N

N

_2pBbBiBM: iKQbT?2 B+ 62 im2b Q7 J b P’
HiBK2i2 . i IbBM:J +?BM2 G2 "MBM: H:Q
oBM+2Mi* BHHGO- MMBJ ii M2M- vK2 B+ aTB; -

hQ +Bi2 i?Bb p2 ' bBQM,
oBM+2Mi * BHHG- MMB J ii M2M- vK2'B+ aTB; - GQH 6 HH2iiBX _ 2
J b P #Bi2 G b2 HiBK2i2 . i IbBM; J +?BM2 G2 MBM; H;Q Bi?Kb

_2b2 "+?X SH M2ib- kykj- Rk3 URV- TTX2kykkC1lyydj39X RyYyXRykNfkyk

> G A/, BMbm@yjNRjj89
2iiTh,ff? H@BMbmX "+?Bp2b@Qmp2 i2bX7 fBMbr
am#KBii2/ QM kR C M kykj

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X

Bbi'B#mi2/ mM/2  * 2 iBpRi*BEMOKIBRM @ LQM*QKK2'+B H @ LQ.2 Bp if
AMi2 M iBQM H GB+2Mb?2


https://hal-insu.archives-ouvertes.fr/insu-03913354
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

JGR Planets

RESEARCH ARTICLE
10.1029/2022JE007384

Key Points:

* We reanalyze the Mars Orbiter Laser
Altimeter data set with clustering
methods and retrieve a new, large
atmospheric structure data set

¢ Comparing the data set with other
observations allows us to provide a
global view of atmospheric structures

* We observe the development of the
aphelion cloud belt, the polar hoods,
regional dust storms, and clouds over
topographic features

Correspondence to:

V. Caillé,
vincent.caille@latmos.ipsl.fr

Citation:

Caillé, V., Maattanen, A., Spiga, A., &
Falletti, L. (2023). Revisiting atmospheric
features of Mars Orbiter Laser Altimeter
data using machine learning algorithms.
Journal of Geophysical Research:
Planets 128 e2022JE007384ttps://doi.
0rg/10.1029/2022JE007384

Received 15 MAY 2022
Accepted 20 DEC 2022

© 2022. The Authors.

This is an open access article under

the terms of th€reative Commons
Attribution-NonCommercial-NoDerivs
License, which permits use and
distribution in any medium, provided the
original work is properly cited, the use is
non-commercial and no modifications or
adaptations are made.

") Check for updates

ok

Revisiting Atmospheric Features of Mars Orbiter Laser
Altimeter Data Using Machine Learning Algorithms

Vincent Caillé! 2, Anni Maattanen! (2, Aymeric Spiga (), and Lola Falletti

*KopimAreaqiiaurjuo sqndnbe//:sdny woly papeojumoq ‘T ‘€202 ‘00T669T2Z

ILATMOSI/IPSL, Sorbonne Université, UVSQ Paris-Saclay, CNRS, Paris, Framtmratoire de Météorologie Dynamique/
Institut Pierre Simon Laplace (LMD/IPSL), Sorbonne Université, Centre National de la Recherche Scientifique (CNRS)
Ecole Polytechnique, Ecole Normale Supérieure (ENS), Paris, France

(2202/620T 0T/10p/W0d

Abstract The Mars Orbiter Laser Altimeter (MOLA) instrument has been drawing a map of Mars'
topography between September 1997 and June 2001. It has also been able to observe clouds during the §1IS‘
duration, providing data for the low Martian atmosphere for nearly 1.5 Mars years. The Mars Global Surveyor
which carried MOLA, also carried two other instruments that also observed clouds during the same time @erlc
(the Mars Orbiter Camera and the Thermal Emission Spectrometer). Combining observations from these §1re
data sets could provide a complete recap of most atmospheric structures during MY24 and MY25. Howev%r

o
=1

previous studies of MOLA data set often had to use stringent detection criteria. Using machine learning 3
clustering methods, we end up finding way more atmospheric returns. Our results are presented in the forfn 0
an atmospheric features catalog that we then use to compare MOLA observations with Mars Orbiter Camgra
and Thermal Emission Spectrometer results, but also with more recent missions. We study the developméfnt

of recurrent phenomenon in the Martian atmosphere, like the aphelion cloud belt or the south polar hood,i)ut
also spontaneous events such as regional dust storms. Methods could be tuned even more finely by usinqi mc
complex clustering methods or deep learning algorithms to clearly distinguish atmospheric structures.

Plain Language SummaryThe Mars Orbiter Laser Altimeter (MOLA) instrument has been
emitting laser pulses toward the Martian surface. Time of flight of the laser before returning to the instrumgnt
was originally used to estimate the altitude of Mars' surface, but the sensibility of the detector was good e§0u1
to detect clouds’ signatures coming from the atmosphere. We propose that studying the MOLA data set u%ing
machine learning methods that gather similar laser returns into groups can enable the formation of a cluster

made of atmospheric features, distinguishing them from noise and surface returns. These features are the§1

grouped into clouds or dust structures and compared with other mission results that also observed the Métia
atmosphere between 1997 and 2001. This paints a picture of many phenomena in the low Martian atmosrgher
their seasonal and interannual variability and their varying intensity.

29s [£202/T0/T!

1. Introduction
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Mars' atmosphere is made of a diversity of aerosols and clouds like water icieeCénd dust and strongly 3
varies seasonally. Understanding of their characteristics, composition, extent, and spatial and temporal d;ﬁtril
tion have gradually improved over the last decades thanks to the diversity of Martian missions. First confirmétim
of water clouds composition were made by thermal infrared spectroscopy using the Mariner 9 Orbiter (szrrs
et al.,1973 that also highlighted large-scale cloud structures and behavior in the Martian atmosphere (AndérS(
& Leovy, 1978. Water climatology obtained by the two Viking orbiters' color imaging (Farmer €it%17)
helped understanding how water clouds were correlated with topographic features (FrentB8%) alnfrared
spectroscopy observations by the Mariner 6 and 7 Orbiters (Herr & Pin9%él,had suggested the existence:!
of CG, ice cloud formation, but no direct observations were available at that time. Since theviad@ian ice
clouds have been observed by a diversity of methods like imaging, stellar, and solar occultations. Mars @Iok
Surveyor (MGS) and Mars Pathfinder missions in the late 90s were precursors to missions that provided aézvee
of data about Mars' atmosphere and clouds. For example, all of MGS Thermal Emission SpectrometergTE
(Christensen et al2001), MGS Mars Orbiter Camera (MOC) (Malin & Edge2f0]), and MGS Mars Orbiter §
Laser Altimeter (MOLA) (Smith et al2001) have allowed the observation of Martian clouds. TES showed the
evolution of the aphelion cloud belt (Hale et aD11), gave dust and water ice aerosol optical depth, as well &is
water vapor column density during nearly 3 Martian Years, and provided interannual variability g®dgh,
These observations also allowed to distinguish between spatial variation of daytime and nighttime clouc& a
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the seasonal dependence of cloud formations (Pankine 2088, MOC highlighted clear seasonal pattern
in clouds formation and suggested different kinds of clouds (Wang & Inge266l), MOLA gave the first
observation of CQice clouds and snowfall (lvanov & Muhlema2001, Neumann et al.2003. Subsequent
missions like Mars Climate Sounder (Kleinbohl et2009 McCleese et al2007) or Mars Express (Wilson &
Chicarro,2004 enhanced our understanding of cloud formation, evolution, and impact on the Martian at
phere. A recent review of Martian cloud observation history can be found in Clancy 2018). (Still, the
number of missions is limited, and getting as many cloud observations as possible from them is very impor
fulfill our understanding of involved processes.

