as presented on Figure 2.16. (b) Result of the object post-processing, where the morphological closing uses a larger structuring element -including all pixels. (c) Result of the object postprocessing, where the morphological closing uses a larger structuring element -selecting only pixels with positive probability. Black arrows indicate pixels added compared to (a), Objects recovered as one or more pieces. (a)

, Integrating facies to create facies maps and lateral proportion curves. Five seismic sections are shown with the corresponding MTD sections, colored according to cluster numbers. The red-level facies map shows the vertical proportion of one facies (as defined in section 3.2 and Figure 3.5) in each column of the MTD (integration over direction dir. 3). The curve shows the lateral proportion of the facies, in each dip-oriented section of the MTD (integration over directions dir. 2 and dir. 3)

, 13, see also Figure 3.5) on one seismic section. Horizon H1 is a hypothetical unconformity between seismic unit (I) (ancient slope) and unit, vol.5

. .. Mtds, 209 4.5 Determination of a stratigraphic pattern to use for calculating 'vertical' facies proportion curves along the geological time. From the study of a seismic cube (left) and its corresponding clustered cube (middle), we hypothetize the pattern to use (right). Here, for a first approach

, Approximate positions of MTDs in time are given. The 'MTD-like' facies kind is the grouping of clusters having maximum posterior probabilities in the cluster probability assignment presented in chapter 2, p.210

. Holcomb, 218 5.2 One inline of the seismic dataset with suggested relationship between the downslope region, An application of the Ilastik software to the extraction of neuronal cell bodies and nuclei from electron microscopy image stacks, 2016.

, Points on a regular grid in the low-dimensional latent space (left) are mapped, using a parameterized, non-linear mapping y(x; W), to corresponding centers of Gaussians (right), 1998.

, On the right, the same section is shown, with a mask corresponding to the ground-truth associated to this image (see also Figure 2.9a, p. 81)

, Mapping of the Cartesian coordinate system x i of the L-dimensional latent space onto the curvilinear coordinate system ? i in the L-dimensional manifold embedded in the data space. For L = 2, dA is an infinitesimal area in the latent space, and dA is the corresponding region on the manifold, 1997.

]. .. , Asymmetric error function for one pixel t: the error is smaller for false positives (i.e. where X t < Y t ) than for false negatives (i.e. where X t > Y t ). X: original prior image; Y : modeled image, p.229

, One reference image (a) and seven synthetic images ((b) to (h)), used for testing several metrics

C. , Table Supplementary 2 of the article of section 3.3

, 235 List of Tables B.1 Several metric results for the seven synthetic images of Figure B.2: metric values between one image ((b) to (h) of Figure B.2) and the Reference image (Figure B.2a). 1?F uzzyS: Fuzzy Sensitivity (1 -index value), EM : Error Metric

?. , Fuzzy Mutual Information (1 -index value). 1 ? HaarP SI: Haar wavelet-based perceptual similarity index (1 -index value). M M : Mass Metric

, Mass Metric (M M ) results for the PCA dimension reduction method, for Training Images (TI) and Validation Images (VI), with ? = 1, p.232

. Bibliography-alaudah, . Yazeed, and G. Alregib, Weakly-supervised labeling of seismic volumes using reference exemplars. Pages 4373-4377 of, IEEE International Conference on Image Processing (ICIP), 2016.

T. M. Alves, . Kurtev, . Kuncho, G. F. Moore, and M. Strasser, Assessing the internal character, reservoir potential, and seal competence of mass-transport deposits using seismic texture: A geophysical and petrophysical approach, AAPG Bulletin, vol.98, issue.4, pp.793-824, 2014.

D. Arthur and S. Vassilvitskii, k-means++: The Advantages of Careful Seeding, 2006.

C. Bacchiana, Fundamentals of Sequence Stratigraphy, 2008.

M. S. Bahorich, . Farmer, and L. Steve, 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube. Pages 93-96 of: SEG Technical Program Expanded Abstracts, 1995.

A. Barnes, Too many seismic attributes ?, CSEG Recorder, vol.31, 2006.

R. Bergmann, J. Fitschen, . Henrik, J. Persch, and G. Steidl, Iterative Multiplicative Filters for Data Labeling, International Journal of Computer Vision, vol.123, issue.3, pp.435-453, 2017.

O. Bernard, Segmentation d'images par la méthode des level-set, 2013.

A. Berthelot, A. H. Solberg, . Gelius, and -. Leiv, Texture attributes for detection of salt, Journal of Applied Geophysics, vol.88, pp.52-69, 2013.

F. Berton, F. Vesely, and . Farias, Seismic expression of depositional elements associated with a strongly progradational shelf margin: Northern Santos Basin, southeastern Brazil, Brazilian Journal of Geology, vol.46, issue.4, pp.585-603, 2016.

S. Beucher and F. Meyer, The Morphological Approach to Segmentation: The Watershed Transformation. Mathematics of Morphology in Image Processing, pp.433-482, 1993.

Y. Bhalgat, J. Charléty, and L. Duval, CATSEYES: Categorizing Seismic structures with tessellated scattering wavelet networks, IEEE SigPort, 2018.

A. W. Bishop, The use of the Slip Circle in the Stability Analysis of Slopes, Géotechnique, vol.5, issue.1, pp.7-17, 1955.

C. M. Bishop, M. Svensen, and C. K. Williams, Magnification factors for the GTM algorithm. Pages 64-69 of, Fifth International Conference on Artificial Neural Networks, 1997.

C. M. Bishop, M. Svensen, . Williams, and K. I. Christopher, Developments of the Generative Topographic Mapping, Neurocomputing, vol.21, pp.203-224, 1998.

