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Abstract. To date, long short-term memory (LSTM) net-
works have been successfully applied to a key problem in
hydrology: the prediction of runoff. Unlike traditional con-
ceptual models, LSTM models are built on concepts that
avoid the need for our knowledge of hydrology to be for-
mally encoded into the model. The question, then, is how
we can still make use of our domain knowledge and tradi-
tional practices, not to build the LSTM models themselves,
as we do for conceptual models, but to use them more effec-
tively. In the present paper, we adopt this approach, inves-
tigating how we can use information concerning the hydro-
logic characteristics of catchments for LSTM runoff models.
In this first application of LSTM in a French context, we use
361 gauged catchments with very diverse hydrologic condi-
tions from across France. The catchments have long time se-
ries of at least 30 years. Our main directions for investigation
include (a) the relationship between LSTM performance and
the length of the LSTM input sequence within different hy-
drologic regimes, (b) the importance of the hydrologic homo-
geneity of catchments when training LSTMs on a group of
catchments, and (c) the interconnected influence of the local
tuning of the two important LSTM hyperparameters, namely
the length of the input sequence and the hidden unit size,
on the performance of group-trained LSTMs. We present a
classification built on three indices taken from the runoff,
precipitation, and temperature regimes. We use this classi-
fication as our measure of homogeneity: catchments within
the same regime are assumed to be hydrologically homoge-
neous. We train LSTMs on individual catchments (local-level
training), on catchments within the same regime (regime-
level training), and on the entire sample (national-level train-

ing). We benchmark local LSTMs using the GR4J conceptual
model, which is able to represent the water gains/losses in a
catchment. We show that LSTM performance has the highest
sensitivity to the length of the input sequence in the Uni-
form and Nival regimes, where the dominant hydrologic pro-
cess of the regime has clear long-term dynamics; thus, long
input sequences should be chosen in these cases. In other
regimes, this level of sensitivity is not found. Moreover, in
some regimes, almost no sensitivity is observed. Therefore,
the size of the input sequence in these regimes does not need
to be large. Overall, our homogeneous regime-level training
slightly outperforms our heterogeneous national-level train-
ing. This shows that the same level of data adequacy with
respect to the complexity of representation(s) to be learned
is achieved in both levels of training. We do not, however,
exclude a potential role of the regime-informed property of
our national LSTMs, which use previous classification vari-
ables as static attributes. Last but not least, we demonstrate
that the local selection of the two important LSTM hyper-
parameters (the length of the input sequence and the hidden
unit size) combined with national-level training can lead to
the best runoff prediction performance.

1 Introduction

Surface-water runoff (referred to hereafter as runoff) is the
response of a catchment to its intakes and yields. The reli-
able prediction of runoff is essential for the management of
many water-related hazards and water resources, and it has
been the focus of numerous studies in hydrology over the
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past decades. Nevertheless, the accurate prediction of runoff
has remained a challenge due to the non-linearity of the
several surface and subsurface processes involved (Kachroo
and Natale, 1992; Phillips, 2003). Promising continuous
runoff models based on long short-term memory (LSTM)
(Hochreiter and Schmidhuber, 1997) were first introduced by
Kratzert et al. in 2018. This highly successful first applica-
tion has since encouraged many researchers to more widely
explore the predictive capability of LSTM-based runoff mod-
els. Examples include Kratzert et al. (2019a, b), Gao et al.
(2020), O et al. (2020), Feng et al. (2020), Frame et al.
(2021), Gauch et al. (2021a, b), Lees et al. (2021), and
Nearing et al. (2021). Unlike traditional conceptual rainfall–
runoff models, where hydrological rules are hardwired into
the model, LSTM-based models borrow their principles from
fields that are not traditionally associated with hydrology.
Thus, a central interest is whether and how we can benefit
from domain knowledge and traditional practices in hydrol-
ogy when using LSTM models for the prediction of runoff.
This paper considers some pathways towards this goal.

Path 1

Conforming to the daily runoff model from Kratzert et al.
(2018), the LSTM takes a “sequence” of past forcing vari-
ables to predict runoff. Its sequence-type input reflects the
distinctive property of LSTMs: capturing time dependencies.
In the previous studies by Kratzert et al. (2018) and Lees
et al. (2021), the length of this sequence, hereafter called
“lookback”, was set to 365 d so that the dynamics of a full
annual cycle could be captured. Kratzert et al. (2019b) tested
four lookbacks (90, 180, 270, and 365 d) and reported that a
lookback of 270 d gave the best results in their study. How-
ever, Gauch et al. (2021b) systematically reduced the size
of the data and showed that the choice of lookback should
consider the amount of data: when the available data were
limited, an overly long lookback could impair LSTM perfor-
mance. From the point of view of pure deep learning, look-
back is a hyperparameter of the same type as batch size,
learning rate, and so forth. However, there are some com-
pelling reasons to separate lookback from the usual hyper-
parameters. The catchment response is known to depend on
the current soil moisture state of the catchment, which is it-
self a result of antecedent conditions and forcing history, for
example, a succession of dry/wet, cold/hot periods. How-
ever, this dependence is time limited; thus, what has hap-
pened in the past is progressively forgotten by the catch-
ment and, over time, it will have no (or very limited) influ-
ence on current conditions. It is also known that each catch-
ment has its own memory length, which is related to the time
taken by the catchment to dissipate the input information.
For instance, large catchments connected to major aquifers
can have a long memory of up to several years (de Lavenne
et al., 2021). By contrast, small catchments located on the
surface of an impermeable bedrock with no infiltration can

have a very short memory of only a few days. Hence, we ex-
pect the choice of lookback to depend not only on the length
of training data, as shown by Gauch et al. (2021b), but also
on the hydrologic characteristics of the catchment. Thus, we
can define our first research question (Q1), which is largely
unaddressed in the existing literature, as follows: “Does the
LSTM performance–lookback pattern depend on the catch-
ment regime?”.

Deep learning context for paths 2 and 3

We can decompose the error associated with any deep learn-
ing network (including LSTM) to the following three com-
ponents (Beck et al., 2022): (1) approximation error, (2) gen-
eralization error, and (3) optimization error. The approxima-
tion error is the error of the network in approximating the
true underlying mapping function. This error is controlled by
model representational capacity (which depends itself on the
model architecture and neural network family, for example,
vanilla multilayer perceptron, LSTM, or convolutional neu-
ral networks) as well as by the choice and number of input
features (Goodfellow et al., 2016). The generalization error
is the error of the network on unseen data. The optimization
error is the error of the optimization algorithm in finding the
global minimum of the loss function. This error results from
the optimization algorithm. The training and validation er-
rors that the learning algorithm encounters during training
reflect the approximation plus optimization and generaliza-
tion errors respectively. However, the training and validation
errors are only “expectations” or “estimates” of the true er-
rors, as they are computed on only “a finite number” of sam-
ples drawn from the distribution of inputs that the system is
expected to encounter in practice (Goodfellow et al., 2016).
As the number of training examples increases, the network’s
learning can be refined given the more accurate losses and
the larger number of gradient updates. We may, therefore,
plausibly treat data size as a model-independent factor con-
trolling the performance of the model. Here, we assume that
the model family and architecture as well as the optimiza-
tion algorithm are predetermined, and, thus, that all errors
associated with them remain unchanged. In this paper, we
set out to alter other error-controlling variables (i.e. features
of the model, data size, and data homogeneity) – in ways that
conform to traditional hydrologic practices – and study how
LSTM performance changes. Path 2 allows for the investi-
gation of the influence of the model’s features and data size.
Through path 3, we observe the influence of data homogene-
ity.

Path 2

In line with classical regionalization (Kratzert et al.,
2018, 2019b), we move from individually trained (local) to
group-trained (regional) LSTMs. In doing so, we also incor-
porate static features (into regional LSTMs), increasing both
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data size and model capacity. Bigger data and higher capac-
ity improve the training error and model precision, but can
they can do so without losing some generalization? This path
allows us to formulate our second question (Q2): “To what
degree does the LSTM trade generalization for precision in
moving from local to regional training?”.

Local and regional LSTMs have already been investigated
and compared against multiple conceptual models in several
studies. The reader is referred to Kratzert et al. (2018) for
comparison of local LSTMs with the Sacramento Soil Mois-
ture Accounting Model (SAC-SMA; Burnash et al., 1973)
coupled with the Snow-17 conceptual model. For examples
of regional LSTMs, the reader is referred to Kratzert et al.
(2019b) or to Lees et al. (2021) and Gauch et al. (2021a).
Kratzert et al. (2018) suggest that, in regional training, not
only are the training data significantly augmented but in-
clusion of different contributing catchments would also in-
troduce further complementary information about rainfall–
runoff transformation under more general hydrological con-
ditions and, consequently, learning would improve. Kratzert
et al. (2019a, b) demonstrated that their regional LSTMs us-
ing both dynamic (e.g. forcing data) and static (e.g. catch-
ment attributes) features outperformed the regional LSTMs
with no static features as well as outperforming all local con-
ceptual benchmark models tested. Subsequently, Lees et al.
(2021) also reported that regional LSTM models outper-
formed their four conceptual benchmark models in the cli-
matic context of Great Britain and on a sample of 518 catch-
ments. However, none of the previous studies compared local
LSTMs to regional LSTMs with static attributes.