109" A3)IM" A&mquauuugqndnﬁeu:sduq wo.

MOLA's first goal was to determine Mars' topography, roughness, and albedo at 1,064-nm wavelength. ngesu
from a similar instrument, the Shuttle Laser Altimeter, proved the capacity of the altimeter to detect clou_?gis [
Earth's atmosphere (Bufton et d995 Garvin et al. 1998 and gave hope for MOLA detecting Martian cloudsg

despite not knowing if they would be dense enough to trigger detection. In addition to allowing clouds dete%tim
the MOLA instrument also enabled distinguishing reflective and absorptive clouds (Neuman20&t3abnd
how their formation is linked to low atmosphere properties and dynamics. Because previous studies were nfime
cally restrained by the size of the MOLA data set, we suggest that a reanalysis with modern methods could furn
more cloud and dust observations.

20030

auBIYON

The use of machine learning methods in planetary science has become more and more common in the lagt ye
It can be beneficial at every stage of a mission (Azari eR@R]). Deep learning, for example, became ahz
important part of the Transiting Exoplanet Survey Satellite processing by doing a pre-identification of interZesw
ing candidates among the monthly 1 million light curves (Yu et2019. Machine learning has led to a new=
way of looking at data sets and can easily be implemented on planetary science or geoscience data sets (A
et al.,202Q Karpatne et al2019. Classification may be the most intuitive way to use machine learning, easing
the distinction of specific features among large data set (Wagstaff 20, In case of incompletely defined §
features, unsupervised machine learning can help distinguishing different classes without fixing an arbiitra
stringent limit (Ni & Benson2020.

S “[€20

We propose here that unsupervised machine learning methods, and especially clustering algorithms, woulé all
finding more cloud observations in the MOLA data set than previous studies. Validation of the results coulcgthe
be done through comparison with other cloud observations. Such a comparison, especially with data sets fr
the same time period, such as TES and MOC on MGS, could lead to deeper understanding of cloud for[:iati
and evolution during the observed 2 Martian Years. Our results can also be compared with cloud obsengtic
from more recent missions.

2. Method and Data
2.1. Mars Orbiter Laser Altimeter Data

0 KoM Arelqiauljuo//:sdny) su

The MOLA (Zuber et al.1992 was an instrument aboard the MGS whose first objective was to charactetize
very precisely Mars' surface topography (Smith e28l0). After reaching its mapping orbit at the end of aero%
braking phase, it provided almost 1.5 Martian Years of data. MOLA provided data from 28 February519®, L
103° of MY24, until 30 June 2001,187° of MY25. MOLA emission was interrupted three times during thzé
mission. Around | 126° of MY24, the obstruction of the MGS high-gain antenna prevented MOLA mappﬁpg
and forced emission to be turned off for 2 weeks. MOLA was also turned off during the solar conjunction p@as
from 1 June 2000 (right after, B60° of MY24) to 1 August 2000 (130° of MY25). The last one week irter 5
ruption occurred at 1 154° of MY25 to resolve a spacecraft anomaly. MOLA includes a 1,064 m-wavelen@h
laser sending 8 ns short pulses at a 10 Hz rate. Pulses are emitted in the nadir direction forming 168 m oot
prints separated by approximately 300 m. MOLA measures the time of flight of each laser pulse betwe(%n tl
instrument and the planet surface. When a pulse is emitted, a time interval unit (TIU) is triggered. The refgpct(
laser is received on a 50-cm diameter parabolic mirror and directed to a silicon avalanche photodiode de:tec
If returned energy is above a controlled TIU threshold, it will stop the count of clock cycles, giving the tim% of
flight of the relative pulse. Both emitted and received energy are saved for each pulse. Received signal § tt
amplified and goes through four parallel channels. Each channel is made of its own five-pole Bessel filter al
comparator. Channels are hereafter referred by their number, 1-4, respectively, corresponding to a time quns
of 20, 60, 80, and 540 n. These correspond to target dispersions of 3, 9, 27, and 81 m. Saved time of figh
the one from the triggered filter with the lowest impulse response pulse width. Channels give information 3bo
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the altitude dispersion of the layer in which the laser signal has been backs

Table 1
Distribution of Mars Orbiter Laser Altimeter (MOLA) Atmospheric cattered. Accuracy on pulse width and energy measures are 5% (Abs@re
Structure Among the 12 Orbital Phases of MOLA Data Set etal.,2000. The MOLA range, ., the distance between the instrument and
Orbital  First return Atmospheric returns (% MAS the spot at Mars' surface, is calculated from the time of ftightand the §
phase L) Total returns of total returns) number  speed of light in vacuumwith the following equation (Smith et a001): g
ap01 103.59 6 120 716 152 668 (2.49%) 1375 L @ ;—r
ap10 107.72 44 772 367 952 115 (2.13%) 7 947 =
apl1l 146.42 69062588 3989110 (5.78%) 21740  All information about a single pulse emission (like target longitude a@
ap12 190.97 65619212 9518 336 (14.51%) 34 839 latitude, transmitted energy), as well as the characteristics of its detec@on
ap13 24117 68248559 6954178 (10.19%) 42858  (like solar longitude of detection, triggered channel, backscattered ener@y,
ap14 291.97 62127844 5728149 (9.22%) 30006 and MOLA range) make for one obseryanon anq will thereaft(.er.be callgd
a “return.” Because Mars' atmosphere is very thin, the delay it inducestin
ap1s 338.98 32588064 3963538 (12.16%) 17324 the signal is considered negligible since it would modify the MOLA rang%
apl6 2046 49626178 2726280 (549%) 20169  only by a few centimeters (Smith et &007). The MOLA range is given &
apl7 56.58 64214511 3573247 (5.56%) 22658  with an accuracy varying between 37.5 cm for smooth features and 10 gn
ap18 92.50 64260115 2976179 (4.63%) 20937 for 30° slopes (Gardnet,992). More technical information about MOLA 3
ap19 130.15 59884115 5492900(9.17%) 28525 elements can be found in Smith et &0Q1). The complete list of all the ?g
ap20 172.30 21328664 2545 177 (11.93%) 14024 obse.r\{atlonal pgrameters that are available for eat_:h return can be found ngthe
Precision Experiment Data Record (PEDR) repository (Ford ét9#1§. In 2
Total 607 852 905 48571877 (7.99%) 261 862 2

