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1.  Introduction
Climate feedbacks involving ozone have long been known to be important in large-scale climate change. Most 
notably, stratospheric ozone depletion has been linked to a strengthening of the Southern Annular Mode (SAM) 

Abstract  Using nine chemistry-climate and eight associated no-chemistry models, we investigate the 
persistence and timing of cold episodes occurring in the Arctic and Antarctic stratosphere during the period 
1980–2014. We find systematic differences in behavior between members of these model pairs. In a first 
group of chemistry models whose dynamical configurations mirror their no-chemistry counterparts, we find 
an increased persistence of such cold polar vortices, such that these cold episodes often start earlier and last 
longer, relative to the times of occurrence of the lowest temperatures. Also the date of occurrence of the lowest 
temperatures, both in the Arctic and the Antarctic, is often delayed by 1–3 weeks in chemistry models, versus 
their no-chemistry counterparts. This behavior exacerbates a widespread problem occurring in most or all 
models, a delayed occurrence, in the median, of the most anomalously cold day during such cold winters. In a 
second group of model pairs there are differences beyond just ozone chemistry. In particular, here the chemistry 
models feature more levels in the stratosphere, a raised model top, and differences in non-orographic gravity 
wave drag versus their no-chemistry counterparts. Such additional dynamical differences can completely mask 
the above influence of ozone chemistry. The results point toward a need to retune chemistry-climate models 
versus their no-chemistry counterparts.

Plain Language Summary  Ozone is a chemical constituent of the atmosphere acting as an 
absorber of both solar ultraviolet light and infrared radiation emitted by the Earth. It therefore needs to be 
considered in climate models. Explicit ozone chemistry is a computationally challenging addition to a climate 
model; hence in most cases ozone is simply prescribed. Especially during relatively cold stratospheric winter/
spring seasons, Antarctic and Arctic ozone depletion can be considerable. Such anomalous ozone loss is not 
reflected in the imposed ozone field, and hence differences in behavior are expected for such situations between 
chemistry- and no-chemistry models. Indeed for such cold winters/springs, we find an enhanced persistence of 
such cold spells in a set of chemistry-climate models, versus their no-chemistry counterparts; such enhanced 
persistence generally makes the chemistry model less realistic than its no-chemistry counterpart. However, if 
there are substantial further differences between the members of these model pairs, such as regarding their grid 
configuration or physical processes beyond chemistry, these can obscure the effect of ozone chemistry. We 
thus claim that adding stratospheric ozone chemistry to a climate model necessitates retuning to counteract a 
deterioration of the simulated stratospheric climate that can otherwise occur.
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Key Points:
•	 �Coupling in ozone chemistry causes 

an increase in persistence of low 
temperature anomalies over both poles

•	 �In the Antarctic, coupling in chemistry 
amplifies pre-existing stratospheric 
cold biases

•	 �These effects can be masked by other 
dynamical differences present in some 
models
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since roughly the 1970s (Son et al., 2010; Fogt & Marshall, 2020, and references therein). Ozone depletion of 
the Antarctic polar vortex in spring drives a cooling of this airmass, stabilizing the vortex, delaying the transition 
to summertime easterlies, and via deep coupling causing a strengthening of the Southern Annular Mode (SAM) 
during southern summer (Morgenstern, 2021; Thompson et al., 2011). In the Arctic, ozone depletion is usually 
less pronounced than in the Antarctic (although recent years have seen two Arctic “ozone holes”; Kuttippurath 
et al., 2021), residual ozone is larger, and consequently ozone depletion has not been implicated in a long-term 
strengthening of the Northern Annular Mode (NAM; Eyring et al., 2021). However, large ozone depletion does 
tend to be followed by anomalous tropospheric weather, that is, an anomalously strong NAM (Friedel et al., 2022; 
Ivy et  al., 2017). The pertinent observed long-term strengthening of the NAM however remains unexplained 
(Eyring et al., 2021).

Climate models regularly simulate a delayed breakdown of the polar vortex. This behavior leads to exaggerated 
stratospheric cooling following ozone depletion, driven by biases in the dynamical responses to ozone depletion 
(Lin et al., 2017). Also in some single-model studies, ozone chemistry has been found to impact timescales of 
variability of the polar vortices (Haase & Matthes, 2019; Oehrlein et al., 2020; Rieder et al., 2019). We will inves-
tigate whether these findings apply to present-generation climate models as a group as these models transition 
from almost all excluding to in the future increasingly including explicit ozone chemistry.

At the time of writing, the portal of the sixth Coupled Model Intercomparison Project (CMIP6) lists 120 models 
and model variants. Morgenstern (2021) uses 29 different models in his assessment of the SAM in CMIP6, essen-
tially sidelining many model variants to reduce redundancy. Of these 29 models, only six have explicit interactive 
ozone chemistry. A feature of CMIP6 is that pairs of models have participated with interactive ozone chemistry 
constituting the main or only point of difference between them. Simulations performed by these model pairs 
thus offer an opportunity to assess what the impact is of interactive chemistry versus the alternative approaches, 
that is, usually prescribing the pre-computed CMIP6 ozone climatology (Checa-Garcia et al., 2018). A compar-
ison of such model pairs will of course not only find impacts due to interactive ozone – or lack thereof – but 
would also be sensitive to any peculiarities of the precomputed ozone field itself, its implementation (Hardiman 
et al., 2019), and any differences versus the interactive ozone. For example, Morgenstern et al.  (2020, 2021) 
have shown that the recommended CMIP6 ozone climatology (Checa-Garcia et al., 2018) greatly underestimates 
Northern-Hemisphere mean ozone loss over the period 1979–2000. Also in a few cases there are other differences 
between these pairs beyond ozone chemistry which can complicate this comparison. In a recent study Lin and 
Ming (2021) find substantially enhanced cooling in a model variant with interactive ozone versus the same model 
using prescribed ozone, even though the simulated and prescribed ozone are quite similar. The authors explain 
this as the effect of co-variance of ozone and temperature anomalies that does not exist in the no-chemistry model.