Path 3

Seeking to benefit from traditional methods of hydrologic
classification (Haines et al., 1988; Oudin et al., 2008; Chiver-
ton et al., 2015), we investigate hydrologically homogeneous
versus hydrologically heterogeneous training at the regional
scale in this work. Classification of catchments according to
their hydrologic behaviour conveys the idea that all catch-
ments in the same class are hydrologically similar to each
other and, thus, have the same behaviour or the same “repre-
sentation” in the language of deep learning. But, may it also
be advantageous to LSTM learning, allowing the regional
LSTMs to capture the shared behaviour using a single train-
ing session on the data for the class? This is the main focus of
this path where we compare regional LSTMs under two con-
ditions: (a) when the training examples are greater in number
but collected from distributions that are very different with
respect to their hydrologic statistics (heterogeneous national
training set) and (b) when there are far fewer training exam-
ples but these are drawn from hydrologically similar distribu-
tions (homogeneous regime training set). In this comparison,
the model capacity/complexity remains the same, the size of
the training data increases, and the complexity of the latent
rules to be learned varies due to the difference in heterogene-

ity/homogeneity. More specifically, we are interested in an-
swering the following question (Q3): “Is there a performance
gain for regional LSTMs in the shift from hydrologically het-
erogeneous to homogeneous training and vice versa?”.

To identify hydrologic similarity, we present a purely
hydrologic classification built on three indices obtained
from the analysis of runoff, precipitation, and temperature
regimes. To date, only one other investigation of the data
homogeneity component in training LSTMs has been un-
dertaken in a recently published study conducted in parallel
with the present research (Fang et al., 2022). However, there
are a number of important differences between the present
paper and the study by Fang et al. (2022). Their study is
conducted within the US context. They use the “ecoregion-
based” classification of Omernik and Griffith (2014), which
is built on geological, land-form, soil, vegetation, climatic,
land-use, wildlife, and hydrologic compositions (Fang et al.,
2022). The measure of homogeneity that is used in their ex-
perimental design is the “proximity” of ecoregions: the fur-
ther apart the two regions are, the more dissimilar they are.
However, this hypothesis has not always been found to be
true, as is shown in Oudin et al. (2008). Likewise, this hy-
pothesis is largely contradicted in our classification, which
allows very close but also totally dissimilar catchments and
vice versa. Not only is their LSTM model different in many
respects (e.g. a different architecture, number of hidden lay-
ers, activation function, and loss function), Fang et al. (2022)
have performed no hyperparameter tuning for lookback (it
is fixed at 365 d). Furthermore, the number of epochs used
in their study is predefined and similar for all experiments,
which is not the case in the present paper.

Path 4

The last investigation path in this paper – inspired by the fine-
tuning experiment performed by Kratzert et al. (2018) – is
about improving LSTM performance by a method other than
increasing the size of the data/model capacity or changing
the homogeneity/heterogeneity of the data. Here, we study
the influence of the approach to the selection of two major
LSTM hyperparameters: lookback and hidden unit size. Fol-
lowing this path, our last research question (Q4) is defined as
follows: “What is the most effective way of using LSTMs to
predict runoff?”.

In pursuing these paths, we apply LSTM to a sample con-
sisting of 361 gauged catchments with very diverse hydro-
logic conditions from all over France; this paper is the first
application of LSTM to the French context. The discharge
time series of the catchments is at least 30 years in length
(between 30 and 60 years). In all experiments, the LSTM is
tuned with respect to the lookback and hidden unit size as
well as the dropout rate, and three disjoint subsets (train-
ing, validation, and test) are used. We also use the non-
mass-conservative GR4J conceptual model to benchmark the
LSTM.
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The remainder of this paper is organized as follows. The
next section presents the available data and our hydrologic
catchment classification. Section 3 details the methods used
in this paper and describes the experimental design. Results
are provided in Sect. 4. The paper’s research questions are
discussed in Sect. 5. The conclusion is found in Sect. 6,
which also outlines some future directions based on the find-
ings of this study.

2 Data

2.1 Hydrometeorological data

The data set used in this study contains time series of hy-
drometeorological variables and time-invariant catchment at-
tributes. It is a subset of a larger data set of 4190 French
catchments (Delaigue et al., 2020). The meteorological
forcing data are taken from the daily SAFRAN (Système
d’Analyse Fournissant des Renseignements Atmosphériques
à la Neige) reanalysis run by Météo France at a resolution of
8 km× 8 km (Quintana-Segui et al., 2008; Vidal et al., 2010).
For each catchment, spatially averaged forcing data consist-
ing of daily total precipitation; mean, minimum, and maxi-
mum air temperature; wind speed; air moisture; atmospheric
radiation; and visible radiation are available for a common
period from 1 August 1958 to 31 July 2019. Hydrometric
data consist of daily discharge time series covering the pe-
riod of the forcing data.

The catchment sample for this paper includes 361 catch-
ments from all over France with discharge time series rang-
ing from 30 to 60 years. These catchments range in size
from 5 to 13 806 km2 with a median size of 219 km2. Their
annual runoff ranges from 47 to 2312 mmyr−1, with a me-
dian value of 466 mmyr−1, and annual total precipitation
varies between 621 and 2128 mmyr−1, with a median value
of 1053 mmyr−1. The mean daily temperature of the catch-
ments varies between −1.8 and 14.8 ◦C and has a median
value of 9.8 ◦C.

2.2 Catchment classification

The classification proposed in this paper uses readily avail-
able data and is inspired by Pardé (1933) and Sauquet (2006).
It is built on three hydroclimatic indices, namely IQ (–),
IP (–), and Tmin (◦C), derived from the analysis of interan-
nual monthly runoff (Q, mm per month), total precipitation
(P , mm per month), and temperature (T , ◦C) signals. These
indices are defined as follows:

IQ=
Qmax−Qmin

Qmean
, (1)

IP=
Pmax−Pmin

Pmean
, (2)

Tmin =min(T1, . . .,Ti) i ∈ 1,2, . . .,12. (3)

Here, Ti is the mean annual temperature of month i, Qmax
and Qmin are maximum and minimum interannual monthly
runoff (mm per month) respectively, and Pmax and Pmin are
maximum and minimum interannual monthly total precipita-
tion (mm per month) respectively.

In this definition, the IQ and IP indices give information
on runoff variability and precipitation variability throughout
the year respectively. Low values for IQ and IP indicate their
uniform distribution across the year, whereas a high value re-
flects the presence of contrasting dry and wet seasons. A low
IQ can also imply the presence of groundwater or reservoirs
(natural or artificial), which tend to attenuate runoff fluctu-
ations at the catchment outlet. The Tmin index is a proxy to
determine whether or not precipitation falls as snow during
winter. Figure 1 shows the spatial variation in the three in-
dices across France. High IQ levels are fragmented in patches
in the west and south-east of the country. The areas with high
IP levels are found on the Mediterranean coast in the south
and on Corsica. Low Tmin values occur in the mountainous
areas: the Alps in the east, the Pyrenees in the south-west,
and the Massif Central in the centre of France.

Using the specified indices, the following classification
criteria are defined and applied to each catchment in the sam-
ple to determine its hydrologic regime (Fig. 2):

Nival – Tmin ≤−2,
Nivo–Pluvial – − 2< Tmin < 0,
Mediterranean – Tmin ≥ 0 and IP> 1,
Uniform – Tmin ≥ 0 and IP≤ 1 and IQ< 1,
Oceanic – Tmin ≥ 0 and IP≤ 1 and IQ≥ 1.

The location of the catchments within each regime is
shown in Fig. 3. We can observe that the regimes are ge-
ographically plausible and compatible with the geographi-
cal characteristics of the region. For example, the Nival and
Nivo–Pluvial regimes occur in the mountainous ranges, and
the catchments with a Mediterranean regime are found along
the French Mediterranean coastline and on the Mediter-
ranean island of Corsica. The Oceanic catchments are dis-
tributed across other parts of France, except in areas known
to have large aquifers belonging to the Uniform regime (e.g.
the Paris Basin region in the north of France).