C. M. Bishop, M. Svensén, . Williams, and K. I. Christopher, GTM: The Generative Topographic Mapping, Neural Computation, vol.10, issue.1, pp.215-234, 1998.

P. Blondel, . Sichi, and . Gómez, Textural analyses of multibeam sonar imagery from Stanton Banks, Northern Ireland continental shelf. Applied Acoustics, vol.70, issue.10, pp.1288-1297, 2009.

J. H. Bodine, Waveform analysis with seismic attributes, SEG -54th Annual International Meeting, 1984.

J. H. Bodine, Response waveform characterization of geophysical data. US patent US4633447A, 1986.

A. Bouziat, M. Cacas-stentz, . Colombo, . Daniele, J. Frey et al., Geo-mechanical control on natural fracturing and overpressure location in a synthetic passive margin model. In: AAPG Hedberg conference : The future of basin and petroleum system modeling, 2016.

S. Bull, J. Cartwright, . Huuse, and . Mads, A review of kinematic indicators from mass-transport complexes using 3D seismic data. Marine and Petroleum Geology, vol.26, pp.1132-1151, 2009.

J. Busson, . Teles, . Vanessa, . Gillet, . Hervé et al., Large-scale carbonate slope gravity failures: from stratigraphic evolution to numerical failure prediction. Article #11126. Search and Discovery, 2018.

K. E. Campbell, C. Frailey, . David, and L. Romero-pittman, The Pan-Amazonian Ucayali Peneplain, late Neogene sedimentation in Amazonia, and the birth of the modern Amazon River system, Palaeogeography, Palaeoclimatology, Palaeoecology, vol.239, issue.1-2, pp.166-219, 2006.

E. Candès, . Demanet, . Laurent, . Donoho, . David et al., Fast Discrete Curvelet Transforms, Multiscale Modeling & Simulation, vol.5, issue.3, pp.861-899, 2006.

A. Carrillat, . Randen, . Trygve, L. Sonneland, . Elvebakk et al., Seismic stratigraphic mapping of carbonate mounds using 3D texture attributes, Pages G-41 of: EAGE Conference and Exhibition, vol.64, 2002.

. Caselles, . Vicent, R. Kimmel, and G. Sapiro, Geodesic Active Contours, International Journal of Computer Vision, vol.22, issue.1, pp.61-79, 1997.

O. Catuneanu, V. Abreu, J. P. Bhattacharya, M. D. Blum, R. W. Dalrymple et al., Towards the standardization of sequence stratigraphy, Earth-Science Reviews, vol.92, issue.1-2, pp.1-33, 2009.

T. F. Chan and L. A. Vese, Active contours without edges, IEEE Transactions on Image Processing, vol.10, issue.2, pp.266-277, 2001.

T. F. Chan, B. Sandberg, . Yezrielev, . Vese, and A. Luminita, Active Contours without Edges for Vector-Valued Images, Journal of Visual Communication and Image Representation, vol.11, issue.2, pp.130-141, 2000.

A. Chemenda, T. Bois, S. Bouissou, and E. Tric, Numerical modelling of the gravityinduced destabilization of a slope: The example of the La Clapière landslide, southern France, Geomorphology, vol.109, pp.86-93, 2009.

S. Chopra, . Marfurt, and J. Kurt, Seismic attributes for prospect identification and reservoir characterization, 2007.

S. Chopra, . Marfurt, and J. Kurt, Seismic facies analysis using generative topographic mapping, SEG Technical Program Expanded Abstracts, 2014.

E. H. Christiansen, W. Hamblin, and . Kenneth, Dynamic Earth: An introduction to physical geology, 2015.

D. A. Clausi and Y. Zhao, Grey level co-occurrence integrated algorithm (GLCIA): A superior computational method to rapidly determine co-occurrence probability texture features, Computers & Geosciences, vol.29, issue.7, pp.837-850, 2003.

P. R. Cobbold, R. Mourgues, and K. Boyd, Mechanism of thin-skinned detachment in the Amazon Fan: Assessing the importance of fluid overpressure and hydrocarbon generation, Marine and Petroleum Geology, vol.21, issue.8, pp.1013-1025, 2004.

. Coléou, . Thierry, . Poupon, . Manuel, . Azbel et al., Unsupervised seismic facies classification: A review and comparison of techniques and implementation, The Leading Edge, vol.22, issue.10, pp.942-953, 2003.

A. M. Cruz, Integrated geological and geophysical studies applied to understanding the evolution of the Offshore Amazon Basin, 2018.

J. E. Damuth and R. W. Embley, Mass-transport processes on Amazon Cone: western equatorial Atlantic, vol.65, pp.629-643, 1981.

J. E. Damuth, R. D. Flood, R. O. Kowsmann, R. H. Belderson, and M. A. Gorini, Anatomy and growth pattern of Amazon deep-sea fan as revealed by long-range side-scan sonar (GLORIA) and high-resolution seismic studies, AAPG Bulletin, vol.72, issue.8, pp.885-911, 1988.

R. M. Darros-de-matos, Tectonic evolution of the equatorial South Atlantic. Pages 331-354 of, Geophysical Monograph Series, vol.115, 2000.

,. De-clippele, . Lh, J. Gafeira, K. Robert, S. Hennige et al., Using novel acoustic and visual mapping tools to predict the small-scale spatial distribution of live biogenic reef framework in cold-water coral habitats, Coral Reefs, vol.36, issue.1, pp.255-268, 2017.

M. De-matos, . Castro, P. Osorio, . Léo, P. Johann et al., Unsupervised seismic facies analysis using wavelet transform and self-organizing maps, GEOPHYSICS, vol.72, issue.1, pp.9-21, 2007.