In the below we will compare simulations of pairs of CMIP6 models (supplemented with three non-CMIP6 
models) with and without interactive ozone, and will assess differences between the two members of the pair 
regarding polar stratospheric dynamics and associated stratosphere-troposphere coupling. Where significant, 
such differences will be indicative of the role of climate-ozone coupling. We will assess both hemispheres, noting 
that Morgenstern  (2021) has already made the case, using CMIP6 simulations, for why interactive ozone is 
important for simulating climate trends of the Southern Hemisphere. Here we will complement his analysis with 
a focus on timescales of variability and on anomalously cold stratospheric winters when polar ozone chemistry 
is particularly impactful.

2.  Models and Observational Reference Data
Models used here are listed in Table 1.

We use all chemistry-climate models from CMIP6 for which daily and zonal-mean temperature and geopoten-
tial height (GPH) fields are available for “historical” simulations, and their no-chemistry CMIP6 equivalents 
where such models exist. Furthermore we use the SOCOL (Sukhodolov et  al.,  2021), ACCESS-CM2-Chem, 
and UKESM1-StratTrop models from the Chemistry-Climate Model Initiative Phase 2 (CCMI2) set of models 
(Plummer et al., 2021), and their no-chemistry CMIP6 equivalents. UKESM1-StratTrop is a further develop-
ment of the UKESM1-0-LL model (Sellar et  al.,  2019), based on the same no-chemistry background model 
(HadGEM3-GC31-LL; Williams et al., 2018; Kuhlbrodt et al., 2018) but with some updates to photolysis and 
other reaction rates which reduce a general overestimation of ozone in the extrapolar stratosphere. (Other CCMI2 
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models are not used here because they do not have no-chemistry equivalents in the CMIP6 group of models.) 
References in table 1 are for the chemistry models (Morgenstern, 2021). In the CCMI2 “REF-D1” simulations 
used here the three CCMI2 models are not coupled to an interactive ocean; rather they use prescribe observational 
(HadISST) sea-surface conditions (Rayner et al., 2003). The simulations are therefore more comparable to the 
Atmosphere Model Intercomparison Project (AMIP) simulations of CMIP6 (although these use a different obser-
vational climatology for sea surface conditions vs. the REF-D1 simulations; Taylor et al., 2015). ACCESS-CM2-
Chem and ACCESS-CM2 share an atmosphere model with UKESM1-0-LL and HadGEM3-GC31-LL but use a 
different land model. MRI-ESM2-0 does not have a no-chemistry equivalent amongst the CMIP6 models.

CESM2-FV2 and CESM2-WACCM-FV2 are identical to CESM2 and CESM2-WACCM but with the atmos-
pheric resolution degraded from about ∼1° to ∼2°. Apart from chemistry, the leading differences between CESM2 
and CESM2-WACCM (at both resolutions) are the higher top of the latter, raised from 2.26 hPa in CESM2 to 
4.5 ⋅ 10 −6 hPa in CESM2-WACCM, with an associated increase in the number of levels from 32 to 70. With the 
higher top also comes some additional middle- and upper-atmosphere physics absent in CESM2 (Danabasoglu 
et al., 2020). Importantly, the non-orogrophic gravity wave (NGWD) parameterization after Richter et al. (2010) 
used by CESM2-WACCM is absent in CESM2 (Gettelman et al., 2019). Between GFDL-CM4 and GFDL-ESM4, 
similarly the model top has been raised from 1 hPa to 0.01 hPa, the number of levels has been increased from 
33 to 49, and the tunings of the NGWD scheme differ between the two model versions. These and several other 
differences between these models are listed in Table 1 of Dunne et al. (2020). The other models not discussed in 
more detail (the CNRM models, UKESM1–both versions/HadGEM3-GC31-LL, the ACCESS-CM2 versions, 
SOCOL/MPI-ESM1-2-LR) share the same code, dynamics settings, and grids between the two model versions, 
with differences apart from atmospheric chemistry restricted to “Earth System” components such as aerosols and 
ocean biogeochemistry considered not relevant for the purposes of this paper.

The no-chemistry model CNRM-CM6-1 uses a simplified ozone scheme (Voldoire et al., 2019, and references 
therein). In this regard the model differs from the other no-chemistry models considered here. It is therefore 
included in Figures 1–3.