order to reduce the impact of solar photons, thresholds are modified to track

#Partially contain solar conjunction period where no pulses werglars' surface in particular. This results in a limitation in MOLA capacity it
emitted.’Last return L is 187.20°. 2

detecting clouds higher than 10 km in the atmosphere for most of the cas§s.

However, MOLA is also able to categorize a return as a cloud. It saveg a

histogram of ranges for every 2-s frame and can deduce it is following a clgud
layer when it differs too much from a surface range histogram. When most of the returns from a MOLA pgck(
of 14 s were from a cloud layer, MOLA can switch to an acquisition mode allowing detection of features lip t
40 km in the atmosphere. Nevertheless, when going in acquisition mode, MOLA resets its detection thresﬁold
a level that induces a very high background noise. This leads to massive false positive cloud detection. Théref(
acquisition mode returns are excluded from most studies, including ours.

uo) p!

Intuitively, it seems like triggered channel and MOLA range could be parameters that would allow digtin
guishing cloud returns among the MOLA data set. Initially, time constants of the four filters were detern’énet
to maximize the probability of detecting varying slopes on Mars' surface. Channel 1-4 were, respec@velj
designed for surface with slopes of 1.7°, 5°, 15°, and 39°. This notably allows for the detection of feafiure
for which variation of height within footprint is about 3, 9, 27, or 81 m, what we call target dispers@m.
Returned waveform is an indicator of the roughness of the targeted footprint. While channel 1 was suppos
to track smooth surface, channel 4 was thought to detect eventual cloud signatures (Table 2 of Ivam?v 8
Muhleman @001). However, clouds have been detected in every channels. Triggered channel gives &fol
mation about the optical thickness of the detected atmospheric structures. Channel 1 detection are oéticz
thick within only 3 m, while the ones in channel 4 are diffuse and are optically thick within 80 m. It coéild
be expected that atmospheric structures with different composition (water icé&ceC@nd dust) would have
different reflectivity properties and could be differentiated by the most triggered channel but we will showstha
correlations are hard to find once laser returns are grouped among structures. In addition, this variety §mc
atmospheric structures is the reason the MOLA range, which is supposed to be an indicator of the fo&tpr
height, cannot be used to distinguish atmospheric returns. Indeed, Neuman2@d3Isowed that there é

suonipt

are absorptive clouds signatures in MOLA data set. For this kind of cloud, the laser signal is only attenijatt
by its passage through the cloud. Reflection may still occur at the surface so the time of flight will not glc.ve
specific cloud altitude.

MOLA data are provided through daily MOLA PEDR (Smith et B899 that contains width pulse and energy?
for each laser returns. Geometric information about each return is also given, such as the local time, th§ SC
zenith angle, and the localization of targeted surface spot. MOLA provided 607 852 905 returns divided int 7¢
files, divided between 12 different orbital phases. Each orbital phase contains data for a range of approxi51atw
40°-50° of solar longitude, and the starting time of each of them is given later inlT&itee orbital phases

were made so that they gather around the same number of returns, it will later ease the statistical analysi

SN JO S8
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results. The MOLA PEDR data are our starting point in this study. No filtering was made on the data set ahd

returns were used.

2.2. K-Means Method

uiuo-sqndnbey/:sdny moa__f,uepemuMou ‘T €202 ‘00166912

Neumann et al.2003, when performing their cloud analysis on such a large amount of data, used stringen
detection criteria on backscattered energy to distinguish cloud laser returns from surface or noise returné. T
may have caused some potential cloud returns to be discarded. Unsupervised machine learning algé:rith
are adapted to numerically analyze the MOLA data set to highlight a certain class of returns without e>§act
knowing all of its characteristics. In particular, clustering algorithms are especially designed to dividé;tht
data set into several groups of similar returns. Khmmeans method is a good first approach because it %s
certain to converge (Selim & Ismail984) in a manageable time (Arthur & VassilvitskiQ06 Har-Peled &
Sadri,2004). Its results can also later serve as initialization for more complex methodk-fkans method
aims at partitioning the data set iltalusters with each data point belonging to only one cluster. The metlﬁbd
iterates several times through the process described below to minimize a specific function depending Bn 1
chosen algorithm. The only hyperparameters of the method, that is, the factors that need to be chosen%for
method to run, are the number of clusterthen distinguishing variables, and eventually fixing the numbei
of steps.

00312202/
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In the n-dimensional space, each laser return is a point witbordinates, corresponding to every clustering
variables, and each cluster is defined by its centroid, that is, the mean value of every variables for this s%eci
cluster. One algorithm step is made of the succession of two distinct phases: assignment and update. DuEing
assignment phase, each point is assigned to the cluster with the closest centroid. Then, during the updaté pt
the mean of every cluster is recalculated. If the number of steps is not specified, the algorithm ends wheE th
is no more change during an assignment phase. The resulting clusters represent the final partition. This any,
method aims to minimize within-cluster variances constructing clusters of similar returns (Mad§@&5gn,

191 8 99S “[£2|

The speed of the method and the final results depend on how the first clusters are initialized (9I8@an,
We use a classik means algorithm from the scikit-learn package. Several ways exist to initialize the cluster
centroids; we picked the Forgy method (Anderb&8¥3 Forgy,1969. In this method, & number of points
are randomly chosen from the data set and are &atlaster centroids. Then, the algorithm starts with the firg
assignment phase. Compared to the Random Partition method for which all points are first randomly as%ign
to a cluster and then an update phase is realized, Forgy initialization leads to better results folkstardasl
method (Hamerly & Elkar2002 Pefia et al1999. Controlling the randomization of the Forgy method to ensu
that first points are far from each other gives even better results and defikesahas++ initialization method
(Arthur & Vassilvitskii, 2007) that we use here.