A. P. Dempster, N. M. Laird, . Rubin, and B. Donald, Maximum likelihood from incomplete data via the EM algorithm, Journal of the royal statistical society. Series B (methodological, pp.1-38, 1977.

A. Deshpande, A Beginner's Guide To Understanding Convolutional Neural Networks, Guide-To-Understanding-Convolutional-Neural-Networks, 2016.

D. Drucker, . Charles, and W. Prager, Soil mechanics and plastic analysis or limit design, Quarterly of applied mathematics, vol.10, issue.2, pp.157-165, 1952.

V. Durand, L. Bouteiller, . Pauline, A. Mangeney, E. Koné et al., Using seismic data and modelling to better constrain the dynamics of rockfalls in the Dolomieu crater, Piton de la Fournaise, CMG 2016 : 31st IUGG Conference on Mathematical Geophysics, 2016.

D. R. Ebuna, J. W. Kluesner, K. J. Cunningham, and J. H. Edwards, Statistical approach to neural network imaging of karst systems in 3D seismic reflection data. Interpretation, vol.6, pp.15-35, 2018.

C. Eichkitz, . Georg, . Davies, . John, . Amtmann et al., Grey level co-occurrence matrix and its application to seismic data, First Break, vol.33, pp.71-77, 2015.

A. Elverhoi, H. Breien, F. V. Blasio, C. B. Harbitz, and M. Pagliardi, Submarine landslides and the importance of the initial sediment composition for run-out length and final deposit, Ocean Dynamics, vol.60, issue.4, pp.1027-1046, 2010.

N. Espurt, . Baby, . Patrice, . Brusset, . Stéphane et al., The Nazca Ridge and Uplift of the Fitzcarrald Arch: Implications for Regional Geology in Northern South America, Amazonia: Landscape and Species Evolution, 2009.

T. Faucon, Segmentation morphologique et topologique de cubes sismiques, 2007.
URL : https://hal.archives-ouvertes.fr/pastel-00003029

P. Favreau, A. Mangeney, A. Lucas, G. Crosta, and F. Bouchut, Numerical modeling of landquakes, Geophysical Research Letters, vol.37, issue.15, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00693018

J. Figueiredo, C. Hoorn, P. Van-der-ven, and E. Soares, Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas Basin, Geology, vol.37, issue.7, pp.619-622, 2009.

J. J. Figueiredo, P. V. Zalan, and E. F. Soares, , vol.15, pp.299-309, 2007.

P. B. Flemings, H. Long, B. Dugan, J. Germaine, C. M. John et al., Pore pressure penetrometers document high overpressure near the seafloor where multiple submarine landslides have occurred on the continental slope, offshore Louisiana, Gulf of Mexico, Earth and Planetary Science Letters, vol.269, issue.1-2, pp.269-283, 2008.

J. Frey-martínez, D. C. Mosher, R. Shipp, . Craig, . Moscardelli et al., 3D Seismic Interpretation of Mass Transport Deposits: Implications for Basin Analysis and Geohazard Evaluation, Submarine Mass Movements and Their Consequences, vol.553, 2010.

J. Frey-martínez, C. Bertoni, J. Gérard, and H. Matías, Processes of Submarine Slope Failure and Fluid Migration on the Ebro Continental Margin: Implications for Offshore Exploration and Development. Pages 181-198 of, Mass-Transport Deposits in Deepwater Settings. SEPM (Society for Sedimentary Geology), 2011.

. Galerne, . Bruno, A. Leclaire, and J. Rabin, A Texture Synthesis Model Based on Semi-discrete Optimal Transport in Patch Space, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01726443

D. Gao, Volume texture extraction for 3D seismic visualization and interpretation, GEOPHYSICS, vol.68, issue.4, pp.1294-1302, 2003.

D. Gao, Application of seismic texture model regression to seismic facies characterization and interpretation, The Leading Edge, vol.27, issue.3, pp.394-397, 2008.

L. A. Gatys, A. S. Ecker, and M. Bethge, Texture Synthesis Using Convolutional Neural Networks, 2015.

Q. Gauthier and C. Gorini, Filling and erosion of submarine canyons: autocyclic or allocyclic?, Internship poster. ISTeP, 2018.

. Geoteric, GeoTeric website, 2018.

I. Goodfellow, . Pouget-abadie, . Jean, . Mirza, . Mehdi et al., Generative adversarial nets. Pages 2672-2680 of: Advances in neural information processing systems, 2014.

C. Gorini, . Haq, U. Bilal, A. Reis, . Tadeu et al., Late Neogene sequence stratigraphic evolution of the Foz do Amazonas Basin, vol.26, pp.179-185, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00910787

C. Goujon, . Dalloz-dubrujeaud, . Blanche, and N. Thomas, Bidisperse Granular Flow on Inclined Rough Planes, Traffic and Granular Flow'05, pp.147-156, 2007.

O. Gramstad and M. Nickel, Automated Top Salt Interpretation Using a Deep Convolutional Net, 80th EAGE Conference and, 2018.

J. M. Gray and B. P. Kokelaar, Large particle segregation, transport and accumulation in granular free-surface flows, Journal of Fluid Mechanics, vol.652, pp.105-137, 2010.

T. R. Gruber, A translation approach to portable ontology specifications, Knowledge Acquisition, vol.5, issue.2, pp.199-220, 1993.

M. A. Hampton, . Lee, J. Homa, and J. Locat, Submarine landslides, Reviews of Geophysics, vol.34, issue.1, pp.33-59, 1996.