Previous evaluations have shown that the UKESM1-0-LL and CNRM-ESM2-1 models well simulate 1979–2000 
Arctic ozone trends, GFDL-ESM4, CESM2-WACCM, and MRI-ESM2-0 underestimate Arctic ozone depletion 
(Morgenstern et al., 2020), and SOCOL quite faithfully reproduces extrapolar ozone (Sukhodolov et al., 2021). 
The ozone field used to drive the no-chemistry models HadGEM3-GC31-LL, MPI-ESM1-2-LR, GFDL-CM4, 

CCMs No-chemistry models Differences References

CESM2-WACCM 3 CESM2 11 higher top, NGWD G19, DA20

CESM2-WACCM-FV2 3 CESM2-FV2 3 higher top, NGWD G19, DA20

CNRM-ESM2-1 9 CNRM-CM6-1 28 same settings S19, V19, M20

GFDL-ESM4 3 GFDL-CM4 1 higher top, NGWD D20, H19

MRI-ESM2-0 5 Y19

UKESM1-0-LL 13 HadGEM3-GC31-LL 3 same settings SE19, K18, W18

UKESM1-StratTrop 3 HadGEM3-GC31-LL 5 same settings SE19, K18, W18

ACCESS-CM2-Chem 3 ACCESS-CM2 3 same settings B20, BO20

SOCOL4 3 MPI-ESM1-2-LR 3 same settings S21, M19

Note. The second and fourth columns denote the number of “historical,” REF-D1, or AMIP simulations used in the 
analysis. For the purposes of this paper, models listed in italics are atmosphere-only; we use their CCMI2 REF-D1 and 
CMIP6 AMIP simulations, respectively. The “differences” pertain only to the model dynamics shared between the model 
pairs. Other differences exist because of the more comprehensive functionalities of the Earth System models versus their 
“physics only” counterparts. References: B20 = Bi et al. (2020), BO20 = Bodman et al. (2020), D20 = Dunne et al. (2020), 
DA20 = Danabasoglu et al. (2020), G19 = Gettelman et al. (2019), H19 = Held et al. (2019), K18 = Kuhlbrodt et al. (2018), 
M19 = Mauritsen et al. (2019), M20 = Michou et al. (2020), S19 = Séférian et al. (2019), S21 = Sukhodolov et al. (2021), 
SE19 = Sellar et al. (2019), V19 = Voldoire et al. (2019), W18 = Williams et al. (2018), Y19 = Yukimoto, Kawai, et al. (2019).

Table 1 
Sixth Coupled Model Intercomparison Project/Chemistry-Climate Model Initiative Phase 2 Chemistry and Corresponding 
CMIP6 No-Chemistry Models Considered Here
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Figure 1.  1979–2014 monthly mean TCO (DU) averaged over the Arctic polar cap (north of 75°N), expressed as functions 
of the year and month of the year and smoothed with an 11-year boxcar filter, for the MSR-2 observational reference (van der 
A et al., 2015a), the CMIP6 ozone forcing dataset (Checa-Garcia et al., 2018), and the single-model ensemble-means of the 
“historical” and REF-D1 simulations, respectively, by the nine chemistry-climate models and CNRM-CM6-1.
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CESM1, CESM2-FV2, and ACCESS-CM2 however much underestimates these Northern-Hemisphere and 
especially Arctic ozone trends (Morgenstern et  al.,  2020), with hemispheric- and annual-mean TCO trends 
for 1979–2000 in the CMIP6 climatology (Checa-Garcia et al., 2018) only reaching approximately a third of 
observed trends (Morgenstern, 2021). In the Antarctic, UKESM1-0-LL and MRI-ESM2-0 under- and overesti-
mate, respectively, Antarctic ozone during spring, whereas the other CMIP6 chemistry-climate models simulate 
more realistic Antarctic ozone depletion (Morgenstern et al., 2020).

The results will be compared to version 2 of the National Center for Environmental Prediction (NCEP)/
Department of Energy (DOE)/NCEP-DOE2 reanalysis (Kanamitsu et al., 2002), the fifth European Centre for 
Medium-Range Weather Forecasts Reanalysis (ERA5, Hersbach et al., 2020), and the Multi-Sensor Reanalysis 2 
(MSR-2) total-column ozone climatology (van der A et al., 2015a).

3.  Method
In a seminal paper Baldwin and Dunkerton  (2001) showed how stratospheric circulation anomalies in the 
Arctic propagate to low altitudes and affect tropospheric circulation for the approximately two months that such 
features may last. For example, impacts include anomalous states of the NAM, the positions of the northern 
storm tracks, and mid-latitude storms. Equivalent influences of the stratosphere on the weather of the Southern 
Hemisphere have also been demonstrated (Thompson et al., 2005). Baldwin and Dunkerton (2001)'s method also 
lends itself to a comparison of chemistry versus equivalent no-chemistry models presented here. While Baldwin 
and Dunkerton (2001) present composites of stratospheric NAM indices, here we modify their method to using 
polar-cap mean stratospheric temperature as our key metric. The reason for this is that (a) this diagnostic is avail-
able for both chemistry- and no-chemistry models, unlike e. g. ozone, and (b) wintertime low temperatures are 
associated with heterogeneous chlorine activation on polar stratospheric clouds followed by ozone depletion in 
models with interactive chemistry. Much of the rest of our analysis is inspired by Baldwin and Dunkerton (2001), 
namely:

1.	 �We use all available “historical”, REF-D1, or AMIP daily and zonal-mean temperature and GPH fields on 
pressure levels for 1980–2014, for the chemistry and no-chemistry models listed in table 1. Ensemble sizes for 
these vary greatly between 1 and 28.

2.	 �For each individual model ensemble of simulations separately, we calculate the polar-cap (75°N–90°N and 
90°S–75°S, respectively) average temperature and GPH fields.