For each regime, variations in interannual monthly runoff,
total precipitation, and mean temperature are presented in
Fig. 4. In the Uniform regime, runoff remains in the range
between 4 % and 13 % of annual discharge throughout the
year, and no wet or dry period is observed. Meanwhile, the
other regimes clearly exhibit periods of low and high flows.
The Oceanic regime is characterized by low flows during
the summer and high flows during the winter. This is due
to higher evaporation in summer relative to winter. Total pre-
cipitation displays a rather uniform pattern in this regime.
For catchments in the Mediterranean regime, high flows ex-
tend across a longer period but are less pronounced com-
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Figure 1. Spatial variation in the three indices used for hydrologic catchment classification: IQ, IP, and Tmin. Each catchment in the sample
is shown as a point.

Figure 2. Classification of the catchments into five hydrologic regimes based on five conditions built on Tmin, IP, and IQ. In order of priority,
we first evaluate two Tmin conditions: Tmin <−2 and Tmin < 0. For catchments not satisfying either of these two conditions, we then check
if IP> 1. If this condition is also unsatisfied, the IQ> 1 condition is evaluated. Each point represents a catchment, and its colour indicates
its regime.

pared with the Oceanic regime. However, low flows occur
at lower levels as a result of the extremely dry summers. Au-
tumn precipitation is abundant in this regime, making autumn
a period prone to thunderstorms which could, in turn, induce
sudden flash floods. The runoff pattern in the Nival class is
also recognizable with its snowmelt-induced peak in the late
spring/early summer once the temperature rises. The Nivo–
Pluvial regime appears to be a combination of the Oceanic
and Nival regimes, with two high-flow periods, in autumn
and spring.

2.3 Physical and climatic catchment attributes

In this paper, we use four physical attributes – surface area
(km2), median slope (%), median drainage density (%), and
median altitude (m) – as well as six climatic attributes – IP,

IQ, Tmin, mean daily liquid precipitation (Pliq) (mmd−1),
mean daily solid precipitation (Psol) (mmd−1), and mean
daily potential evapotranspiration (PET) (mmd−1). The
quartile distribution of the physical attributes and Pliq, Psol,
and PET is shown in Figs. 5 and 6. We note that surface areas
in all regimes are distributed across the four quartiles. That
is, all regimes have catchments from almost all four quartiles.
This is not, however, the case for other attributes. For exam-
ple, catchments with the highest 25 % of values for altitude or
slope are more likely to belong to the Nival or Nivo–Pluvial
regimes. Similarly, it is more probable that catchments with
the lowest 25 % of drainage densities will belong to the Uni-
form regime than to the Nival or Mediterranean regimes. In
accordance with the features of the regime, Nival catchments
have significant snow days, Nivo–Pluvial catchments have

https://doi.org/10.5194/hess-26-5793-2022 Hydrol. Earth Syst. Sci., 26, 5793–5816, 2022
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Figure 3. Distribution of catchments from each of the five regimes
across France: Uniform, Mediterranean, Oceanic, Nivo–Pluvial,
and Nival. Each point represents one catchment and is coloured ac-
cording to its regime.

both major snow and rain days, and Mediterranean catch-
ments have high evapotranspiration and rainfall rates.

3 Method

3.1 A primer in long short-term memory (LSTM)

LSTM networks are a family of recurrent neural networks
(RNNs) that address issues of both vanishing and exploding
gradients (Hochreiter, 1998). They have proven well suited
to the modelling of a time-dependent system where there can
be “unknown lags” in a system’s response to a continuous
input. This is the case for the transformation of rainfall into
runoff in a catchment. In the language of LSTM, the cap-
ture of time dependencies can be translated as sharing im-
portant information between time steps of a time sequence
(Goodfellow et al., 2016). Information sharing in RNNs is
supposed to be deep – i.e. between time steps that are dis-
tant from each other. However, in practice, this occurs only
at a shallow level due to the vanishing gradient problem. The
LSTM is designed, in turn, to allow for both shallow and
deep information sharing across a sequence. In the following
paragraphs, we provide a brief reminder of the forward prop-
agation equations of a standard LSTM cell for time step t . For
a comprehensive description of LSTM networks, we refer
the reader to Chapter 10 of Goodfellow et al. (2016). Equa-
tions (4) to (9) given below are all from Goodfellow et al.
(2016), with a slightly different notation. Figure 7 illustrates
an unfolded computational LSTM cell corresponding to the
last time step (t) of a sequence of length T (hence including
time steps t − T + 1 to t). This sequence reflects one sample
in a (mini)batch.

The standard LSTM involves two feedback connections
operating at different timescales: the shallow-level hidden
state (ht), for capturing short-term dependency details, and
the deep-level cell state (Ct), for transferring information

from the distant past to the present in a more effective way
than the hidden state thanks to its “self-loop” structure. The
equation of this self-loop is the core equation of the LSTM
and is as follows:

Ct = f t�Ct−1+ it� tanh(Wᵀ
xcxt+Wᵀ

hcht−1+ bc). (4)

It describes the cell state as a linear self-loop of form
Ct := ACt−1+B, with A := f t and B := it� tanh(Wᵀ

xcxt+

Wᵀ
hcht−1+ bc). f t, defined as

f t = σ(W
ᵀ
xfxt+Wᵀ

hfht−1+ bf), (5)

is called the forget gate and has the following properties:

1. It is a unit analogous to a neuron in nature, meaning
that (1) it takes a weighted sum of its inputs (x,h) and
a vector of bias (b), and (2) like an activation function,
it applies an element-wise non-linearity to their sum.

2. Its non-linear function is the sigmoid function (σ ) and
has output values between 0 and 1 – f t ∈ (0,1). Its
“gate” functionality derives from this property. A value
of 0 tells the cell to completely disregard information,
whereas a value of 1 tells it to fully retain information.

3. The presence of the term Wxt reflects a conditioning on
the inputs of the current time step (xt). Therefore, f t is
a function of xt and is different for different time steps.
The weights W and bias b are independent of the inputs
and are shared between different time steps.

ht−1 in Eq. (5) is the hidden state of the previous time
step (t − 1) and is defined as follows:

ht = ot� tanh(Ct), (6)

where ot is called the output gate. ot has the following defi-
nition:

ot = σ
(
Wᵀ

xoxt+Wᵀ
hoht−1+ bo

)
(7)

and has exactly the same properties as f t.
So far, we have provided the definition of all terms in

Eq. (4), except for it. It is called the input gate and is given
by

it = σ
(
Wᵀ

xixt+Wᵀ
hiht−1+ bi

)
. (8)

Like the other gates and as Eq. (8) suggests, it shares all of
the properties mentioned above for f t.

The network output at time step t (̂yt) is computed by a
regular neuron unit using the hidden state at time step t (ht)
as input:

ŷt =Wᵀ
outputht+ boutput. (9)

It is now clear that ht itself depends on the T last hidden
states.

The notation, dimensions (for a single time step), and def-
inition of the different variables in the LSTM’s forward pass
equations are given in Table 1.
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Figure 4. Interannual monthly (or regime of) runoff (Q∗) (–), total precipitation (P ∗tot) (–), and temperature (T ) (◦C) for the catchments
within different hydrologic regimes. The (∗) symbol in Q∗ and P ∗tot indicates that values for these two variables are relative to the total
annual amount. Each solid line represents one catchment. The black dashed line in each panel represents the panel’s median regime.

Figure 5. Stacked bar charts showing the variation in the four physical attributes used in this paper within each regime and the entire sample.
The end-to-end segments of each bar correspond to the intervals for each quartile of the physical attribute of interest. The quartiles are
computed by taking all 361 catchments into account. The number inside each segment denotes its length.
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Figure 6. Stacked bar charts showing the variation in the three climatic attributes used in this paper within each regime and the entire sample.
The end-to-end segments of each bar correspond to the intervals for each quartile of the climatic attribute of interest. The quartiles are
computed by taking all 361 catchments into account. The number inside each segment denotes its length.

3.2 Training, validation, and test data sets

The period for which there is a full discharge record differs
between the catchments in the sample. To obtain training,
validation, and test data sets, the data for each individual
catchment are divided into three sets as follows: the most
recent period containing 10 years of full discharge records
is set as the test period; working backwards, the next period
that contains 10 years of full discharge records is set as the
validation period; and what remains constitutes the training
period, the length of which varies between 10 and 40 years
in the sample.

As the values for features and the target vary widely, a
feature-wise standardization for the features and the target is
performed. The standardization is performed using the mean
and the standard deviation of the training data. This form of
standardization – where the input data are centred around 0
and are scaled by the standard deviation – is also used by
Kratzert et al. (2018) and is appropriate for runoff simulation
using LSTM. LeCun et al. (2012) explain why this form of
standardization generally works well by making the gradient
descent converge faster. Furthermore, the useful area of the
LSTM’s activation functions (sigmoid and hyperbolic tan-
gent functions) where their derivatives are most dynamic – is
an area centred around 0. Thus, this form of standardization
could help the weights to be updated more effectively. We
should, however, note that we have not tested other forms of

normalization, for example, the min–max normalization ([0,
1] scaling) nor have we investigated their influence on LSTM
performance.