R. M. Haralick, K. Shanmugam, and . Dinstein, Its'Hak. 1973. Textural Features for Image Classification, IEEE Transactions on Systems, Man, and Cybernetics, vol.3, issue.6, pp.610-621

H. Hashemi, P. De-beukelaar, B. Beiranvand, and M. Seiedali, Clustering Seismic Datasets for Optimized Facies Analysis Using a SSCSOM Technique, 79th EAGE Conference and Exhibition, 2017.

J. Haukås, O. Roaldsdotter-ravndal, B. H. Fotland, A. Bounaim, and L. Sonneland, Automated salt body extraction from seismic data using the level set method, p.31, 1971.

P. S. Holcomb, . Morehead, . Michael, . Doretto, . Gianfranco et al., Rapid and Semi-automated Extraction of Neuronal Cell Bodies and Nuclei from Electron Microscopy Image Stacks, Methods in molecular biology, pp.277-290, 2016.

P. Holmgren, Multiple flow direction algorithms for runoff modelling in grid based elevation models: An empirical evaluation, Hydrological Processes, vol.8, pp.327-334, 1994.

C. Hoorn, F. P. Wesselingh, H. Ter-steege, M. A. Bermudez, A. Mora et al., Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity, Science, issue.6006, pp.927-931, 2010.

P. Horton, M. Jaboyedoff, B. Rudaz, and M. Zimmermann, Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale, Natural Hazards and Earth System Sciences, vol.13, issue.4, pp.869-885, 2013.

V. Hühnerbach and D. G. Masson, Landslides in the North Atlantic and its adjacent seas: An analysis of their morphology, setting and behaviour, Marine Geology, vol.213, issue.1-4, pp.343-362, 2004.

K. Ismail, . Huvenne, A. I. Veerle, . Masson, and G. Douglas, Objective automated classification technique for marine landscape mapping in submarine canyons, Marine Geology, vol.362, pp.17-32, 2015.

. Itasca, Explicit continuum modeling of non-linear material behavior in 3D, vol.3, 2018.

A. K. Jain and F. Farrokhnia, Unsupervised texture segmentation using Gabor filters. Pages 14-19 of, IEEE International Conference on Systems, Man, and Cybernetics Conference, 1990.

N. Jetchev, . Bergmann, . Urs, and R. Vollgraf, Texture synthesis with spatial generative adversarial networks, 2016.

B. Julesz, E. N. Gilbert, L. A. Shepp, and H. L. Frisch, Inability of humans to discriminate between visual textures that agree in second-order statistics -revisited, Perception, vol.2, issue.4, pp.391-405, 1973.

B. Julesz, E. N. Gilbert, and J. D. Victor, Visual discrimination of textures with identical third-order statistics, Biological Cybernetics, vol.31, issue.3, pp.137-140, 1978.

J. H. Justice, D. J. Hawkins, and G. Wong, Multidimensional attribute analysis and pattern recognition for seismic interpretation, Pattern Recognition, vol.18, issue.6, pp.391-399, 1985.

A. Kadu, . Van-leeuwen, . Tristan, . Mulder, and A. Wim, Salt Reconstruction in Full-Waveform Inversion With a Parametric Level-Set Method, IEEE Transactions on Computational Imaging, vol.3, issue.2, pp.305-315, 2017.

M. S. Kappes, K. Gruber, S. Frigerio, R. Bell, M. Keiler et al., The Mul-tiRISK platform: The technical concept and application of a regional-scale multihazard exposure analysis tool. Geomorphology, pp.139-155, 2012.

M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active contour models, International Journal of Computer Vision, vol.1, issue.4, pp.321-331, 1988.

C. Kervrann, Modeles statistiques pour l'analyse d'images, algorithmes et applications en imagerie bio-cellulaire et moleculaire, 2010.
URL : https://hal.archives-ouvertes.fr/tel-00541298

D. P. Kingma and M. Welling, Auto-encoding variational Bayes, Proceedings of The International Conference on Learning Representations, 2014.

T. Kohonen, Learning Vector Quantization for Pattern Recognition, 1986.

A. Krizhevsky, . Sutskever, . Ilya, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, Pages 1097-1105 of: Advances in neural information processing systems, 2012.

R. F. Kubichek and E. A. Quincy, Statistical modeling and feature selection for seismic pattern recognition, Pattern Recognition, vol.18, issue.6, pp.441-448, 1985.

A. Lacoste, . Vendeville, C. Bruno, . Mourgues, . Régis et al., Gravitational instabilities triggered by fluid overpressure and downslope incision -Insights from analytical and analogue modelling, Journal of Structural Geology, vol.42, pp.151-162, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02377303

L. Bouteiller, P. Charléty, and J. , Procédé pour la détection d'objets géologiques dans une image sismique, 2018.

L. Bouteiller, . Pauline, J. Charléty, . Delprat-jannaud, . Florence et al., Mixing unsupervised and knowledge-based analysis for heterogeneous object delineation in Seismic Data, 80th EAGE Conference and, 2018.

. Le-guen and . Vincent, Cartoon + Texture Image Decomposition by the TV-L1 Model, Image Processing On Line, vol.4, pp.204-219, 2014.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol.86, issue.11, pp.2278-2324, 1998.

Y. Lecun, . Bengio, . Yoshua, and G. Hinton, Deep learning, Nature, vol.521, issue.7553, p.436, 2015.

W. Lewis, . Vigh, and . Denes, Deep learning prior models from seismic images for full-waveform inversion. Pages 1512-1517 of: SEG Technical Program Expanded Abstracts, Society of Exploration Geophysicists, 2017.

D. Leynaud, J. Mienert, and M. Vanneste, Submarine mass movements on glaciated and non-glaciated European continental margins: A review of triggering mechanisms and preconditions to failure, Marine and Petroleum Geology, vol.26, issue.5, pp.618-632, 2009.