3.	 �We smoothen both fields using 15-day boxcar filters, to reduce the impact of outliers, and subtract the mean 
annual cycles of polar-cap temperature and GPH, creating for each model ensemble temperature and GPH 
polar-cap mean anomaly timeseries.

Figure 2.  Polar-cap (polewards of 75°N/S) mean, ensemble-average TCO (DU) for the Antarctic and Arctic in October and 
March, respectively, smoothed with an 11-year boxcar filter. Thick black: Observations (van der A et al., 2015a). Dark blue: 
CMIP6 climatology (Checa-Garcia et al., 2018). Other colors: models. Solid: CMIP6 “historical” ensemble means. Dashed: 
CCMI2 REF-D1 atmosphere-only ensemble means. Red dash-dot-dot-dot: CNRM-CM6-1.
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Figure 3.  Same as Figure 1, but for the Antarctic polar cap (south of 75°S). The thick contour marks TCO = 220 DU, the 
traditional threshold defining the ozone hole.
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4.	 �We determine, for every year starting on 1 September (for the Arctic) and 1 May (for the Antarctic) and for 
every ensemble member, the lowest value at 70 hPa of the polar-cap average temperature anomaly, and the day 
of its occurrence. This temperature is then used to rank the years by stratospheric temperature.

5.	 �Using this ranking, we select only the 20% coldest winters. Defining time 0 to be the day of the occurrence of 
the largest cold anomaly in these years, we average the temperature during these cold seasons from 130 days 
before to 100 days after the coldest day. The number of winter/spring seasons entering these averages is thus 
0.2 × 34 × n, rounded to the nearest integer, where n is the ensemble size of every individual model, and 34 
complete winters occur in the study period 1980–2014 (Table 1). For the reanalyses, this amounts to 7 winter/
spring seasons.

4.  Results
4.1.  General Model Performance for Monthly Mean Ozone and Temperature

Arctic total-column ozone, in the decades before ∼1995, experienced a decline of nearly 100 DU in March 
since 1979 but recovered slightly thereafter, see the MSR-2 panel of Figures 1 and 2. The relatively fast partial 
“recovery” between 1995 and 2005 indicates that a portion of the earlier loss might reflect internal variability 
(Figure 4–4 of WMO, 2018). We estimate that sustained March Arctic losses in the MSR-2 climatology are 
roughly 50 to 70 DU. Losses in other seasons were much smaller. The loss was mainly driven by increasing halo-
gens in a well-understood mechanism involving chlorine activation on polar stratospheric clouds (WMO, 2018); 
hence the much smaller trends outside the spring season. In the nine chemistry-climate models and the CMIP6 
climatology (itself derived from model results, Checa-Garcia et al., 2018), this springtime loss is captured but 
with varying degrees of realism. March trends come close to MSR-2 in UKESM1-0-LL, UKESM1-StratTrop, 
and ACCESS-CM2-Chem, but in these models, unrealistically, the ozone loss is bigger in April than in March. 
SOCOL and CNRM-ESM2-1 also both simulate substantial though underestimated ozone loss. CESM2-WACCM, 
CESM2-WACCM-FV2, GFDL-ESM4, and MRI-ESM2-0 all substantially underestimate the amount of ozone 
loss, as does the CMIP6 ozone climatology used to force no-chemistry CMIP6 models. A failure to simulate a 
realistic impact of halogen increases on Arctic ozone can indicate that chlorine activation in these models is not 
realistic, for example, because of a stratospheric warm bias reducing the occurrence of polar stratospheric clouds 
(PSCs), or for other reasons such as an incorrect representation of the physics of PSC formation or of hetero-
geneous chemistry leading to chlorine activation. CNRM-CM6-1, with its simplified ozone scheme, underesti-
mates trends in TCO during spring; the simulated trends are also substantially smaller than those simulated by 
CNRM-ESM2-1.

Similarly, the Antarctic has experienced substantial ozone loss in spring, manifesting as the Antarctic “ozone 
hole” (Figures 2 and 3). The models capture this, but again with various biases. Several models have severe ozone 
loss persisting for too long into summer (the UKESM1 models, ACCESS-CM2-Chem, the CESM2-WACCM 
versions, and CNRM-ESM2-1). The MRI-ESM2-0 model substantially underestimates ozone loss, whereas the 
SOCOL model strongly overestimates it, partly due to an early onset of the ozone hole, with lowest polar ozone 
occurring in September not October. The GFDL-ESM4 model overall has the most realistic timing and small 
biases of Antarctic ozone–we note however the much underestimated ozone loss in the Arctic in this model. 
CNRM-CM6-1 slightly underestimates ozone over the Antarctic during the ozone hole season, but less so than 
CNRM-ESM2-1, and simulates quite realistic trends.

Next we assess the simulation of temperature in these models.