3.3 Criteria for performance evaluation

In this paper, to evaluate runoff prediction performance, we
use the Kling–Gupta efficiency (KGE) score (Gupta et al.,
2009) because it combines the three fundamental diagnos-
tic properties of a predictive hydrologic model, i.e. variabil-
ity (α), bias (β), and linear correlation (r).

KGE= 1−
√
(1−α)2+ (1−β)2+ (1− r)2 (10)

α =
std(Ŷ )
std(Y )

(11)

β =
Ŷ

Y
(12)

r =

Np∑
n=1

(
Y n−Y

)(
Ŷ n− Ŷ

)
std(Ŷ )× std(Y )

(13)

In the above equations, Ŷ and Y are predicted and true val-
ues respectively, Ŷ and Y are the mean values of Ŷ and Y

respectively, std is the standard deviation function, and Np is
the number of time steps in the period for which we want to
calculate the KGE. For example, if we are interested in calcu-
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Figure 7. (a) Time-unfolded schematic representation of data processing for a single sample consisting of T time steps – from time step
t − T + 1 to time step t . (b) Data processing of the last time step of the above sample through an LSTM cell. xt is the input of time step t ,
ht is the hidden state (dashed red line), Ct represents the cell state (solid blue line), and σ and tanh are the respective sigmoid and hyperbolic
tangent functions. The figure is adapted from Olah (2015).

Table 1. Notation, dimensions, and definition of the terms and operators in Eqs. (4) to (9) for the forward pass of a standard LSTM cell
involving the forget, input, and output gates.

Notation Dimensions Definition

xt D× 1 (× 1 sample) Input for a single time step (t) in a given sample
ŷt 1× 1 Output for time step t (in a given sample)
Wxf, Wxi, Wxo, Wxc D×M Inputs to forget, input, and output gate weights as well as inputs to regular neuron unit weights
Whf, Whi, Who, Whc M ×M Hidden state to forget, input, and output gate weights as well as hidden state to regular neuron unit weights
Woutput M × 1 Hidden state to output weights
bf, bi, bo, bc M Forget, input, and output gate biases as well as regular neuron unit bias
boutput 1 Output bias
f , i, o M × 1 Forget, input, and output gates
h, C M × 1 Hidden state and cell state
σ() – Sigmoid function
tanh() – Hyperbolic tangent function
� – Linear algebra element-wise (Hadamard) product
ᵀ – Linear algebra transpose operator

D denotes the total number of features (dynamic and static) for each sample, and M denotes the number of hidden units in the LSTM layer.

lating the KGE on the training data set,Np will be the number
of time steps the training data contain. The calculation of the
KGE score is catchment-wise throughout the paper.

3.4 Hyperparameter tuning

When addressing a research question using a deep learning
model, it is important to limit (as much as possible) any po-
tential conclusion biases resulting from the use of a model
that is not hyperparameter tuned. LSTM has, in particular,
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Table 2. The hyperparameters tested for all LSTMs in the paper and their variations.

Hyperparameter Lookback length (days) Hidden unit size Dropout rate Batch size Number of LSTM layers Learning rate

Variations 30, 60, 90, 180, 365, 730 64, 128, 256 0.0, 0.2, 0.4 128 1 10−4

two interconnected hyperparameters that need to be tuned to-
gether: the lookback and hidden unit size. For this purpose,
for each LSTM in the paper, we have tested all combinations
of all variations in the hyperparameters listed in Table 2 –
6 (lookback variations) × 3 (hidden unit size variations) ×
3 (dropout rate variations)= 54 tuning cases. In all of these
cases, the batch size, the number of LSTM layers, and the
learning rate are constant: 128, 1, and 10−4 respectively.

The remainder of this subsection discusses the choice of
and variation in the tuning hyperparameters in this paper.

3.4.1 Learning rate

The gradient-based Adam algorithm (Kingma and Ba, 2017)
with a learning rate of 10−4 is used as the optimization al-
gorithm in all experiments. Adam is from the family of al-
gorithms with adaptive learning rates and is considered to
be a robust algorithm with respect to the choice of its hy-
perparameters, including its base learning rate (Goodfellow
et al., 2016). A suitable learning rate value would give an
asymptotic converging learning (or optimization) curve and
would not overshoot effective local minima (Bengio, 2012).
Given these factors, Adam’s basic learning rate has been
fixed to 10−4, and a post hoc examination of the learning
curves has been performed for the different models in the
different experiments that has not revealed any divergence of
the training criteria due to an overly high learning rate. The
rate of 10−4, which is 10 times lower than Adam’s default
base learning rate in Keras, has been selected to provide bet-
ter steps with respect to local minima. Given this lower cho-
sen learning rate, in order to ensure that full regime training
has been provided and that the training criterion has suffi-
cient time to decay, we have not imposed a predetermined
number of epochs, instead allowing the LSTM to continue
to learn for as long as its performance improves on the val-
idation data. Furthermore, 10−4 has been the chosen value
in similar previous studies (Kratzert et al., 2018; Lees et al.,
2021).

3.4.2 Dropout rate

The early stopping algorithm implemented in the paper al-
ready acts as a regularizer. Goodfellow et al. (2016) show
how early stopping is equivalent to L2 regularization in the
case of a simple linear model with a quadratic error function
and simple gradient descent. Given this, there would be no
point testing many dropout variations in our paper.

3.4.3 Batch size

Bengio (2012) notes that the impact of the size of training
batches is mostly computational and that, theoretically, it
should mainly impact training times and convergence speeds,
with no significant impact on test performance. That is, larger
batch sizes would speed up computation but need more train-
ing in order to arrive at the same error because there are fewer
updates per epoch (and vice versa for smaller batch sizes).
Typical recommended batch sizes are powers of 2 (as they of-
fer a better GPU runtime), ranging from 32 to 256 (Goodfel-
low et al., 2016). Very small batch sizes might require a lower
learning rate to maintain stability due to the high variance
in gradient estimates. Thus, the total runtime could increase
significantly. Our chosen learning rate and batch size (10−4

and 128 respectively) gave a reasonable runtime as well as
adequate convergence and test performance.

3.4.4 Hidden unit size

Bengio (2012) offers an interesting discussion on the rec-
ommended exploration values for a hyperparameter (see the
“Scale of values considered” paragraph of Sect. 3.3 of his
paper). He explains that, instead of making a linear selec-
tion of intermediate-value intervals (the values between the
lower and upper bands, here 64 to 256), it is often much more
useful to consider a linear or uniform sampling in the log do-
main – in the space of the logarithm of the hyperparameter.
This is because the “ratio” between different values is often
more important than their absolute difference when it comes
to “the expected impact of the change”. For this reason, Ben-
gio (2012) states that exploring uniformly or regularly spaced
values in the space of the logarithm of the numerical hyper-
parameter is typically to be preferred for positive-valued nu-
merical hyperparameters. Furthermore, should the optimal
hidden unit size be lower than 64, using a hidden unit size
of 64 would not negatively impact generalization, it would
simply require proportionally greater computation (Bengio,
2012).

3.5 Model training and selection of the best
hyperparameter set

Here, the goal is to train an LSTM that takes the past T time
steps of X= [xt−T+1, . . . , xt ] as the inputs for output Ŷ t,
i.e. runoff at time step t (mmd−1). Thus, the input neces-
sarily contains sequences of length T of a number of time-
varying forcing variables (dynamic features). In some cases,
we wish also to use time-invariant variables (static features),
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Table 3. List of the dynamic and static features used in different LSTM models in the paper.