M. Lianantonakis, . Petillot, and R. Yvan, Sidescan Sonar Segmentation Using Texture Descriptors and Active Contours, IEEE Journal of Oceanic Engineering, vol.32, issue.3, pp.744-752, 2007.

T. Lin, . Dollar, . Piotr, . Girshick, . Ross et al., Feature Pyramid Networks for Object Detection, Pages 936-944 of: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

, Linked Data API, International Chronostratigraphic Chart, 2017.

Z. C. Lipton, The mythos of model interpretability, 2016.

D. Lisboa, . Lafuerza, . Sara, . Gorini, . Christian et al., Submarine canyons morphology and failure processes along the continental slope of the NorthWestern Foz Do Amazonas basin, Brazil. International Meeting of Sedimentology, 2017.

L. Liu, . Long, . Yunli, P. W. Fieguth, . Lao et al., BRINT: binary rotation invariant and noise tolerant texture classification, IEEE Signal Processing Society, vol.23, issue.7, pp.3071-3084, 2014.

Z. Liu, . Li, . Chunlei, . Zhao, . Quanjun et al., A fabric defect detection algorithm via context-based local texture saliency analysis, International Journal of Clothing Science and Technology, vol.27, issue.5, pp.738-750, 2015.

. Long, . Zhiling, . Alaudah, . Yazeed, M. Qureshi et al., Characterization of migrated seismic volumes using texture attributes: a comparative study, SEG Technical Program Expanded Abstracts, 2015.

. Long, . Zhiling, . Wang, . Zhen, and G. Alregib, Seisim: structural similarity evaluation for seismic data retrieval, Presented at the 2015 IEEE ICCSPA, 2015.

P. L. Love and M. Simaan, Segmentation of a seismic section using image processing and artificial intelligence techniques, Pattern Recognition, vol.18, issue.6, pp.409-419, 1985.

Y. Lu, . Cohen, . Ira, X. Zhou, . Sean et al., Feature selection using principal feature analysis, vol.301, 2007.

J. Macqueen, Some methods for classification and analysis of multivariate observations, Pages 281-297 of: Proceedings of the fifth Berkeley Symposium on mathematical statistics and probability, vol.14, 1967.

Z. Malik, . Rezgui, . Abdelmounaam, . Medjahed, . Brahim et al., Semantic integration in Geosciences, International Journal of Semantic Computing, issue.03, pp.301-330, 2010.

S. Mallat, Group Invariant Scattering, Communications on Pure and Applied Mathematics, vol.65, issue.10, pp.1331-1398, 2012.

A. Mangeney, F. Bouchut, N. Thomas, J. P. Vilotte, and M. O. Bristeau, Numerical modeling of self-channeling granular flows and of their levee-channel deposits, Journal of Geophysical Research, vol.112, issue.F2, p.2050, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00311797

A. Mangeney-castelnau, F. Bouchut, J. P. Vilotte, E. Lajeunesse, A. Aubertin et al., On the use of Saint Venant equations to simulate the spreading of a granular mass, Journal of Geophysical Research: Solid Earth, issue.B9, p.110, 2005.

K. J. Marfurt, Seismic attributes and the road ahead, SEG Technical Program Expanded Abstracts, 2014.

K. J. Marfurt, R. Kirlin, . Lynn, . Farmer, L. Steven et al., 3-D seismic attributes using a semblance-based coherency algorithm, GEOPHYSICS, vol.63, issue.4, pp.1150-1165, 1998.

I. Marroquín, . Dimitri, J. Brault, . Hart, and S. Bruce, A visual data-mining methodology for seismic facies analysis: Part 1 -Testing and comparison with other unsupervised clustering methods, GEOPHYSICS, vol.74, issue.1, pp.1-11, 2009.

M. Maslin, . Vilela, . Claudia, . Mikkelsen, . Naja et al., Causes of catastrophic sediment failures of the Amazon Fan, Quaternary Science Reviews, vol.24, pp.2180-2193, 2005.

D. G. Masson, C. B. Harbitz, R. B. Wynn, G. Pedersen, and F. Løvholt, Submarine landslides: processes, triggers and hazard prediction, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, vol.364, pp.2009-2039, 1845.

J. Mienert, Methane Hydrate and Submarine Slides. Pages 790-798 of: Encyclopedia of Ocean Sciences, 2009.

. Migeon, . Sébastien, . Cattaneo, . Antonio, . Hassoun et al., Morphology, distribution and origin of recent submarine landslides of the Ligurian Margin, Some insights into geohazard assessment, vol.32, pp.225-243, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00590902

E. Miramontes, . Cattaneo, . Antonio, . Jouet, . Gwenael et al., Implications of Sediment Dynamics in Mass Transport along the Pianosa Ridge (Northern Tyrrhenian Sea), Submarine Mass Movements and their Consequences. Advances in Natural and Technological Hazards Research, vol.41, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01687792

. Mitchum, M. Rober, P. R. Vail, . Sangree, and B. John, Seismic stratigraphy and global changes of sea level: Part 6. Stratigraphic interpretation of seismic reflection patterns in depositional sequences: Section 2. Application of seismic reflection configuration to stratigraphic interpretation, 1977.

Z. T. Moore and D. E. Sawyer, Assessing post-failure mobility of submarine landslides from seismic geomorphology and physical properties of mass transport deposits: An example from seaward of the Kumano Basin, Nankai Trough, offshore Japan, Marine Geology, vol.374, pp.73-84, 2016.

N. R. Morgenstern and V. E. Price, The Analysis of the Stability of General Slip Surfaces, Géotechnique, vol.15, issue.1, pp.79-93, 1965.