0D pue

1y

2.3. Optimization of Hyperparameters

2.3.1. Choice ofn Variables

IpLIOOApUEASUJJSl/luoi)'/(6|IM'AJEJC]I|6IJI|®// sdny)

The first thing to consider before applying fteneans method to the MOLA data set is to choose how many vaen
ables are necessary to distinguish the three main type of laser returns: surface, noise, and atmospheric Eatl
Note that atmospheric features are water angli@clouds, ground fogs that would be closer to the surface th@n
clouds, and dust structures. For this, we have several constraints.

17 8uuUO

The optimized number of clusters grows rapidly with the number of variables; so for easier interpretation, @e t
to work with only two variables. Moreover, because we want to work with the raw data with as little preprocegsin
as possible, the chosen variables must be directly derivable from the features available from MOLA data sét. )
preprocessing the data was a choice to ease the reproducibility of the clustering in case of future studiqé_;s W
more complex clustering methods. Moreover, because of the variations of MOLA capacity during the migsio
duration, removing the surface signature cannot be done homogeneously on the whole data set. Another %pe
the duration of the mission. MOLA's transmitted energy decreased during the 2 years, so final variables shciuld
normalized to take into account the decrease in performance and remain coherent for the whole data set.$
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As reference studies pointed out (Neumann et28103, the product of

surface reflectivity with the two-way atmosphere transmissivity, here
ter referred asT? product, can be seen as a “normalized returned energs
(Abshire et al.2000 and is calculated by the following equation:

dL&uJOJJ papeojumoq ‘T ‘€202 ‘00T669TC
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whereE,. andE,, are, respectively, the received and transmitted energy
Z....is the distance between the spacecraft and the targeted point of Mars'
surfacept is the optical transmission of MOLA receiver, aydis the area
of the telescope. The transmitted energy was the main decreasing factg in
MOLA capacity over the mission duration since aging of the detector w§s
negligible enough for us to consider them constant. Another benefit of us@ng
T2 is that no sorting had to be done before applying the method. Inde§d,
some elements could affect reflectance such as the varying solar zenith afgle
or shadows at the surface. However, sunlight is already accounted as noiée ir
MOLA detection and sunlight backscattered by the surface is much weaﬁer
than laser light, especially at this wavelength.

T°0T/10Pf

Figure 1. rT? against time for a 15 m window from orbital phase ap10.
Series of several lowl 2 returns are typical signatures of atmospheric
structures while noise returns are sporadic decreases. Dashed line represeRigurel shows an example of the normalized return enéfgpgainst time.

detection criteria used in Neumann et 20@3. Some signatures appear as  gyrface returns are represented by a continuum, while atmospheric feati#es
completely above this limit and may have been missed. including clouds, cause a dip. Noise returns are seen as sporadic points. I-‘—:fon
this, we can deduce two variables that would distinguish the three types% of
laser returns: theT 2 product and the average of & product of the closest
neighbor returns thereafter referred to as. For surface returns, both of these variables should have a va@e
close to the continuum value. For noise returfi,could be lower than continuum value but, because it |s_§a
single return,  should not be affected that much and keep a value near the continuum one. Finally, for a@no:
pheric features, both variables should clearly be lower than the continuum. The window around each ret:;,lrn
compute_ will be limited to the two preceding and the two following returns since the probability that fige
consecutive returns are noise returns is lower than (s@e Sectior3.2.1for noise returns rate). Keeping the 2
number of returns in the window as low as possible gives more weight taTfealiations, so five was a good
compromise between excluding noise while using a narrow window.

As|Ipn ‘9ouel;
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Overall, the energy transmitted by MOLA decreased by half over the mission duration (Neumar0@8al.,
This results in an increase iifi2 product continuum level over time. Assumptions we made afidund

behaviors for the different kind of returns are a comparison of their values with associated continuum of thegsar
orbital phase. Yet, the continuum level of the first phases would be considered a low value for the latest p§1as
Thus, we have divided our data set into periods of approximately constant continuum level to apply our méthc
Since the data set is already divided into orbital phases representing approximately 10% of the whole déta |
apart from the ones corresponding to the start and the end of the mapping or the ones containing a part of tgle <
conjunction (see Tablefor more details), we successively apply our clustering method to each of these phq?ses

auljuo//:sdny) suonipuod

In conclusion, we decided to work with only two variables @) that are'T? and to applyK-means methods §
on MOLA data set. E

£
2.3.2. Number of Clusters <
The use of thi&K-means method implies an optimization of the number of clusters that is done by evaluatin é th
clustering performance for a certain rangk.dor this, we use three independent methods that compute differént
aspects of the partition for every valuekoh a certain range: g

+ Elbow method (Thorndike,953 computes the total intra-cluster variation within cluster sum of squares tlg.at
measures the variability of the two variables. The best number of clusters is the one corresponding ﬁo t
elbow shape. After the elbow, increasing the number of cluster does not substantively improve the mrfc
mance since the sum of squares is very slightly modified.

+ Average silhouette method (Kaufman & Rousse&®05 computes the so-called silhouette score from thg
distance of each point to the centroid of its cluster and the second closest one, evaluating how distinct t@ cl
ters are. The best number of clusters is the first maximum larger than the smallest tested number of cliste
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Elbow method
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Figure 2. Optimization of the number of clusters with three independent clustering performance testing methods: elbow (top), silhouette score (middle), and ggp
statistic (bottom). K means method is applied with 2—9 clusters on mini batches from the data set. Red dots highlight optimized number of clusters. Elbow method

not furnish a stringent best number of clusters but its results are coherent with the two other methods, converging toward five clusters, with peKeréaeasgfor

relatively close.

Ue-SUWISY W09 ASIM

+ Gap statistic method (Tibshirani et &0Q01) computes how far the clustering structure is from a randor@,
uniform distribution of points with the same limit values. Here again, the best number of clusters is thesfirs
maximum larger than the smallest tested number of cluster.