An inspection of the mean 1980–2014 bias and standard deviation for the 70 hPa polar-cap mean temperature 
(Figure 4) indicates that for both polar regions, there is excellent agreement between the NCEP-DOE2 (Kanamitsu 
et al., 2002) and the newer ERA5 reanalyses (Hersbach et al., 2020), with essentially identical standard deviations 
and absolute biases between the two reanalyses of mostly less than 1 K, much smaller than typical model biases. 
Over both poles, a majority of models (chemistry and no-chemistry alike) exhibits cold biases during spring. 
In the Antarctic, the cold bias reaches −15 to −20K in November in ACCESS-CM2-Chem, CNRM-ESM2-1, 
UKESM1-0-LL, and UKESM1-StratTrop. These biases are all worsened versus their no-chemistry counter-
parts. The cold biases are reflected in an increase in stratospheric variability during December and January (as 
evidenced by the anomalously large standard deviation of temperature for these models), indicating an exten-
sion of the lifetime of the Antarctic polar vortex versus their no-chemistry counterparts. The CESM2-WACCM 
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Figure 4.
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models exhibit largely unchanged biases and variability in the Antarctic versus the no-chemistry equivalents, but 
a decreased cold bias in the Arctic in the chemistry versions. The GFDL-ESM4 model exhibits only a small warm 
bias in the Antarctic, which is consistent with its good simulation of Antarctic ozone depletion noted above, but a 
substantial warm bias (∼4K) in the Arctic in spring. Here, even this seemingly moderate warm bias can substan-
tially suppress PSC formation, explaining the weak Arctic ozone depletion simulated by this model. SOCOL 
simulates relatively small biases in both polar regions but exaggerated variability in the Antarctic in September 
and October, reflecting the early onset of ozone depletion in this model noted above.

Comparing the two CNRM models, in the Antarctic CNRM-ESM2-1 simulates an increased cold bias and large 
variability extending into summer. This is consistent with its larger ozone depletion and a longer lifetime of the 
ozone hole found above, compared to CNRM-CM6-1 which has a smaller bias and a better representation of 
Antarctic stratospheric temperature variability.

4.2.  Temperature Variablity and Cold Episodes in Chemistry- and No-Chemistry Models

Figures 5 and 6 confirm that practically all variability in polar-cap 70 hPa temperature occurs during the cold 
season–during summer this variability is no more than a few K but in the daily polar-cap average can reach and 
exceed ±20 K during winter and spring. For both polar regions there are asymmetries between cold and warm 
winters: For warm winters, the anomalies occur nearly symmetrically around the middle of the cold season (in 
the Arctic, approximately day 30, i.e., 31 January; in the Antarctic, approximately day −40, i.e., 22 November), 
whereas during extremely cold winters the temperature anomaly builds until the wintertime circulation collapses 
and temperatures rapidly return to the average, with the largest cold anomalies occurring in spring or even summer. 
Also models with larger ensembles (e.g., CNRM-CM6-1, MPI-ESM1-2-LR) show that for warm anomalies there 
is no sharp upper bound for the largest warm anomalies that can occur, whereas the cold anomalies, until well 
into spring, are sharply bounded by a lower envelope function which decreases during the course of the winter. 
This is more evident for the Antarctic (Figure 6) than the Arctic (Figure 5). During spring some rare extremely 
cold events occur, that is, long-lasting cold polar vortices, for example, in the UKESM1, CNRM-ESM2-1, and 
ACCESS-CM2-Chem models. This asymmetric nature of variability reflects coupling with mid-latitudes, or 
lack thereof. During warm winters, the Arctic and Antarctic receive their heat from mid-latitudes in dynamical 
disturbances. This mechanism is different from the radiative cooling that dominates during cold, dynamically 
relatively unperturbed winter seasons and causes temperatures to gradually drop throughout the season, until the 
final warming marks the end of the polar vortex.

A remarkable warm outlier is seen in the NCEP-DOE2 and ERA5 reanalyses around day −100 (i.e., 23 Septem-
ber; Figure 6). This is the vortex breakup and major stratospheric warming of 2002 which at the time was consid-
ered very unusual as it had never before been seen in the observational record (Newman & Nash, 2003). Both 
chemistry (UKESM1, SOCOL) and no-chemistry (CESM2) models exhibit similar extremely warm episodes 
around this time of the year, meaning that some CMIP6/CCMI2 models can qualitatively simulate such events 
(Jucker et al., 2021).

CNRM-CM6-1 has a tendency, perhaps more so than the other no-chemistry models, to simulate long-lasting 
extremely cold polar vortices. This may be the effect of having an interactive albeit simplified ozone scheme, 
which sets this model apart from the other no-chemistry models.

Restricting our attention to the 20% of years with the lowest 15-day mean temperature anomalies in the Arctic and 
Antarctic at 70 hPa, Figure 7 indicates that the median of the date of occurrence of the most anomalously cold 
day, in the reanalyses, is around day 51 or 52 (21 or 22 February) in the Arctic. In the Antarctic, the two reanaly-
ses exhibit a somewhat larger disagreement regarding the timing of the coldest day, with ERA5 indicating a later 
occurrence (day −33, i.e., 29 November) than NCEP-DOE2 (day −40, i.e., 22 November). It is noteworthy that 
all 17 models considered here simulate a later median date for the thus defined coldest day in the Arctic at 70 hPa 