Feature Nature Time step Unit Notation Comment

Total precipitation Dynamic Daily (mmd−1) Ptot SAFRAN output
Wind speed Dynamic Daily (ms−1) WS SAFRAN output
Specific air humidity Dynamic Daily (gkg−1) HU SAFRAN output
Atmospheric radiation Dynamic Daily (J cm−2) AR SAFRAN output
Visible radiation Dynamic Daily (J cm−2) VR SAFRAN output
Minimum air temperature Dynamic Daily (◦C) TN SAFRAN output
Maximum air temperature Dynamic Daily (◦C) TX SAFRAN output
Total precipitation index Static – (–) IP Pmax−Pmin

Pmean

Runoff index Static – (–) IQ Qmax−Qmin
Qmean

Minimum monthly temperature Static – (◦C) Tmin min(T1, . . .,T12)

Mean daily liquid precipitation Static – (mmd−1) Pliq (1 – solid fraction)×Ptot
Mean daily solid precipitation Static – (mmd−1) Psol solid fraction×Ptot
Mean daily potential evapotranspiration Static – (mmd−1) PET Oudin et al. (2005)’s formula
Surface area Static – (km2) A -
Median altitude Static – (m) Z50 -
Median slope Static – (%) S -
Median drainage density Static – (%) DD -

such as physical or climatic catchment attributes. Kratzert
et al. (2019b) proposed a variant of LSTM (entity-aware
LSTM, or EA-LSTM) that is able to treat static and dynamic
features separately from each other. Here, we use a vanilla
LSTM and adopt the simplest method of integrating static
features – i.e. to repeat each static feature T times to ob-
tain its corresponding sequence and then concatenate the ob-
tained sequences with X. By this means, assuming that D is
the total number of features, we will have XT×D . The com-
plete list of dynamic and static features used in this paper
is provided in Table 3. Given XT×D and the set of equa-
tions presented in Sect. 3.1, the LSTM is thus able to out-
put Ŷ t. If we are in need of runoff predictions for more than
one time step, the identical task can be performed for all
N time steps, givingN runoff predictions – ŶN×1. Note that,
here, N denotes the number of samples in the (mini)batch
or batch size, with each sample consisting of a sequence of
length T . The goal here is to find the best set of weights W
and biases b that map XN×T×D to ŶN×1. By best set, we
mean the weights and biases that reduce the overall differ-
ence between the LSTM’s runoff predictions and runoff true
values to a minimum. This overall difference can be mea-
sured by a loss function l(ŶN×1,YN×1), where Y represents
runoff true values. In other words, the goal is to learn the
optimal (W,b)opt so that the loss function is globally mini-
mized: {θopt = (W,b)opt} = argmin

θ=(W,b)

l(ŶN×1,YN×1) or, less

formally, {θopt} = argmin
θ

l(Ŷ (θ),Y ).

Depending on whether the LSTM is trained on just a sin-
gle catchment or on a group of catchments, either the mean
squared error (MSE, Eq. 14) or the NSE∗ (Eq. 15) (Kratzert
et al., 2019b) is used as the loss function respectively. The

NSE∗ is catchment-specific and is of particular use when the
input data come from different catchments, producing a po-
tentially wide range of discharge variance. The NSE∗ is nor-
malized with respect to the discharge variance in each catch-
ment. This will prevent smaller or larger weights being as-
signed to catchments with a lower or higher variance.

MSE=
1
N

N∑
n=1
(Ŷ n−Y n)

2 (14)

NSE∗ =
1
B

B∑
b=1

N∑
n=1

(Ŷ n−Y n)
2

(sb+ ε)2
(15)

In the above equations, B is the number of catchments, and
sb is the standard deviation of discharge for catchment b
computed using discharges in the training data. Following
Kratzert et al. (2019b), ε (= 0.1) is added to the denomi-
nator in Eq. (15) to prevent division by a value very close
to 0 in catchments with a very small discharge variance, i.e.
when sb→ 0.

We used the Keras library (Chollet et al., 2015) written in
Python 3.8 (Van Rossum and Drake, 2009) to build and train
all LSTM models in the paper. The Adam algorithm with a
learning rate of 10−4 is used as the optimization algorithm
in all experiments. All other parameters in the Adam opti-
mization module, including β1 and β2 (L1 and L2 norms),
are kept at their default values. To control overfitting, we use
the Keras early stopping algorithm. An early stopping algo-
rithm does not impose the same predefined non-traversable
number of training epochs on all simulations. It allows the
model to continue to learn as long as its performance (here
on the validation data) is improving.
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Table 4. Names, training catchments, approaches to the selection of the best hyperparameter set, and features used for the five LSTM models
in the paper.

Model Training catchments Approach to the selection of the best
hyperparameter set

Features Loss

SINGLE Individual catchments One set for each catchment All dynamic
features of Table 3

MSE

REGIONAL REGIME Catchments in each regime One shared set for all catchments within
the same regime

All dynamic and all static
features of Table 3

NSE∗

REGIONAL NATIONAL All catchments together One shared set for all catchments All dynamic and all static
features of Table 3

NSE∗

HYBRID REGIME Catchments in each regime One set for each catchment All dynamic and all static
features of Table 3

NSE∗

HYBRID NATIONAL All catchments together One set for each catchment All dynamic and all static
features of Table 3

NSE∗

The LSTM is trained both locally, using the data from “in-
dividual catchments”, and regionally, using the data from “a
group of catchments”. In local training, the loss function is
the MSE, and only the dynamic features of Table 3 are used.
In this paper, LSTMs trained on individual catchments are
called SINGLEs, as the data from only a single catchment
are used in their training. In regional training, the loss func-
tion is the NSE∗, and both dynamic and static features of
Table 3 are used. Furthermore, in regional training, all catch-
ments are trained together, once at a national level and once
at regime level, with the latter using only catchments belong-
ing to the same regime (see Sect. 2.2). Here, LSTMs trained
at the national level are called “REGIONAL NATIONAL”
models, and those trained at the regime level are called “RE-
GIONAL REGIME” models. For each of the SINGLE, RE-
GIONAL REGIME, and REGIONAL NATIONAL models,
the 54 hyperparameter tuning cases are performed, resulting
in the following:

– 361× 54 individual training sessions for the SINGLEs,

– 54 group training sessions on the 71 Uniform catch-
ments using the REGIONAL REGIME model,

– 54 group training sessions on the 62 Mediterranean
catchments using the REGIONAL REGIME model,

– 54 group training sessions on the 101 Oceanic catch-
ments using the REGIONAL REGIME model,

– 54 group training sessions on the 100 Nivo–Pluvial
catchments using the REGIONAL REGIME model,

– 54 group training sessions on the 27 Nival catchments
using the REGIONAL REGIME model,

– 54 group training sessions on the 361 sample catch-
ments using the REGIONAL NATIONAL model.

This gives a total of 19 818 (= 361× 54+ 6× 54) training
passes.

So far, different local and regional LSTMs have been
trained for the 54 hyperparameter sets. Now, the best hyper-
parameter set must be chosen for the trained LSTMs. For
SINGLEs, the only possible approach is to select, for each
catchment, its own best set: the hyperparameter set that offers
the best KGE for the validation data. However, for REGION-
ALs, be they NATIONAL or REGIME, two possibilities ex-
ist. We can identify either one best set for each of the training
catchments or one best overall set for the entire model. In
this paper, we investigate both approaches. By crossing the
two (local and regional) training approaches with the two ap-
proaches to the selection of the best hyperparameter set (as
shown in Fig. 8), we obtain five LSTM models. SINGLEs are
trained locally and have locally tuned hyperparameters. RE-
GIONALs are trained regionally, and their best hyperparam-
eter set is also regional. HYBRIDs, as their name suggests,
are LSTMs that are trained regionally but whose best hyper-
parameter set is chosen locally. Table 4 gives a summary of
the important features of these models.

3.6 Conceptual benchmark model: GR4J

The daily lumped GR4J model (Génie Rural à 4 paramètres
Journalier; Perrin et al., 2003) and its CemaNeige snowmelt
routine (Valéry et al., 2014) are selected to benchmark the
LSTM. GR4J is chosen for its ability to account for ground-
water exchanges with aquifers and/or adjoining catchments
thanks to its gain/loss function. This is a distinctive feature
of GR4J compared with the benchmark conceptual models
used in previous studies (Kratzert et al., 2018; Lees et al.,
2021).

GR4J is a parsimonious model incorporating only four free
parameters. CemaNeige has two parameters and computes
snow accumulation and snowmelt as outputs (Valéry et al.,
2014). GR4J is coupled with CemaNeige to perform one sim-
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Figure 8. Conceptual flowchart of how SINGLE, REGIONAL, and HYBRID LSTM models and their submodels (green rounded rectangles)
are built based on three decision criteria (orange rhombuses): the training approach, the approach to the selection of the best hyperparameters,
and the training catchments.

ulation for each catchment in the sample. This involves cali-
bration of the coupled model on the training+validation data
sets and its evaluation on the test data set. For model cali-
bration, the Michel (Michel, 1989) optimization algorithm is
used. For the purpose of comparison with LSTM, the NSE is
selected as the objective function for the optimization algo-
rithm. For GR4J, it is recommended that a warm-up period
be considered in order to provide the model with an initial
state, rather than starting with an arbitrary state (Perrin and
Littlewood, 2000). Accordingly, in all simulations, the first
2 years of data are set as the warm-up period when calibrat-
ing or evaluating the coupled model. The length of the warm-
up period corresponds to the longest lookback tested for the
LSTM. All GR4J simulations are performed using the airGR
package (Coron et al., 2017, 2020) in the R interface (R Core
Team, 2019).

Compulsory inputs to the GR4J model consist of daily
total precipitation (mmd−1), potential evapotranspiration

(mmd−1) computed using the formula of Oudin et al. (2005),
and runoff (mmd−1), where runoff is used only for model
calibration. Compulsory inputs to the CemaNeige snowmelt
routine are daily total precipitation (mmd−1) and mean air
temperature (◦C). The hypsometric data of each catchment
are also included as an optional input for the CemaNeige
model. It uses this information to account for orographic gra-
dients (Valéry et al., 2014).