IM UO (St

Figure2 shows the result of all three methods. Despite testing totally independent features of the partition;; tw
methods (silhouette score and gap statistic) converge toward the same number of five clusters. For theselt
method, the result is up to the choice of the user as the method only shows a suitable interval of number &f cl
ters. We see that the gain betwé&en5 andk = 6 is low compared to the one betwden 4 andk = 5. Beyond
k=7, there is no improvement when adding an additional cluster. Thus, any number of clusters between E;an(
can be picked because it corresponds to the “elbow” shape. All three methods have coherent results: thi§:~prc
that the data set is indeed “clusterable,” that is, different clusters have clearly different properties. Howevér, \
decided to visually inspect the clustering structure for four, five, and six clusters. While four clusters wer§ nc
enough to clearly distinguish surface, noise, and atmospheric features, both five and six were potential £an
dates. Because the score& ef6 were nearly as good &s= 5 for at least two methods (silhouette score and gai)

statistic) and because it eases the physical interpretation of each cluster while minimizing the risk of false po
tives (discussed in details in Secti®i.l), we chose six clusters in the continuation of our study. In particulér,

0} Ale.
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Figure 3. Example of clustering structure for ap10 orbital phase (a) and associated cluster distribution in tfié agaiest time portion than Figui®. Cluster 4
gathers cloud returns (bottom of troughs), cluster 2 is made of noise returns (isolated points). Clusters 0, 3, and 5 are surface returns (different parts of the cohtint
Cluster 1 is a limit between continuum and troughs and ensure that no surface returns are taken in our cloud cluster.

this will restrain atmospheric features to their most noticeable part, preventing doubtful cluster attributiors fc

their borders.

3. Results
3.1. Clustering Results

3.1.1. Atmospheric Features Cluster

0-pUB-SWIBY/ WO A3|IM" Aregijauluo//: %lq) suonpuoy

Typical final clustering structure is illustrated in Fig@a Note that only one orbital phase is exposed here. V\Eie
clearly found the expected clusters. The blue cluster (cluster 4) corresponds to botfi%pimsiuct and a low

T Figure3b shows an example o2 against time, colors corresponding to clusters: returns from cluster%4
are indeed at the bottom of the troughs and we can consider that the cluster regroups atmospheric featur@ L
yellow points (cluster 2) do not follow any specific distribution and are isolated points: this cluster regroups éms
returns that are coherent with a hlgh despite a lowT? product. All three green, dark yellow, and orange- cluscr
ters (respectively, cluster 0, 3, and 5) are different parts of the continuum, so they correspond to surface r;rstur
The surface returns are divided into three different clusters by the method because of the difference of ajztitu
between both Mars' poles, south pole being approximately 6 km above the altitude of the north one. TheEefo
the MOLA range, used to calculaf product, has a slight sinusoidal variation during an orbital phase from oi1e
pole to the other and gives this aspect to the continuum. Finally, red cluster (cluster 1) is the main reason t§1at
us to choose six clusters instead of five. It includes two kinds of returns: the lowest part of the continuum btit al
the highest part of some troughs, what could be considered as the extreme borders of the atmospheric @att
Still, to be sure that we limit as much as possible false positive detections, we do not keep cluster 1 returng in
rest of our study. The presence of such a cluster in the partition proves that cluster 4 returns are really inéde

o (suony
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Figure 4. Seasonal and latitudinal distribution of atmospheric features returns from the clustering. Colors are based on number of returns in the 1° x 1° bin arounc
each point. Gray brands correspond to no observations periods while white background represents a lack of Mars Orbiter Laser Altimeter (MOLA) Atmospheric
Structure detection. Absence of returns at the start of MY25 is due to solar conjunction. The other two thin gray bands are related to spacecraft anomalies that for
MOLA to be turned off (see Secti@nl). L, axis starts at 90° of MY24 to ease the visualization of the seasons.

troughs that would correspond to the core of atmospheric features. This study is a first approach on how ba
clustering method can already bring significant results on such data sets, so being confident on our cluster
returns appears as more valuable than trying to get every single one of them. However, this also means that
clustering has room for improvements with more complex methods that could make a clearer distinction betwe
atmospheric structures borders and the lowest part of the continuum.

3.1.2. Comparison to a Previous Study

To verify the validity of our method, we compare our results with a previous study (Neuman20&3athrough
seasonal and latitudinal distribution of atmospheric returns. Figsihews that the distribution of returns from

our atmospheric features cluster is coherent with the one obtained by overlapping both the reflective and absc
tive clouds distributions from, respectively, Figures 5 and 6 of Neumann 20@8.(Cloudiest areas such as

the north pole during northern autumn, the band between 30 and 60°S at the end of southern winter, and glc
coverage at 1 230° clearly appear in both distribution. The poles seem less dense initially. However, Neuman
et al. 003 divided the distribution in two distinct figures for reflective and absorptive clouds: the peak density
of reflective clouds is nearly 10 times less than that of absorptive clouds. Thus, it is expected that in a single p
distribution that regroups both reflective and absorptive clouds such as &igates would be less noticeable.
Still, there are clearly clouds above poles in our distribution too and these results are discussed in detail latel
the article (see Sectighb). Even though we are talking about “atmospheric features” and not about clouds yet,
we found around 33 times more returns than Neumann &04l3( thanks to use of clustering algorithms to
analyze the data and also due to not having to impose strict constraints for detection.
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3.2. Cloud and Dust Structure Catalog
3.2.1. Cloud Definition

At this point, we have a cluster of atmospheric returns, and we would like to group them into structures. Becau
we have no information about the composition of implied features, we define the alias MOLA Atmospheric Struc
ture (MAS) that will be used hereafter and that regroups all possible atmospheric particle types: water clouc
CQO, ice clouds, and dust structures. Choosing a good definition of the MAS in terms of returns will allow for the
reduction of the remaining false-positive returns wrongly associated with the atmospheric features cluster. It w
give information about the size of structures that can later be used as a comparison criteria. Here, size is use
a measure of the number of returns that constitute an atmospheric structure. It gives information about the spe
extent of the structure in one direction, following along-track position of the surface target. The along-track extel
of the structure can then be calculated thanks to the space between two consecutive shasizeize x 300.
However, as we do not have information on the longitudinal extent of the cloud, we cannot, for example, estime
the actual cloud cover or fraction. This will also allow us to make a statistical analysis of the resulting MAS the
we will gather in a unique catalog.

The first criterion to determine is the minimum number of consecutive atmospheric returns that is required
consider them forming a unique structure. For two returns to be considered as consecutive atmospheric retul
we must have two temporally successive returns that were both assigned to the atmospheric cluster. Tempor
successive returns can also be considered as spatially successive returns in the tracking direction. Because !
are approximately 300 m between two consecutive shots' targets, fixing a minimum of five consecutive retur
defines atmospheric structures of at least 1.5 km, which corresponds to a typical size scale for Martian clou
(Clancy et al.2017. The second criterion to determine is when we have reached the end of the considered MA!
that is to say that the next return in the atmospheric cluster may be part of another MAS. Noise returns, conside
here as false triggers, have a uniform distribution over the mission duration with a constant probability of occu
rence of aboulP; = 1.25% (see Section.3.1). The probability that 5 returns in a row are physically part of the
considered MAS without being associated to the atmospheric cluster is equivalent to having 5 consecutive fa
positive, thus less than 1 in5Laherefore, we fix the end of a MAS if 5 consecutive returns are all not assigned
to atmospheric cluster. This also requires that we accept a “gap” made of a maximum of 4 consecutive retul
that are not in the atmospheric cluster.