Figure 4.  (left) Monthly mean 70 hPa bias of polar-cap (poleward of 75°N/S) mean temperature (K) relative to National Center for Environmental Prediction (NCEP)-
DOE2 for the period 1980–2014. (right) Standard deviation of monthly mean 70 hPa polar-cap mean temperature (K). (first row) Chemistry-climate models, Antarctic 
polar cap mean. (second row) Same for the associated no-chemistry models. (third row) Chemistry-climate models, Arctic polar cap mean. (fourth row) Same for the 
associated no-chemistry models. Solid lines represent Sixth Coupled Model Intercomparison Project (CMIP6) “historical” ensembles, dashed lines are CMIP6 AMIP 
(ACCESS-CM2, HadGEM3-GC31-LL, MPI-ESM1-2-LR) and CCMI2 REF-D1 (ACCESS-CM2-Chem, UKESM1-StratTrop, SOCOL) ensembles. Respectively. Black 
“*” symbols denote the ERA5 reanalysis.
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Figure 5.  Probability density plot (K −1) of the Arctic-mean (75°N–90°N) temperature anomaly relative to the 1980–2014 
mean seasonal cycle at 70 hPa, in the NCEP-DOE2 and ERA5 reanalyses and the climate models as a function of the day 
of the year, for September 1980 to August 2014. Models with larger ensembles allow for better sampling of low-probability 
temperature anomalies (colored in blue and violet); these colors are therefore absent for small-ensemble models and the 
reanalyses.
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Figure 6.  Same as Figure 5, but for Antarctic 70 hPa polar-cap mean temperatures.
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by 10 days or more. Also in the Antarctic most models simulate a delay in the coldest day relative to both reanal-
yses. Both findings may illustrate that climate models struggle with correctly capturing stratospheric dynamics 
in the polar regions, although it is impossible to be sure given that only the seven coldest winters are considered 
in the reanalyses. In the Arctic, all models have some degree of overlap of the 16 to 84-percentile interval for this 
coldest date with the reanalyses, whereas in the Antarctic, where the reanalyses show relatively little variation 
in the date of the coldest day, the models simulating the most severe ozone depletion (ACCESS-CM2-Chem, 
UKESM1, and CNRM-ESM2-1) all have 16 to 84-percentile ranges for this diagnostic that do not overlap with 
those of the reanalyses.

For these four model pairs (ACCESS, HadGEM3/UKESM1–both versions, CNRM) for the Antarctic the 
chemistry variants simulate a delay in the median occurrence of the coldest day by around 20 days versus their 
no-chemistry counterparts. With the exception of the ACCESS pair, this also holds in the Arctic but with smaller 
shifts. However, for other model pairs this is not the case: The MPI-ESM1-2-LR/SOCOL pair exhibits quite 
similar behavior for both polar regions, and the GFDL pair simulates shifts in the coldest day of different signs in 
the two polar regions. The GFDL model pair is the only example where for both polar regions these shifts are in 
the right direction and the observed dates of the coldest day are within the 16 to 84 percentile ranges of the dates 
of the modeled coldest days. For the Antarctic, where the timing of the coldest day in GFDL-ESM4 is excellent, 
this coincides with the good simulation of Antarctic ozone depletion shown in Figure 3. The CESM2 pairs, in 
most cases, produce an earlier coldest day if interactive chemistry is used. We will discuss these findings more 
in Section 5.

4.3.  Composite Analysis of Cold Stratospheric Winters

Next we produce composites for temperature and GPH for cold stratospheric winter/spring seasons, similar to 
Baldwin and Dunkerton (2001)'s method. We express these fields relative to the time of occurrence of the larg-
est absolute temperature anomaly (deviation from the mean) at 70  hPa. Baldwin and Dunkerton  (2001) and 
Thompson et al. (2005) had used NAM and SAM indices instead, respectively.

Figures 8–10 show that the 20% coldest winters, at the time of the lowest temperature, in the reanalyses are gener-
ally between 10 and 15 K colder at 70 hPa than the average winter, in agreement with Figures 5 and 6. ERA5 
suggest cold anomalies that are systematically colder than NCEP-DOE2 by a few K. Substantial cold anomalies 
often start at least two months before the largest temperature anomalies occur, and last typically 30–40 days 

Figure 7.  Date of occurrence of lowest temperatures in years with the minimum of the 15 day filtered 70 hPa polar-mean 
temperature anomaly in the lowest 20%. Left: Antarctica (75–90°S). Right: Arctic (75–90°N). Vertical bars: Median 
day. Thick lines: 16 to 84-percentile range. Thin lines: 2.5 to 97.5-percentile range. Dots: Outliers outside the 2.5 to 97.5 
percentiles. Note that the NCEP-DOE2 and fifth European Centre for Medium-Range Weather Forecasts Reanalysis (ERA5) 
reanalyses and the GFDL-CM4 simulations only have 7 such cold winters each in this 20% category (out of a total of 34, for 
the period of September 1980–August 2014). The long dashed vertical lines mark the medians of the coldest days in the two 
reanalyses. Chemistry models are represented in red, no-chemistry models in blue. “(h)” stands for the “historical” ensemble 
of HadGEM3-GC31-LL, ‘(a)’ for AMIP.
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Figure 8.  Antarctic polar cap (90°S–75°S) mean temperature (left; in K) and GPH (right; in km) anomalies (relative to their 1980–2014 mean seasonal cycles) for the 
20% coldest winters in the chemistry-climate and no-chemistry models. Time is relative to the day of occurrence of the coldest day at 70 hPa, marked by a small “+” 
symbol. The pressure where the temperature anomaly minimizes, where this minimum is less than −3 K, is marked by bold lines. White pixels indicate that fewer than 
two thirds of the data composited here are of the same sign, that is, these composites are not significantly different from 0.
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Figure 9.  Same a Figure 8, but for the Arctic polar cap (75°N–90°N).
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beyond this date. They are accompanied by corresponding negative GPH anomalies that sometimes extend into 
the troposphere, in agreement with Baldwin and Dunkerton (2001)'s and Thompson et al. (2005)'s findings. In 
the Antarctic, the cold anomalies start earlier in ERA5 than NCEP-DOE2, mostly because unlike NCEP-DOE2, 
ERA5 covers the upper stratosphere where these features originate before descending through the stratosphere 
over the coarse of the season. For the Arctic, the reanalyses agree on the start and end dates of the cold anomalies, 
when the cold anomaly reduces to less than −3 K, about 28 days after the coldest day. For the Antarctic, ERA5 
has the cold anomalies persist for about 10 days longer into spring than NCEP-DOE2.