4 Results

Our results showed that the use of a second regularization
strategy (dropout rates of 0.2 and 0.4) in conjunction with
early stopping would not further improve performance (com-
pared with the use of early stopping alone, i.e. dropout rate
of 0). All results presented here correspond to a dropout rate
of 0.
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4.1 Variations in LSTM performance with respect to
input sequence length (lookback)

In Fig. 9, the three curves plot the median KGE scores for
the training and validation data sets as well as their av-
erage, showing SINGLE (left) and REGIONAL REGIME
(right) LSTMs for the five regimes. For each lookback,
the median KGE score corresponds to the best hyperpa-
rameter set for that lookback. For example, for a look-
back of 30 d, selection is made from the following three
hyperparameter sets: (lookback= 30, dropout rate= 0, hid-
den unit size= 64), (lookback= 30, dropout rate= 0, hidden
unit size= 128), and (lookback= 30, dropout rate= 0, hid-
den unit size= 256). We conjecture that the true underlying
performance–lookback pattern lies somewhere between the
patterns represented by the training and validation curves.
The former has the advantage of being used for model train-
ing and the latter for hyperparameter selection. In view of
this, we have chosen to look at the average of these two
curves.

For both models, the curves tend to show a consistent pat-
tern within the various regimes. The median KGE first in-
creases at a certain slope and then, from a specific look-
back onwards, the KGE remains largely unchanged or even
decreases. Both the slope and the lookback appear to be
regime dependent. In the Uniform and Nival regimes, the
slope is distinctively pronounced for both models, and we
find the highest sensitivity within these two regimes. In the
Mediterranean regime, the median KGE varies between 0.81
and 0.85 and between 0.77 and 0.82 for the SINGLE and
REGIONAL REGIME models respectively. The initial slope
is steeper in this regime than in the Oceanic regime, and
KGE stalls at an earlier point. In both regimes, the global sen-
sitivity of performance to lookback size is low. In the Nivo–
Pluvial regime, the initial slope is shallow, creating an almost
flat pattern that also reflects low global sensitivity with re-
spect to lookback variations. The range of variation in the
median KGE is 0.85–0.89 and 0.85–0.88 for the SINGLE
and REGIONAL REGIME models respectively.

The continuous tendency for performance to improve
with increasing lookback up to lookbacks longer than a
year within the Uniform regime, as compared to the multi-
month scale in other regimes, is consistent with the multi-
year and multi-month catchment memory scales showed by
de Lavenne et al. (2021) for the Uniform and non-Uniform
catchments in the French context.

4.2 Variations in LSTM performance by training
approach

Figure 10 compares the cumulative distribution function
(CDF) of the KGE for the locally trained SINGLE, RE-
GIONAL REGIME, and REGIONAL NATIONAL LSTMs
(see Fig. 8 and Table 4 for their description). First compar-
ing the median KGE for local training with that of regional

Figure 9. LSTM performance variations with respect to the length
of input sequences within different regimes for the SINGLE and
REGIONAL REGIME models. In each panel, the dashed and dotted
lines correspond to the training and validation data respectively. The
solid line is the mean of the training and validation lines. Each line
plots the median KGE scores (on the y axis) for different lookback
sizes (on the x axis). The median KGE score for a given lookback
in a given panel is the median of the KGE scores from the panel’s
catchments.

training (both regime and national levels), regional training
outperforms local training in almost all regimes. However,
except in the Uniform regime, the difference in performance
between the SINGLE model and the best REGIONAL model
remains minor. Overall, if we take all catchments into ac-
count, the median KGE is 0.80 for the SINGLE model ver-
sus 0.82 and 0.81 for the REGIONAL REGIME and RE-
GIONAL NATIONAL models respectively.

Next, homogeneous group training (REGIONAL
REGIME) is specifically compared with non-homogeneous
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Figure 10. Cumulative distribution functions (CDFs) of the KGE scores of the test data for three LSTM models: SINGLE (blue), REGIONAL
REGIME (orange), and REGIONAL NATIONAL (green). From top to bottom, the first five panels indicate the CDFs of one of the five
regimes: Uniform, Mediterranean, Oceanic, Nivo–Pluvial, and Nival. The last panel corresponds to the distributions of the entire sample.

group training (REGIONAL NATIONAL). In the Mediter-
ranean catchments, the REGIONAL REGIME model is
observed to have a lower median KGE than the REGIONAL
NATIONAL model, whereas it is higher in the Nivo–Pluvial
regime. In all other regimes, both training types have almost
the same median KGE. In the Nivo–Pluvial regime, the CDF
of the REGIONAL REGIME model is completely shifted
towards higher KGE scores. In the Nival regime, although
both models have the same median KGE, the CDF curve of
the REGIONAL NATIONAL regime is shifted towards bet-
ter KGEs. Overall, when all catchments are considered, the
homogeneous group training slightly outperforms the group
training with mixed regimes in terms of the median KGE
score. However, their CDFs are superposed for high KGEs.

4.3 Variations in LSTM performance by approach to
best hyperparameter set selection

Figure 11 compares the CDFs for the group-trained RE-
GIONAL and HYBRID LSTMs, which differ with respect to
their approach to the selection of their best hyperparameter
set. Thus, the HYBRID models benefit from the advantages
of group training and the use of local hyperparameters.

We see that there is clearly a performance improvement
from the REGIONAL NATIONAL model to the HYBRID
NATIONAL model in almost all regimes as well as overall.
This is both in terms of median KGE scores and the shift in
the CDF curve towards better KGEs. However, moving from
the REGIONAL REGIME model to the HYBRID REGIME
model, there is little or no improvement in performance, ex-
cept for the Mediterranean regime. Of all tested LSTMs, the
HYBRID NATIONAL model performs best.

4.4 Performance comparison between LSTMs and the
GR4J model

Table 5 compares the median KGE scores from the GR4J
model with the LSTM models for the training+validation
and test periods. We see from the table that GR4J is gen-
erally more robust than local and regional LSTMs. Looking
at the median KGE score across different regimes for the
test period, with the exception of the Uniform and Mediter-
ranean regimes, all LSTMs outperform GR4J or have the
same score, with the latter occurring in only two cases.
In the Mediterranean regime, GR4J outperforms only the
SINGLE LSTM. Overall, taking all catchments from dif-
ferent regimes into account, SINGLE and GR4J models
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Figure 11. Cumulative distribution functions (CDFs) of the KGE scores of the test data for the group-trained LSTM models: REGIONAL
REGIME (orange), REGIONAL NATIONAL (green), HYBRID REGIME (red), and HYBRID NATIONAL (purple). From top to bottom,
the first five panels indicate the CDFs for each of the five regimes: Uniform, Mediterranean, Oceanic, Nivo–Pluvial, and Nival. The last panel
corresponds to the distributions of the entire sample.

Table 5. Median KGE scores, within different regimes and overall, for the GR4J model compared to the LSTM models.

Model Data set Uniform Mediterranean Oceanic Nivo–Pluvial Nival All regimes

GR4J Training+validation 0.84 0.84 0.89 0.83 0.86 0.85
Test 0.77 0.75 0.83 0.82 0.75 0.80

SINGLE Training+validation 0.87 0.88 0.93 0.91 0.94 0.91
Test 0.71 0.74 0.84 0.84 0.82 0.80

REGIONAL REGIME Training+validation 0.82 0.85 0.92 0.90 0.90 0.89
Test 0.73 0.74 0.83 0.86 0.82 0.82

REGIONAL NATIONAL Training+validation 0.84 0.85 0.92 0.90 0.92 0.89
Test 0.74 0.77 0.84 0.83 0.82 0.81

HYBRID REGIME Training+validation 0.84 0.85 0.93 0.90 0.90 0.89
Test 0.74 0.80 0.83 0.86 0.83 0.82

HYBRID NATIONAL Training+validation 0.86 0.87 0.92 0.91 0.92 0.90
Test 0.78 0.80 0.85 0.87 0.84 0.83
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Figure 12. Variation in KGE scores with respect to the runoff ratio ( Q
Ptot

) and wetness index ( Ptot
PET ) for the GR4J and LSTM models. Scores

lower than 0.5 are shown in the same tone as the lower extreme of the colour bar. The inset plot within each panel shows the KGE scores of
the catchments located in each of the z1 (above the horizontal water limit line), z2 (between the horizontal and curved lines), and z3 (below
the curved line) zones. The (4) symbol and numbers in the inset plots represent the median KGE scores of the three zones. The KGE scores
correspond to the test data, with the exception of the first 2 years, which constitute the warm-up period in GR4J and for which there are no
outputs.