We apply this definition to all returns from our atmospheric cluster. Whenever a set of consecutive returr
meets the first condition, they form a MAS, and we look for its end. Whenever the second condition is me
the end of the MAS has been reached, and we save it in our catalog. This way, a total of 261 862 MAS ¢
formed.

3.2.2. Catalog Global Summary

The catalog is available alongside this article. It is presented as a text file in which the four first lines descrit
the parameters given for each cloud. The fifth line gives every parameters a column title to ease the read of
catalog by numerical libraries. All 261,862 MAS are then presented following the exact same scheme. An
number is attributed to every MAS for an easier identification of each of them and is widely used in our plottin
program (given with the catalog).

We made the choice to reduce the number of parameters for each MAS compared to the raw data so that
catalog can be navigated easily. First three parameters allow finding the MAS in the PEDR data set: the file
comes from and the lines of the first and last returns of the MAS in that file. The size of the MAS is then give
in terms of the number of returns. Note that size is different than the difference between the start and end lir
because some returns in between may have not been associated to the atmospheric features cluster (and i.e.
we accepted some “gap” in our cloud definition). Longitude and latitude are then given through three paramete
each: mean, start, and end. Solar longitude is calculated and only given as a mean for each cloud but epherr
time is also given by mean, start, and end values. Finally, the triggered channel dominating in the cloud is al
given. The version of the catalog with percent of occurrence of each channel for each cloud also exists in case
need. That makes a total of 16 parameters for each cloud. The distribution of clouds in the different orbital phas
of the mission is given in Table
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Figure 5. Atmospheric structures distribution by most triggered channel. Each structure is associated with the channel that is the most represented among the reti
that constitute the structure. The size of markers for the channel 4 panel are bigger for visualization purpose only. Title of each panel corresponds to the number c

structures.

4. Cloud Variability and Diversity
4.1. Size and Triggered Channel Distribution

In the following sections, we study the size of clouds in terms of number of returns, keeping in mind that tw
consecutive returns are spaced by approximately 300 m. We analyze the longitudinal and latitudinal distributic
of MAS in function of their size. While structures smaller than approximately 500 returns, that is, 150 km, seer
to follow the general distribution presented in Figlir600+ returns MAS, hereafter called “bMAS” (big MAS)

are not homogeneously distributed and exhibit some interesting areas. In particular, bMAS tend to form abo
certain structures such as basin or plains.

The MOLA channel that was triggered was a key point in the distinction of different kinds of clouds (Neumant
et al.,2003. A first approach is to look at the dominant channel for each cloud (Bpuedannel 1 is by far the
most represented channel, in opposition to Neumann 2083( This tendency remains true even if we consider

all atmospheric returns before classifying them as clouds. This means that our method notably allows detect
optically thinner structures. The number of clouds for a specific channel decreases with the increase of the tar
dispersion with a drastic fall between channel 2 and 3. Channel 1 and 2 clouds are distributed along the same |i
as the general spatial distribution (Figdjevhile channel 3 clouds are mainly located at both poles, and channel

CAILLE ET AL.
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Figure 6. Distribution of big Mars Orbiter Laser Altimeter (MOLA) Atmospheric Structure (structures of at least 500 returns) over solar longitude and latitude. Gray
bands represent periods without MOLA observations while white background means that there was no structure detection4 $eerfrtgaréetails about gray

bands).

4 clouds are almost exclusively located at the south pole. Triggering channel 4 implies a dense vertical struct
of at least 80 m. It means that something exclusive to the south pole allows the formation of globally opticall
thicker clouds, possibly the prevalence of, @& clouds over water clouds.

4.2. Temporal Variability

In the following section, we only consider bMAS (500+ returns) to highlight recurrent phenomenon that would
imply the formation of big structures or reveal places where atmospheric conditions are more suitable for the
formations. Distribution of bMAS over solar longitude and latitude is illustrated in Fegrespite having only

1.5 Martian Years of data, we would like to compare the interannual bMAS variability. Note that the first yea
lacks the Southern hemisphere fall (start &t 103°) while second year data stops after Southern hemisphere
winter (end at L= 187°). Considering only the fraction of bMAS per day for each year, it appears as if the
second year was less prolific in terms of bMAS. However, by comparing the only season we have in common f
the 2 years, that is, Northern hemisphere summer/Southern hemisphere winter (30180°), we see that,

in fact, the second year presents more bMAS (comparison is made between five first panels @fdriddine

last panels of FigurB). This discrepancy is explained by the absence of observations of the north pole winte!
for the second year while most bMAS seem to form above the north pole during this period (se& Rigd8es

and Sectiorl.5). bMAS could form more easily at the north pole thanks to the larger quantity of water vapor in
the atmosphere, which would also mean that most of the bMAS are water clouds. Globally, the MAS distributic
for each Martian Year looks very similar apart from Tharsis Montes (Set8pthat did not appear as a cloudy
area for the first year while being one of the cloudier for the second year. The other difference is an appare
diminution of bMAS population at the south pole (latitude lower than 70°S in spite of winter).

During the observed part of MY24, northern summer is the one with less bMAS, mainly appearing over Hell
Basin, a little bit over Syrtis Major, Argyre Planitia, and at the north pole, more precisely over Acidalia Planitia
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Figure 7. Fifteen degree window clouds distribution for MY24. Returns from our clustering are presented above Mars' topography map provided by NASA Goddar:
Space Flight Center. The end of the disparition of the aphelion cloud belt. Whole development of the south polar hood happens-t@feand | = 270°. A
dusty episode caused by a regional dust storm occurs arQerizdD°.

Northern fall is more dense in terms of bMAS with the same areas of interest to which we can add both pol
hood. North pole clouds also extend to a lower latitude over Utopia Planitia. Distributions at the poles seem
be correlated with the presence of ice at the surface. During northern summer, big clouds are almost all loca
around the north pole.