L. Moscardelli and L. Wood, New classification system for mass transport complexes in offshore Trinidad, Basin Research, vol.20, issue.1, pp.73-98, 2008.

M. Mougeot, Enjeux mathematiques et statistiques du 'Big Data, 2015.

M. Moulin, . Aslanian, . Daniel, and P. Unternehr, A new starting point for the South and Equatorial Atlantic Ocean, Earth-Science Reviews, vol.98, issue.1-2, pp.1-37, 2010.

R. Mourgues and P. R. Cobbold, Sandbox experiments on gravitational spreading and gliding in the presence of fluid overpressures, Journal of Structural Geology, vol.28, issue.5, pp.887-901, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00116061

R. Mourgues, E. Lecomte, B. Vendeville, and S. Raillard, An experimental investigation of gravity-driven shale tectonics in progradational delta, Tectonophysics, vol.474, issue.3-4, pp.643-656, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00489724

R. Mourgues, A. Lacoste, and C. Garibaldi, The Coulomb critical taper theory applied to gravitational instabilities, Journal of Geophysical Research: Solid Earth, vol.119, issue.1, pp.754-765, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02377298

T. Mulder and . Alexander, The physical character of subaqueous sedimentary density flows and their deposits, Sedimentology, vol.48, issue.2, pp.269-299, 2001.

D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Communications on Pure and Applied Mathematics, vol.42, issue.5, pp.577-685, 1989.

M. A. Musen, The Protégé Project: A Look Back and a Look Forward, AI matters, vol.1, issue.4, pp.4-12, 2015.

I. T. Nabney, . Bishop, and M. Christopher, Netlab Neural Network Software, webpage, 2002.

W. Nailon and . Henry, Texture Analysis Methods for Medical Image Characterisation, Biomedical Imaging, 2010.

V. Nair and G. E. Hinton, Rectified linear units improve restricted boltzmann machines, Pages 807-814 of: Proceedings of the 27th international conference on machine learning, 2010.

C. Nelson, . Hans, . Escutia, . Carlota, J. E. Damuth et al., Interplay of Mass-Transport and Turbidite-System Deposits in Different Active Tectonic and Passive Continental Margin Settings: External and Local Controlling Factors. Pages 39-66 of, Mass-transport deposits in deepwater settings. SEPM (Society for sedimentary geology) special publication, vol.96, 2011.

T. Ojala, M. Pietikainen, and T. Maenpaa, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.7, pp.971-987, 2002.

. Omosanya, O. Kamal&apos;deen, . Alves, and M. Tiago, Ramps and flats of mass-transport deposits (MTDs) as markers of seafloor strain on the flanks of rising diapirs, Marine Geology, vol.340, pp.82-97, 2013.

C. E. Optum, Optum Computational Engineering, Geophysical finite element software, 2018.

M. G. Orozco-del-castillo, M. Cárdenas-soto, C. Ortiz-alemán, C. Couder-castañeda, J. Urrutia-fucugauchi et al., A texture-based region growing algorithm for volume extraction in seismic data, Geophysical Prospecting, vol.65, issue.1, pp.97-105, 2017.

A. Ortiz-karpf, D. M. Hodgson, C. A. Jackson, -. Mccaffrey, and D. William, Mass-transport complexes as markers of deep-water fold-and-thrust belt evolution: Insights from the southern Magdalena fan, offshore Colombia, Basin Research, vol.57, issue.4, p.294, 2016.

K. Osypov, . Wilkinson, . David, L. L. Bandura, A. Halpert et al., System and method for seismic facies identification using machine learning, 2018.

M. Owen, . Day, . Simon, . Maslin, and . Mark, Late Pleistocene submarine mass movements: Occurrence and causes, Quaternary Science Reviews, vol.26, issue.7-8, pp.958-978, 2007.

R. K. Pachauri, M. R. Allen, V. R. Barros, . Broome, . John et al., Climate change 2014: synthesis report. Contribution of Working Groups I, 2014.

T. N. Pappas, D. L. Neuhoff, . De-ridder, . Huib, and J. Zujovic, Image Analysis: Focus on Texture Similarity, Proceedings of the IEEE, vol.101, issue.9, pp.2044-2057, 2013.

G. Partyka, J. Gridley, and J. Lopez, Interpretational applications of spectral decomposition in reservoir characterization, The Leading Edge, vol.18, issue.3, pp.353-360, 1999.

S. Patruno and W. Helland-hansen, Clinoforms and clinoform systems: Review and dynamic classification scheme for shorelines, subaqueous deltas, shelf edges and continental margins, Earth-Science Reviews, vol.185, pp.202-233, 2018.

S. Peleg, M. Werman, and H. Rom, A unified approach to the change of resolution: Space and gray-level, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.11, issue.7, pp.739-742, 1989.

M. Perrin, . Zhu, . Beiting, . Schneider, . Sébastien et al., Ontology-driven applications for geological modeling, 2009.

L. Peyton, . Bottjer, . Rich, and G. Partyka, Interpretation of incised valleys using new 3-D seismic techniques: A case history using spectral decomposition and coherency, The Leading Edge, vol.17, issue.9, pp.1294-1298, 1998.

J. D. Pigott, . Kang, . Moo-hee, . Han, and . Hyun-chul, First order seismic attributes for clastic seismic facies interpretation: Examples from the East China Sea, Journal of Asian Earth Sciences, vol.66, pp.34-54, 2013.

I. Pitas and C. Kotropoulos, A texture-based approach to the segmentation of seismic images, Pattern Recognition, vol.25, issue.9, pp.929-945, 1992.

J. Portilla, A parametric texture model based on joint statistcs of complex wavelet coefficients, International Journal of Computer Vision, vol.40, issue.1, pp.49-70, 2000.