have similar scores, whereas the group-trained LSTMs out-
perform the GR4J model, although the performance dif-
ference is small. Group-trained LSTMs in previous studies
(Kratzert et al., 2019b; Lees et al., 2021) also had better
overall performance when compared with conceptual local
models, although the LSTM’s higher performance in these
studies was more pronounced. One possible explanation
could be the difference between GR4J and the conceptual
models used in the previous studies including SAC-SMA,
the Framework for Understanding Structural Errors (FUSE)
(Clark et al., 2008), ARNOVIC, TOPMODEL (Bracken and
Croke, 2007), and the Precipitation–Runoff Modelling Sys-

tem (PRMS) (Leavesley et al., 1983). These models are ex-
plicitly mass conservative – unlike GR4J, which is explic-
itly designed to capture water losses and gains through an
exchange parameter (Perrin et al., 2003). Thus, GR4J is
able to simulate runoff in catchments where the water bal-
ance is not closed. Figure 12 shows a diagnostic plot of the
runoff coefficient (= Q

Ptot
) versus wetness index WI (= Ptot

PET )
for the 361 catchments. The points – representing the catch-
ments – are shaded according to the KGE score. Of the
361 catchments plotted in each panel of Fig. 12, 9 catch-
ments fall in zone z1 (above the horizontal water limit line).
Given that Q> Ptot in this zone, there is a surplus in the

https://doi.org/10.5194/hess-26-5793-2022 Hydrol. Earth Syst. Sci., 26, 5793–5816, 2022



5810 R. Hashemi et al.: Using regime information to make more effective use of LSTM runoff models

catchment’s water balance; therefore, it does not close. The
z2 zone (located between the horizontal and curved lines)
contains 255 catchments in which the water balance is sat-
isfied. Finally, 97 catchments fall in the z3 zone (located
below the curved line) where the water balance does not
close, as Q

Ptot
< 1− 1

WI and, therefore, Q< Ptot−PET, in-
dicating a potential water deficit. The inset in each panel
shows the KGE scores of the catchments located in each
of the z1, z2, and z3 zones, along with their median val-
ues. In z1 and z3, where the water balance is not satisfied,
median scores in the GR4J model are the same or better
than z2, where there is water balance closure. This contrasts
with the corresponding finding of the previous study by Lees
et al. (2021). Interestingly, we can observe the same but
clearer pattern for the LSTMs: the median KGE score for
all LSTMs is lower in z2 than in z1 and z3. For catchments
in the z1 zone, the REGIME LSTMs clearly outperform NA-
TIONAL and SINGLE LSTMs. Within z3, the group-trained
models produce similar scores, which are better than the cor-
responding scores of the SINGLE model. Considering the
fact that the 136 catchments in this zone have either a surplus
(9 catchments) or deficit (97 catchments) in their water bal-
ance, we note that the median KGE scores for LSTM models
are better than those for GR4J: 0.81 (SIMPLE), 0.84 (RE-
GIONAL REGIME), 0.84 (HYBRID REGIME), 0.83 (RE-
GIONAL NATIONAL), and 0.84 (HYBRID NATIONAL)
versus 0.80 (GR4J). This agrees with the corresponding bet-
ter overall performance of the LSTMs over the four concep-
tual models in catchments without water closure in Lees et al.
(2021).

5 Discussion

5.1 Does the LSTM performance–lookback pattern
depend on the catchment regime?

The Uniform and Nival regimes can be distinguished as the
two regimes with the cleanest performance–lookback pat-
tern, where performance increases with increasing lookback
size. We can relate this to the long-term dynamics of their
dominant hydrologic processes: the recharge and discharge
of the aquifer and the thawing of accumulated snow.

Uniform catchments occur mainly in areas known to be
highly influenced by large aquifers, such as the aquifers of
the Seine or the Somme river basins in the north of France
(Fig. 3). Such aquifers can significantly modify the temporal
dynamics of the impacted catchments and widely hamper the
correlation of runoff with current hydroclimatic conditions
(Fig. 4). Runoff at the outlets of Uniform catchments can de-
pend on precipitations from several years earlier (de Lavenne
et al., 2021). In snow-dominated catchments, precipitation is
stored as snow, which is later released (as snowmelt) during
the late spring/early summer.

Figure 13. Five examples from the Mediterranean regime, each
with a different lookback sensitivity pattern.

In the Mediterranean regime, the performance–lookback
pattern is characterized by a narrow spread in the KGE scores
for different lookbacks, whereas a clear offset was expected
for small lookback values. In this regime, internal states (e.g.
soil moisture) do not depend on long antecedent periods, as
precipitation tends to generate flash floods and is particularly
intense in the autumn (Fig. 4). Although we see a mild ten-
dency for lookback values of 90 and 60 d for local and re-
gional LSTMs, at both scales, the KGE scores vary within
a narrow range regardless of lookback choice. One expla-
nation would be that various levels of lookback sensitivity
may exist for different catchments within this regimes due to
inter-regime differences in characteristics such as, soil type,
bedrock geology, drainage class, and so forth. For examples
of such variability, the reader is referred to Fig. 13. After
further investigation, we note that many of Mediterranean
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catchments are situated in karstic regions that might exert
an influence, albeit very locally, on their temporal dynamics.
We have not investigated this hypothesis further in this paper.
However, should this be the case, we can relate the unclear
pattern in this regime to the absence of one single dominant
process; instead, dominant processes are combined to differ-
ent degrees in the various catchments.

In the Oceanic and Nivo–Pluvial regimes, the
performance–lookback pattern displays little variation,
and there is far less sensitivity to lookback in the median
KGE scores. We attribute this to the intermediate-term
dynamics of the dominant hydrologic processes in these two
regimes.

5.2 How good is the LSTM trade-off between
generalization and precision when passing from
local to regional training?

To answer this question, we need to take SINGLE, RE-
GIONAL REGIME, and REGIONAL NATIONAL LSTMs
into account. In the passage from individual catchment (lo-
cal) training to group (regional) training, we increased the
capacity of the model (by adding 10 static attributes) and the
size of the data. As a result, LSTM performance improved
in almost all regimes and overall. That is, in passing both
from local to homogeneous regional training and from lo-
cal to heterogeneous regional training, the precision that the
LSTM gains is “almost” always greater than the generaliza-
tion it loses. For Uniform, Mediterranean, and (to a lesser
extent) Nivo–Pluvial catchments, the passage from local to
at least one of the regional LSTMs is a real gain. For the two
other regimes, the benefit is less obvious, and performance
improvements do not turn out to be significant.

One explanation for the small performance difference be-
tween local and regional (homogeneous or heterogeneous)
training is that the quantity of available data at the local level
is already sufficiently large with respect to the complexity
of catchment representations. Thus, the LSTM has already
“asymptoted” to an error very close to the minimum possible
error. At the regional level, although the amount of data has
increased greatly, the result of the gained precision, lost gen-
eralization, and varied complexity is not sufficiently positive
to push the final error to a point closer to the minimum possi-
ble error. Additionally, in local training, selection of the best
hyperparameter set is also local (catchment-wise), allowing
each catchment to take its own best set.

5.3 Is there a performance gain for regional LSTMs
when passing from hydrologically heterogeneous to
homogeneous training and vice versa?

To answer this question, we need to compare the RE-
GIONAL REGIME model against the REGIONAL NA-
TIONAL model. For almost all regimes as well as overall,
when hydrologically similar but fewer catchments are used,

median KGE scores are as good as when far more training
catchments from various regimes are used. This is interest-
ing for at least two reasons.

First, both models benefit from group training, and their
data are already several times greater than local-level data.
However, of the two, it is not the model with greater amount
of training data that performs best. For example, in the Ni-
val regime, the (heterogeneous) national model uses data
“13 times” larger than the data used by the (homogeneous)
regime model. Nevertheless, they have the same median
KGE score. The point to note here is that, passing from the
regime level to national level, we did not increase the data
from this particular regime (representation) 13 times. We did
add a considerable amount (13 times the regime size) of data
from some “dissimilar” representations. This is very differ-
ent from including a large quantity of data from the “similar”
representation, as occurs in the passage from local to regime
training. Therefore, for non-homogeneous training there is a
“varied”, but not necessarily an added, complexity with re-
spect to the representations.

Second, for both forms of training, the complexity (and
learning capacity) of the model is the same – exactly the same
model with identical static attributes is used for both forms of
training. In regime (homogeneous) training, each REGIME
LSTM learns a single representation, whereas the LSTM is
exposed to the representations from all regimes in national
(non-homogeneous) training.

What appears to be important for both models is whether
the varied complexity is shifted towards a simpler or a more
difficult learning representation. In the latter case, it is then
important whether there is sufficient data. The complexity
of representation(s) appears to vary from regime to regime.
Given our results, we can identify three levels:

– The first level is regimes with “self-sufficient” rep-
resentations where homogeneous training clearly out-
performs heterogeneous training. The only instance of
this level is found in the Nivo–Pluvial regime. In this
regime, the new complexity appears to be shifted to-
wards a “more complex” representation.