For both polar regions, qualitative agreement between the CMIP6 models is generally remarkably good. In the 
Antarctic, in several model pairs temperature and GPH anomalies are systematically more persistent, usually 
both at the start and end, and also of larger-amplitude in the chemistry-climate models (UKESM1-0-LL, 
UKESM1-StratTrop, CNRM-ESM2-1, SOCOL, ACCESS-CM2-Chem) than in the corresponding no-chemistry 
models (HadGEM3-GC31-LL, CNRM-CM6-1, MPI-ESM1-2-LR, ACCESS-CM2, Figure  10). In all cases, 
the chemistry models produce more long-lasting cold anomalies than their corresponding no-chemistry 
models, with extensions ranging from a marginal one day for SOCOL/MPI-ESM1-2-LR to 40  days for 
UKES1-0-LL/HadGEM3-GC31-LL. However most models (both chemistry and no-chemistry, except for 
CESM2-FV2, GFDL-CM4, and MRI-ESM2-0) have the cold anomalies lasting longer than day 40, the date of 
disappearance in ERA5. The cold anomalies lasting well into spring are reflected in GPH anomalies also lasting 
longer and spawning low-GPH anomalies in the troposphere (Figure 8), signaling impacts of this behavior on 
simulated tropospheric weather. With the exceptions of CESM2/CESM-WACCM and the GFDL models, the 
chemistry models generally produce bigger-amplitude cold anomalies and larger negative temperature biases 
versus the reanalyses than their corresponding no-chemistry models with cold anomalies typically about 3–5K 
colder in chemistry versus no-chemistry models (Figure 10). We note that ERA5 places the genesis of the cold 
anomalies at 1 hPa about 110 to 100 days before the occurrence of the maximum anomaly at 70 hPa (Figure 8). 
In reality, these anomalies might even originate in the mesosphere; 1 hPa is only the highest pressure level which 
the ERA5 and CMIP6 fields are interpolated to. None of the models has the cold anomalies starting this high 

Figure 10.  Temperature of the composite cold anomalies, evaluated along the bold lines in Figures 8 and 9. Black: NCEP-DOE2. Red: ERA5. Orange: no-chemistry 
models. Green: chemistry models. Left: Antarctica. Right: Arctic.
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up, meaning if these models were used in seasonal prediction, there would be concern that the models do not 
correctly represent the upper-level genesis of such anomalies, hence missing out on some potential predictability.

For the Arctic, where the influence of ozone depletion is smaller than in the Antarctic, there is also a tendency 
for some chemistry models to simulate a delayed end of the cold anomalies relative to the reanalyses and their 
corresponding no-chemistry model (ACCESS-CM2-Chem, UKESM1-StratTrop, CNRM-ESM2-1, SOCOL; 
Figure 10). However, the picture is more complex than in the Antarctic. There are counterexamples: For example, 
CESM2 produces longer-duration cold spells than CESM2-WACCM, GFDL-ESM4 simulates shorter-duration, 
more warm-biased, less realistic cold anomalies than GFDL-CM4, and in no case do the chemistry models simu-
late consistently colder cold anomalies (as measured by the minimum of the temperature anomaly) than their 
no-chemistry counterparts. Coinciding with the underestimated amplitudes of cold anomalies, CESM2-WACCM 
and GFDL-ESM4 are characterized by much underestimated Arctic ozone loss (Figure 1) and in the case of 
GFDL-ESM4, underestimated variability of polar-cap mean temperature (Figure  5. In all cases, geopotential 
height anomalies sometimes reaching into the troposphere is in agreement with Baldwin and Dunkerton (2001).

The CNRM model pair exhibits remarkably similar behavior in the Arctic. Both model configurations have cold 
anomalies lasting longer into spring than in the reanalyses by about the same amount of time. Also the depths of 
the cold anomalies are quite similar (Figure 10). The fact that these two models behave so similarly may be related 
to similarities in ozone between both configurations. As noted above, CNRM-CM6-1 uses a simplified ozone 
scheme, that is, like in the chemistry models, in this model ozone is a predicted variable coupled to dynamics 
(Voldoire et al., 2019).

Comparing now the climate models with the NCEP-DOE2 and ERA5 reanalyses (Hersbach et  al.,  2020; 
Kanamitsu et al., 2002), in the cases where the chemistry models exhibit increased persistence, the no-chemistry 
counterparts are often in better agreement with observations than the chemistry models, both in the Arctic and the 
Antarctic. This means the persistence of cold anomalies long into spring occurring in most CCMs is not reflected 
in the reanalyses.