H. W. Posamentier, R. J. Davies, J. A. Cartwright, and L. Wood, Seismic geomorphology -an overview, Geological Society, vol.277, issue.1, pp.1-14, 2007.

H. W. Posamentier and O. J. Martinsen, The Character and Genesis of Submarine Mass-Transport Deposits: Insights from Outcrop and 3D Seismic Data, Mass-transport deposits in deepwater settings. SEPM (Society for sedimentary geology) special publication, vol.96, 2011.

S. Purves, . Lowell, . James, . Norton, . Dale et al., , 2015.

J. Qi, . Lin, . Tengfei, . Zhao, . Tao et al., Semisupervised multiattribute seismic facies analysis. Interpretation, vol.4, pp.91-106, 2016.

L. Raad, . Davy, . Desolneux, . Agnès, and J. Morel, A survey of exemplar-based texture synthesis, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01553841

A. T. Reis, R. Perovano, C. G. Silva, B. C. Vendeville, E. Araujo et al., Two-scale gravitational collapse in the Amazon Fan: A coupled system of gravity tectonics and mass-transport processes, Journal of the Geological Society, vol.167, issue.3, pp.593-604, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00683592

A. T. Reis, E. Araujo, C. G. Silva, A. M. Cruz, C. Gorini et al., Effects of a regional décollement level for gravity tectonics on late Neogene-Quaternary large-scale slope instabilities in the Foz do Amazonas Basin, Brazil. Marine and Petroleum Geology, vol.75, pp.29-52, 2016.

R. Reisenhofer, . Bosse, . Sebastian, . Kutyniok, . Gitta et al., A Haar wavelet-based perceptual similarity index for image quality assessment, Signal Processing: Image Communication, vol.61, pp.33-43, 2018.

F. Reitsma, . Laxton, . John, . Ballard, . Stuart et al., Semantics, ontologies and eScience for the geosciences, Computers & Geosciences, vol.35, issue.4, pp.706-709, 2009.

S. E. Richardson, R. J. Davies, M. B. Allen, . Grant, and F. Simon, Structure and evolution of mass transport deposits in the South Caspian Basin, Azerbaijan, Basin Research, vol.23, issue.6, pp.702-719, 2011.

V. Roberto, A. Peron, and P. L. Fumis, Low-level processing techniques in geophysical image interpretation, Pattern Recognition Letters, vol.10, issue.2, pp.111-122, 1989.

M. Roddaz, . Viers, . Jérôme, . Brusset, . Stéphane et al., Sediment provenances and drainage evolution of the Neogene Amazonian foreland basin, Earth and Planetary Science Letters, vol.239, issue.1-2, pp.57-78, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00320048

O. Ronneberger, . Fischer, . Philipp, and T. Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation. Pages 234-241 of, Medical Image Computing and Computer-Assisted Intervention -MICCAI 2015, vol.9351, 2015.

J. Rousselle, Les contours actifs, une méthode de segmentation: Applicationà l'imagerie médicale, 2003.

A. Roy, Latent space classification of seismic facies, 2013.

A. Roy, A. S. Romero-peláez, T. J. Kwiatkowski, . Marfurt, and J. Kurt, Generative topographic mapping for seismic facies estimation of a carbonate wash, vol.2, pp.31-47, 2014.

. Rsi, Attributes Revisited, 2003.

D. E. Sawyer, . Flemings, B. Peter, J. Buttles, and D. Mohrig, Mudflow transport behavior and deposit morphology: Role of shear stress to yield strength ratio in subaqueous experiments, Marine Geology, pp.28-39, 2012.

. Seg, SEG Wiki website, 2018.

M. A. Shafiq, . Wang, . Zhen, . Amin, . Asjad et al., Detection of Salt-dome Boundary Surfaces in Migrated Seismic Volumes Using Gradient of Textures. Pages 1811-1815 of, SEG Technical Program Expanded Abstracts, 2015.

O. Sharma, . Anton, and . François, CUDA based Level Set method for 3D reconstruction of fishes from large acoustic data, 2009.

G. E. Shephard, R. D. Müller, L. Liu, and M. Gurnis, Miocene drainage reversal of the Amazon River driven by plate-mantle interaction, Nature Geoscience, vol.3, issue.12, pp.870-875, 2010.

R. Shipp, . Craig, . Weimer, . Paul, . Posamentier et al., Mass-Transport Deposits in Deepwater Settings: An Introduction. Pages 3-6 of, Mass-transport deposits in deepwater settings. SEPM (Society for sedimentary geology) special publication, vol.96, 2011.

L. Sifre, . Mallat, and . Stéphane, Rotation, scaling and deformation invariant scattering for texture discrimination, IEEE Conference on Computer Vision, 2013.

C. G. Silva, E. Araújo, A. T. Reis, R. Perovano, C. Gorini et al., Megaslides in the Foz do Amazonas Basin, Brazilian Equatorial Margin, Submarine Mass Movements and Their Consequences, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00688089

C. C. Silva, A. T. Reis, R. J. Perovano, M. A. Gorini, M. V. Santos et al., Multiple Megaslide Complexes and Their Significance for the Miocene Stratigraphic Evolution of the Offshore Amazon Basin, Submarine Mass Movements and their Consequences. Advances in Natural and Technological Hazards Research, vol.41, 2016.

S. R. Silva, R. R. Maciel, and M. C. Severino, Cenozoic tectonics of Amazon Mouth Basin, Geo-Marine Letters, vol.18, issue.3, pp.256-262, 1998.

E. P. Simoncelli and W. Freeman, The steerable pyramid: a flexible architecture for multi-scale derivative computation, Pages 444-447 of: International Conference on Image Processing, pp.23-26, 1995.