Concerning the second year, MY25, northern spring mainly exhibits big clouds in the northern hemispher
above Syrtis Major and Acidalia Planitia. However, northern summer is notable because it appears to be ve
different from MY 24 northern summer with way more bMAS. While bMAS are still found over the previously
mentioned areas, there are also bMAS appearing over Tharsis Montes and in a band at 60°S latitude go
from O to 150°E. This cloud cover is very similar to the early stages of the martian global dust storm the
happened later this year, observed by MOC and TES, and described in Strausbe2@hallliese bMAS
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Figure 8. Fifteen degree window clouds distribution for MY25. Very few returns are observed on the first panels due to the solar conjunction. Aphelion cloud belt c
be seen till L= 160°. Early stages of the upcoming global dust storm of MY25 are observed in the southern hemisphegre #@#A. L

could be dust struares but are too early in the year to be attributed to the global dust storm that startec
around L, = 177°. However, their presence may suggest specific precursors for the necessary atmosphel
conditions to support a global dust event, particularly given the absence of such features in MY24- Distribt
tion of atmospheric structures at this solar longitudes are compared with the Mars Dust Activity Databas
results (J. M. Battalio & Wan@019 in Figure9 bottom panel. Latitude and longitude extend of dust struc
tures are in total agreement with our observations and with the band in the southern hemisphere, allowing
to hypothesize on their compositions. In addition, structures are observed earlier at Solis Planum south bor
in our observations than in the database, for which dust activity becomes important, ft80f LThe two

data sets may be complementary for a total understanding of how the dust developed in the low atmosph
step by step.
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Figure 9. Results from the Mars Dust Activity Database (J. M. Battalio & Waag9 for MY24 (top) and MY25 (bottom) for comparison with our observations on
specific time periods. Markers sizes are proportional to the covered area given in the database for each event.

4.3. Tropical Regions

The first year observed by MOLA starts around=1103°, when the tropical belt observed with MOC (Wang

& Ingersoll,2002 begins to disaggregate. However, MY25 shows its whole development. By comparison with
other observations, we assume that MAS discussed in the following part are probably water clouds. As soon
L,=15°-30°, MAS start to form above Valles Marineris and Syrtis Major. MAS then appear east of Valles Mari
neris. The belt mainly consists of a band between 10°S and 25°N, and remains almost constart 12@i.L

Then it decreases slowly, a little bit later than what observed with MOC by Wang and Inge6all hut
corresponds to the TES observation of the period (Hale &0dll). The belt is supposed to be longitudinally
continuous around = 60° but this never appears to be true in our observations, MAS being rare above Elysiun
and Amazonis Planitia. This probably means that these clouds are too high to be detected by our method si
range gate of MOLA sets the maximum altitude around 10 km for most of the returns, while water clouds suc
as the ones in the tropical cloud belt can reach up to 20 km. MY24 allows the comparison of the cloud belt dec
period for two distinct years. While it was still visible at4.105°-120° for MY25, it is patchier than the first
one. The aphelion cloud belt is a recurrent phenomenon in Mars' atmosphere, but its intensity seems to vary fr
1 year to another.

The first part of the belt to develop is also the last to disappear in the end of northern summer. Indeed, clot
are permanent above the volcanoes of Syrtis Major and above Valles Marineris, fdrBeLtill L = 160° for

MY25. In fact, MY24 shows that clouds can be associated with Valles Marineris for the majority of the Martiar
Year. Assuming that they do not decay during the solar conjunction for which we have no observation, they c.
be observed from = 200° of MY24 till the end of the data set. Note that clouds from Valles Marineris are all
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small in term of size, which agrees with observation of these clouds being in the canyons as observed by the H
Resolution Stereo Camera and the imaging spectrometer Observatoire pour la Minéralogie, I'Eau, les Glaces
I'Activité (OMEGA) (Inada et al.2008 but also by MOC (Benson et 82003, suggesting that these structures
could either be water clouds or dust. Syrtis Major tends to be slightly different with two distinct cloudy periods
The first one seems to be part of the aphelion cloud belt evolution, while the second one lasts 2a0f (il
L,=280°. This second period has not been observed in MOC images (Wang & In@&@3llso these clouds

may be different than the ones of the tropical cloud belt. Conversely, clouds can be found above Tharsis Mon
only for the second year and mainly during the climax of the tropical cloud belt. The area is one of the first t
disintegrate during the decay of the belt, and clouds are exclusively located above the volcanoes. Therefore,
three zones indicate that aphelion belt cloud formation and evolution are correlated with surface relief.

4.4. Southern Hemisphere
4.4.1. South Polar Hood

Another recurrent phenomenon can be seen twice in these observations  Er@40E, a “moving” southern

belt can be seen in a band between 45 and 55°S, almost longitudinally homogeneous from Hellas Basin to Arg
Planitia. It is first centered on latitude 50°S but appears to evolve toward the south pole during the end of sou
ern winter where it finally decays at the end of southern spring. This belt has not been observed in MOC imag
(Wang & Ingersoll2002) nor in TES water ice cloud maps (Hale et2011). However, a similar belt has been
described as a second phase in the development of Mars' south polar hood (Benspdl1€} &llowing the
enrichment of the southern hemisphere atmosphere in water by the circulation of clouds in the region south
Tharsis. At the same time, the latitudinal evolution of this belt seems to correspond to the seaspolalr Cap

edge (Giuranna et aR021). Thus, some clouds in the belt could also bg €@uds, and the belt itself could be
evidence of CQcirculation in Mars' southern atmosphere during local winter.

During MY24, an important number of returns can be observed frod2Q° till L, 260°, almost covering the
entire surface of Mars. These MAS do not present any signatures neither in Halg@tZanér in Wang and
Ingersoll 002; consequently it is very unlikely that they are water clouds. Because of the period concerned ar
how it covers the majority of the planet surface, it is also very unlikely that all of them greldD@s. Thus,

this is probably caused by a regional dust storm in the southern hemisphere. This result is consistent with T
observations (Smitt2004 that show a sudden increase of dust optical depth starting?a0t of MY24, and
which is initially more intense in the southern hemisphere. This is also coherent with Montabon20dt5al. (
observations of Mars Year 24 where a rise of the mean column dust optical depth was seen in this solar longitt
interval. Observations in this period are compared with the Mars dust activity database results (J. M. Battalio
Wang,2019 for MY24 in top panel of Figur®. As early as L 200°, dust activity was observed around Acidalia
Planitia longitude, which can also be seen in the corresponding panel of Fiyutee same time period. Dust
then extends to Arcadia Planitia longitude. Differences occur betwe2B8E and | 253°, when dust activity

is negligible in the dust database while still being very present in our observations. This is probably linked t
some limitations on how the MDAD was built (M. Battalio & Wag§21). Indeed, dust edges were collected by
eye, which becomes difficult whenever haze is too diffuse for the boundary between clear-air and dusty-air to
visible. Our clustering method collects all returns of higher opacity in the atmosphere, making it a good compl
ment to MDAD for distinguishing dust haze and surface. Comparing these two data sets provides us additior
observations of the phenomenon, allowing us to conclude on the dust composition of some of the atmosphe
structures. Start and end of this rise in dust activity, as well as the longitude at which it takes place at, correspc
to the definition of the “A” storm from Kass et aRQ16), which is a recurrent regional dust storm happening
during Martian Years that are not affected by a global dust storm.