– The second level is regimes with “self-insufficient”
representations, which must have inputs from con-
trasting/dissimilar representations to be learned by the
LSTMs. The only instance of this level is the Mediter-
ranean regime.

– The third level is regimes with “neutral” representa-
tions for which the addition/removal of contrasting rep-
resentations has little or no effect on the complexity of
the task for LSTM. The Uniform, Oceanic, and Nival
regimes exhibit this level of representation. However,
if we look at the performance overall, it turns out that
almost the same level of data adequacy–representation
complexity is achieved in both regime and national
training forms.
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One other important point to note is that the non-
homogeneous (NATIONAL) LSTMs are “regime-informed”.
That is, although their data derive from all regimes, identi-
cal variables to those used to classify the regimes are then
input to the NATIONAL LSTMs as static attributes. There-
fore, the latter are not absolutely naive with respect to the
non-homogeneity of data. Given this regime-informed prop-
erty, we conjecture that, to some unknown but positive ex-
tent, NATIONAL LSTMs already have the capacity to ex-
tract the classification. A systematic investigation is required
to prove this. Should it indeed turn out to be the case, it would
have the great advantage of making NATIONAL LSTMs
classification-free; thus, there would be no need to encode
the classification thresholds and conditions separately. Nev-
ertheless, a national data set is still required to train them.

In our results, we did not observe the performance im-
provement that Fang et al. (2022) obtained when they passed
from LSTMs trained on single spatial ecoregions to the
LSTM trained on all ecoregions. There are a number of ex-
planations for this difference. The measures of similarity
used in the two studies are very different. We have used
purely hydrologic measures to classify catchments, whereas
Fang et al. used the “spatial proximity” measure of similarity
in their experiments. The climatic context as well as the data
sets and their size are also very different in the two studies.

5.4 What is the most effective way of using LSTMs to
predict runoff?

Our results suggest that the performance of an LSTM-based
runoff model is controlled by two factors: (1) its training ap-
proach and (2) its lookback–hidden unit size tuning. The re-
sults of this paper suggest that maximization of the number
of training catchments (national-scale training) in conjunc-
tion with local selection of the lookback–hidden unit size set
give the best results, both within the regimes and overall.
The interesting point to note is that it is only the “combi-
nation” of the two components of this setting that gives the
best results. Either of them separately does not appear to be
a major winning factor: local LSTMs with local lookback–
hidden unit size sets did not outperform regional LSTMs, and
NATIONAL LSTMs did not outperform REGIME LSTMs.
We should also remember that the NATIONAL LSTMs that
we tested are regime-informed. Thus, we might include this
property as the third component of this setting.

We have previously discussed the importance of lookback
as a hyperparameter for LSTM. Here, we note the importance
of tuning lookback and hidden unit size at a local scale so
that the LSTM can better capture the dynamics of each catch-
ment separately. The relationship between these two hyper-
parameters has been previously recognized by Kratzert et al.
(2019a).

6 Conclusions

In this study, we have used a sample of 361 gauged catch-
ments in the hydrologically diverse French context. Our goal
has been to exploit catchment hydrologic information when
using LSTM-based runoff models. Thus, we have proposed
a regime classification built on three hydrologic indices to
identify catchments with similar hydrologic behaviours (rep-
resentations). We have then trained the LSTM once locally –
on individual catchments – and once regionally – on a group
of catchments. We have performed the regional training at
two scales: (1) at the scale of each hydrologic regime (i.e.
only catchments from the same regime have been trained to-
gether) and (2) at the national scale (i.e. all 361 catchments
have been trained together). For all training passes, we have
performed 54 hyperparameter tunings on three hyperparam-
eters: the dropout rate (three variations) as well as the two
important LSTM hyperparameters, namely input sequence
length (six variations) and hidden unit size (three variations).
We have investigated the relationship between the size of an
LSTM’s input sequence and LSTM performance within dif-
ferent regimes. We have tested a new approach to the selec-
tion of the best hyperparameter set for regional LSTMs, and
we have examined how different training and hyperparame-
ter selection approaches change the performance of LSTM.
For training and evaluation of all local and regional LSTMs,
we have used three long completely independent data sets:
training (10≤ ≤ 40 years), validation (10 years), and test
(10 years). In both local and regional training, we have im-
plemented the early stopping algorithm with no predefined
number of training epochs, allowing the LSTM to continue
to learn for as long as its performance improves on the val-
idation data. The results of our paper suggest the following
main conclusions:

1. In the Uniform and Nival regimes, where there is a
clean long-term dominant process, we found a clear
performance–lookback pattern, with performance in-
creasing with increasing lookback up to an effective
value, which depended on the time scaling of the dom-
inant process. In the Mediterranean regime, character-
ized by its propensity to generate flash floods, we ex-
pected a similar distinct pattern but with a much shorter
effective lookback. What we found was a narrow spread
of performance scores for different lookbacks. We as-
sumed this to relate to the underlying different temporal
dynamics in this regime, given that several catchments
in this regime might be locally affected by the presence
of karstic geological features.

In the Oceanic and Nivo–Pluvial regimes, we found a
largely unchanging performance–lookback pattern, re-
flecting performance insensitivity to changes in look-
back values. This indicates that, in these regimes, ade-
quate performance can be achieved without using large
lookbacks.
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2. Whether an LSTM benefits from the passage from local
to regional or not depends on (a) the amount of data at
the local scale and (b) how it can negotiate the trade-off
between the varied complexity of the representation(s)
to be learned and the augmented data at the regional
scale. If, in the move from local to regional, there is also
an increase in model complexity produced, for example,
by the inclusion of multiple attributes in the regional
model, this trade-off could become harder because the
LSTM would need to further trade generalization for
precision (due to the more complex model). The pas-
sage from local to regime level produced a slightly bet-
ter performance improvement than did the passage from
local to national level.

3. At the local scale of a single catchment, if the repre-
sentation to be learned is “smooth” enough to elicit, or
if the catchment’s data are so abundant that there is no
difficulty in eliciting whatever complex representation
they contain, the LSTM will already be very close to
the minimum possible error. In such cases, there will be
“less room” to improve performance by passing to re-
gional LSTMs.

4. At the regional scale, from the regime (hydrologically
homogeneous) level to the national (hydrologically het-
erogeneous) level, the model capacity is the same. A
large quantity of dissimilar data are added, thereby vary-
ing the complexity of the new representations to be
learned. What appears to be important is whether the
varied complexity is shifted towards a simpler or a more
difficult learning representation. In the latter case, the
issue is then whether there is an adequate quantity of
data. Our results showed regime training to perform bet-
ter overall, but the difference was very slight, and we
can consider the two forms of regional training to be
equivalent. This means that, for both regime and na-
tional training levels, the quantity of data has been ad-
equate and appropriate with respect to the complexity
of the representation(s) at that level. Nevertheless, the
potential role of our national LSTM’s regime-informed
property in simplifying the task in the heterogeneous
space should not be excluded.

5. Given the almost equivalent performance of REGIME
and regime-informed NATIONAL LSTMs, in choosing
between them, we may take into consideration that the
former needs less data but requires an external clas-
sification – a precise encoding of our knowledge to
the right classification. The latter requires a national
database but calls for no classification (criterion).

6. To improve the performance of an LSTM model, two
elements were found to be important: the training ap-
proach and the lookback–hidden unit size tuning. The
best performance was shown by the HYBRID NA-
TIONAL LSTMs, mixing national training with local

tuning of the two lookback, hidden unit size hyperpa-
rameters, and providing regime information through at-
tributes.

Our findings allow us to identify a number of directions
for further research:

1. The conclusions drawn here have been premised on a
single condition concerning the similarity and size of
data. References to an “increase in data size” at the na-
tional training level designated an increase in the data
of dissimilar representations with the increase always
falling within the following bands: 361/101≈ 4 times
(Oceanic regime) to 361/27≈ 13 times (Nival regime).
We encourage further investigations where the degree of
dissimilarity and size of data are systematically altered
in a controlled environment.

2. A useful step for the improvement of homogeneous
training would be to refine the current classification to
maximize the number of self-sufficient regimes.

3. Our hydrologically heterogeneous LSTMs were
regime-informed. We encourage verification of the
conjecture that an LSTM is able to learn classification
if we provide it with regime information (through
classification attributes). A simple way to achieve this
is to include once and exclude once the classification
indices in and from static features of regional LSTMs
and compare the results. This paper does the former but
not the latter.

4. A future research direction could be to explore the
relationship between LSTM’s optimal lookback and
memory-related metrics, such as the catchment forget-
ting curve (de Lavenne et al., 2021), for each individual
catchment. This would allow us to predict the optimal
lookback for each catchment.

5. The methods presented in this paper are developed for
gauged catchments. A further step would be to extend
them to approaches applicable to ungauged catchments
– catchments not used in training.
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