A. V. Soares-junior, Y. Hasui, J. B. Costa, and F. B. Machado, Evolucao do rifteamento e paleogeografia da margem Atlantica Equatorial do Brasil: Triassico ao Holoceno. Geociencias, vol.30, pp.669-692, 2011.

C. Sommer, C. Straehle, . Köthe, . Ullrich, and F. A. Hamprecht, Ilastik: Interactive learning and segmentation toolkit. Pages 230-233 of: Biomedical Imaging: From Nano to Macro, IEEE, 2011.

. Sultan, . Nabil, . Cochonat, . Pierre, J. Bourillet et al., Evaluation of the Risk of Marine Slope Instability: A Pseudo-3D Approach for Application to Large Areas, Marine Georesources & Geotechnology, vol.19, issue.2, pp.107-133, 2001.

J. F. Svensen, GTM: The Generative Topographic Mapping, 1998.

A. Taha, . Aziz, and A. Hanbury, Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool, BMC medical imaging, vol.15, p.29, 2015.

M. T. Taner, F. Koehler, and R. E. Sheriff, Complex seismic trace analysis, GEO-PHYSICS, vol.44, issue.6, pp.1041-1063, 1979.

. Telegeography, Submarine Cable Map website, 2018.

K. Terzaghi, Theoretical soil mechanics, 1942.

K. Terzaghi, Application of Geology to Engineering Practice, 1950.

M. Unser, Texture classification and segmentation using wavelet frames, IEEE Transactions on image processing, vol.4, issue.11, pp.1549-1560, 1995.

M. Urlaub, P. J. Talling, and D. G. Masson, Timing and frequency of large submarine landslides: Implications for understanding triggers and future geohazard, Quaternary Science Reviews, vol.72, pp.63-82, 2013.

M. Urlaub, . Talling, J. Peter, . Zervos, . Antonis et al., What causes large submarine landslides on low gradient (< 2 ? ) continental slopes with slow ( 0.15 m/kyr) sediment accumulation?, Journal of Geophysical Research: Solid Earth, vol.120, issue.10, pp.6722-6739, 2015.

. Vanneste, . Maarten, . Sultan, . Nabil, . Garziglia et al., Seafloor instabilities and sediment deformation processes: The need for integrated, multi-disciplinary investigations, Marine Geology, vol.352, pp.183-214, 2014.

D. J. Varnes, Landslide Types and Processes. Landslides and engineering practice, vol.24, pp.20-47, 1958.

C. J. Veenman, M. J. Reinders, and E. Backer, A maximum variance cluster algorithm, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.9, pp.1273-1280, 2002.

A. Veillard, O. Morère, M. Grout, and J. Gruffeille, Fast 3D Seismic Interpretation with Unsupervised Deep Learning: Application to a Potash Network in the North Sea, 80th EAGE Conference and, 2018.

P. Verney, Interprétation géologique de données sismiques par une méthode supervisée basée sur la vision cognitive, 2009.

, Virtual Seismic Atlas, 2018.

, W3C website, 2018.

C. Wang, . Ma, . Xiaogang, and J. Chen, Ontology-driven data integration and visualization for exploring regional geologic time and paleontological information, Computers & Geosciences, vol.115, pp.12-19, 2018.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image Quality Assessment: From Error Visibility to Structural Similarity, IEEE Transactions on Image Processing, vol.13, issue.4, pp.600-612, 2004.

Z. Wang, . Hegazy, . Tamir, . Long, . Zhiling et al., Noise-robust detection and tracking of salt domes in postmigrated volumes using texture, tensors, and subspace learning, GEOPHYSICS, vol.80, issue.6, pp.101-116, 2015.

B. P. West, S. R. May, J. E. Eastwood, and C. Rossen, Interactive seismic facies classification using textural attributes and neural networks, The Leading Edge, vol.21, issue.10, pp.1042-1049, 2002.

D. Williamson, . Goldstein, A. Michael, . Lesley, . Blaker et al., History matching for exploring and reducing climate model parameter space using observations and a large perturbed physics ensemble, Climate Dynamics, pp.1703-1729, 2013.

B. Wolff and A. V. Carozzi, Microfacies, depositional environments, and diagenesis of the Amapa carbonates (Paleocene-Middle Miocene), Foz do Amazonas basin, offshore NE Brazil, 1984.

C. Xu, . Pham, L. Dzung, and J. L. Prince, Image segmentation using deformable models. Handbook of medical imaging, vol.2, pp.129-174, 2000.

M. Yazdi, . Gheysari, and . Kazem, A new approach for the fingerprint classification based on gray-level co-occurrence matrix, World Academy of Science, Engineering and Technology, vol.47, pp.313-316, 2008.

M. D. Zeiler and R. Fergus, Visualizing and understanding convolutional networks, Pages 818-833 of: European conference on computer vision, 2014.

Y. Zhai, D. L. Neuhoff, . Pappas, and N. Thrasyvoulos, Local radius index -a new texture similarity feature, Pages 1434-1438 of: ICASSP 2013 -2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 2013.

T. Zhao, . Li, . Fangyu, and K. Marfurt, Advanced self-organizing map facies analysis with stratigraphic constraint, SEG Technical Program Expanded Abstracts, 2016.

X. Zhao, M. G. Reyes, . Pappas, N. Thrasyvoulos, . Neuhoff et al., Structural texture similarity metrics for retrieval applications. Pages 1196-1199 of, 15th IEEE International Conference on Image Processing, 2008.

J. Zujovic, . Pappas, N. Thrasyvoulos, . Neuhoff, and L. David, Structural texture similarity metrics for image analysis and retrieval, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, vol.22, pp.2545-2558, 2013.