4.4.2. Hellas Basin

MAS can be seen above Hellas Basin for most of the observed period. During MY25, MAS start forming on th
northern border of Hellas around £ 60° and thicken until covering the entirety of the Basin gt 120° and

then dissipating quickly. Atl= 160° the only MAS remaining form a line from the western to the eastern border
of the Basin. The end phase of this same phenomenon can be seen in MY24 around theDsaing southern
spring, MAS can be seen in Hellas Basin but cannot be distinguished from the southern polar hood. Observat
of these MAS are coherent with observations of water clouds in Hellas Basin by the Mars Color Imager (Kah
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et al.,2019 Wolff et al., 2019. Hellas Basin is also the location for the largest MAS apart from the poles in
our observations (around 12% of 500+ MAS across the mission duration) suggesting an important reservoir
water, in agreement with it playing a role in the atmospheric circulation of water from the north polar hood to th
southern hemisphere.

4,5, Poles
4.,5.1. North Pole

Combining the two observed Martian Years, we can see interannual variability of both poles apart from th
window between solar longitudes 20° and 40° that corresponds to solar conjunction. The north polar hoo
develops through late northern summer. MAS are first observed above the pole itsgh i60Q° when they

can also be observed at lower latitudes, above Acidalia Planitia or the western side of Utopia Planitia. MA
then persist through northern fall and winter with almost global coverage of latitude higher than 50°N aroun
L, = 330°. Dust storm can either thicken or dissipate Mars' north polar hood (ME8T8, Indeed, large dust
events induce a decrease in baroclinic wave activity because the atmosphere stabilizes by modifying the struct
of the baroclinic zone, what reduces instabilities (M. Battalio & Wa6gQ 2021, Hinson & Wilson,2021).
Moreover, the CQice cap that forms during the northern fall and winter is constrained by the alignment of CO
ice clouds with planetary waves (Kuroda et2007, 2013. A planet-encircling dust storm such as the “A” storm
observed earlier causes a massive decreased in traveling wave activity. Thus, this regional dust storm seen
have lowered the number of north pole MAS betwegn250° and 280°. This response from the northern hemi
sphere to a mid-latitude developing dust storm was also observed by Kas2@t@l.Apart from this period,

and assuming clouds did not disappear during solar conjunction, the north polar hood remains present fr
L,=150° to L, = 30° as observed in Benson et &0(1). After that, the only remaining MAS at north pole are
located above Acidalia Planitia, until £ 90°, eventually suggesting specific local atmospheric conditions that
allow clouds to remain longer than above pole itself.

4.,5.2. South Pole

It is much harder to distinguish a clear evolution for the south pole. Clouds can be seen in the first observations
MY24 around I, = 100° and could be the end of the first phase of Mars' south polar hood (BensoBGGl.,

but dissipate much faster than observed in MOC images (Wang & Ing285i),since they can barely be seen

as early as L130°. Moreover, they are not observed at the same period in MY25. This would either mean the
our method is not well adapted for south pole clouds or that they are too high in the atmosphere to be detecte

5. Conclusions

The MOLA instrument provides data for 1.5 Martian Years and has proven being able of detecting cleud sign.
tures coming from the lower atmosphere, up to 20 km. Studying the data set with machine learning methods, ¢
particularly clustering algorithms, bypasses the determination of a stringent limit between clouds and surfa
laser returns. We show that the MOLA data set is indeed clusterable but also that a certain number of clust
emerges using optimization methods. Clustering provides more detections than previous studies while mainta
ing a similar seasonal and latitudinal distribution, which confirms the viability of the process. We reduce thi
chances of having false positive in our atmospheric features cluster by picking the most appropriate number
clusters.

We gather consecutive atmospheric returns into structures to keep track of cloud or dust structure sizes. T
way, some areas are revealed in the seasonal distribution as being more favorable for big atmospheric structt
Atmospheric structures are presented in a unique catalog regrouping results from the whole MOLA data set.

MOLA cloud observations are compared with two other instruments, MGS TES and MGS MOC, which havi
also observed clouds in the Martian atmosphere for the same time period. This comparison notably helps confi
assumptions on the composition of atmospheric structures and shows that both watey medc©@@ds and
important dust structures are found in the MOLA data set. Development of the aphelion cloud belt and the sot
polar hood are observed with a large temporal resolution. Because of the important proportion of channel 4 stri
tures and by using both dust activity database and dust optical depth observations, we also showed that MO
observed an important number of the dusty events that occurred during MY24 and MY25.
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The results are also compared with more recent mission observations for the development of atmospheric str
tures within specific places like Valles Marineris or Hellas Basin. Hellas Basin seems to play a crucial role i
the atmospheric circulation of water across a Martian Year, which is highlighted by the omnipresence of clou
above the basin. Seasonal variations above the north pole are important both in terms of cloud sizes and local
tion. However, even though it is apparently less cloudy, MOLA still seems to be less effective for the observatic
of clouds above the south pole.

The machine learning method optimization ensures we have as few false-positive atmospheric returns as possi
But that may have restrained the limits of the atmospheric cluster by a small margin. One way to improve o
results, particularly on the determination of the borders of atmospheric features, could be using them as a train
set for deep learning methods to recognize cloud signaturgs against time plots.

Data Availability Statement

The results of this paper, including the atmospheric structures catalog and the tool for cloud visualization a
archived at the ESPRI MESOCENTRE and are publicly available (Caillé &0aB. Raw MOLA data files
(PEDR) were downloaded from the MOLA page of PDS Geosciences Node (Ford898l. Mars' topogra

phy map used as background for clouds distribution was made by the MOLA Instrument and Science team &
made available by NASA Goddard Space Flight Center Scientific Visualization Stttgisi/{svs.gsfc.nasa.gov/
stories/MOLA). The MOLA cloud returns from Neumann et &003 are available atttps://pgda.gsfc.nasa.
gov/products/62
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