5.  Discussion
We have analyzed the dynamics of stratospheric cold winters in 13 CMIP6 and three CCMI2 climate and 
chemistry-climate models and compared them to reanalyses. The behavior of the chemistry models depends 
crucially on whether substantial additional differences, extending beyond interactive ozone chemistry, exist 
regarding their dynamics configurations between the chemistry models and their no-chemistry equivalents. In three 
model pairs considered here, in particular there are differences in the model top, the number of levels representing 
the stratosphere, and NGWD. In four cases where the dynamics configurations are essentially unchanged versus 
the no-chemistry configuration (ACCESS-CM2-Chem, CNRM-ESM2-1, UKESM1-0-LL/UKESM1-StratTrop), 
coupling in chemistry results in a delay in the occurrence of the coldest day the Antarctic lower stratosphere. 
In the Arctic, two models with large Arctic ozone depletion (UKESM1-0-LL, CNRM-ESM2-1) also exhibit 
a delayed occurrence of the coldest day relative to their no-chemistry configurations, but this behavior is not 
consistent across the group of models. The SOCOL model does not exhibit any substantial shift in the timing of 
the coldest day versus its reference model MPI-ESM1-2-LR for both polar regions; SOCOL is also characterized 
by a generally good representation of ozone trends (Sukhodolov et al., 2021), albeit with an early onset of ozone 
loss in the Antarctic, and a good representation of Arctic temperature and variability (Figure 4). Several of these 
chemistry models (ACCESS-CM2-Chem, UKESM1-0-LL, UKESM1-StratTrop) exhibit timescales of persis-
tence of stratospheric cold anomalies over both poles that are longer than in their no-chemistry counterparts, 
reflecting extensions of the lifetimes of both polar vortices. Possibly in the SOCOL model, this increased persis-
tence is counteracted by the early onset of ozone depletion in the Antarctic, resulting in no shift of the occurrence 
of the coldest day relative to the background model, MPI-ESM1-2-LR, over the South Pole. The MRI-ESM2-0 
model also behaves similarly to these chemistry models in that over the Arctic it exhibits too large a persistence 
of cold anomalies compared to the reanalyzes. Over the Antarctic its climatology compares relatively well to the 
reanalyzes.

The behavior of this group of models contrasts with the GFDL and two CESM2 pairs of models. In these pairs, 
the chemistry models differ more substantially in their dynamics configurations from their no-chemistry counter-
parts, namely the chemistry versions operate on a vertically extended grid with more levels in the stratosphere, 
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compared to their no-chemistry counterparts. CESM2-WACCM and CESM-WACCM-FV2 include an additional 
NGWD parameterization (Gettelman et al., 2019) completely absent in CESM2 and CESM2-FV2. GFDL-ESM4 
also differs in terms of NGWD and a few other aspects (Dunne et al., 2020). NGWD drives the Brewer-Dobson 
Circulation and influences the stability of the polar vortices (for a recent review see Eichinger et al., 2020), so may 
well explain the differences in behavior between the CCMs and their no-chemistry equivalents. GFDL-ESM4 is 
the only chemistry model studied here with a substantial warm bias in the Arctic stratosphere in winter. Together 
with the much underestimated variability (Figure 4) this indicates this model does not realistically simulate Arctic 
ozone depletion (Morgenstern et al., 2020), but ranks amongst the top-performing models for Antarctic ozone 
depletion. CESM2-WACCM, like most other models studied here, has a cold bias in the Arctic winter strato-
sphere. Together also with the underestimated variability this suggests that the model simulates too many “cold” 
polar vortices with too regular ozone depletion. Both in the CESM2 and the GFDL models, however, the timings 
of the coldest days, for both polar regions, are either unchanged or more realistic in the chemistry models. The 
timescales of persistence are not appreciably different between the chemistry and no-chemistry configurations 
of these models.

The extended lifetimes of the polar vortices occurring in some chemistry-climate models compare worse to reanal-
yses than the shorter lifetimes of the polar vortices characterizing the corresponding no-chemistry models. This 
impact of interactive chemistry is consistent with earlier studies based on fewer models (Haase & Matthes, 2019; 
Lin & Ming, 2021; Oehrlein et al., 2020). An exception to this is CNRM-CM6-1 which uses a simplified ozone 
scheme. The timing of the end of cold spells in this model, about 50 days after the most anomalously cold day 
at 70 hPa (Figure 2), is almost the same as for CNRM-ESM2-1 which uses fully interactive chemistry. In both 
models, the cold spells last longer into spring than in the reanalyses.

The delayed occurrence of the most anomalously cold day, combined with the extended duration of the strato-
spheric cold spells in several chemistry models, suggests that also the final warming dates and the dates of wind 
reversal from westerlies to easterlies, both indicating the switching from winter to summer in the stratosphere, 
are delayed in these models.

In our analysis we have used “historical” coupled and atmosphere-only, REF-D1 and AMIP, simulations. The one 
model appearing both coupled and uncoupled in our analysis (HadGEM3-GC31-LL) does not exhibit any prop-
erties (within the limits of what has been investigated here) that could be unambiguously attributed to it being 
coupled or not. If the AMIP experiments were replaced with the corresponding “historical” coupled simulations, 
largely the same results would be found (not shown). Nonetheless, the influence of ocean coupling on the results 
could be investigated further.

The findings illustrate that in the cases where ozone chemistry is the only significant difference between two 
model configurations, ozone chemistry, and even simplified ozone chemistry as in CNRM-CM6-1, introduce 
additional “memory” into the atmosphere. Feedbacks of ozone chemistry onto radiation, for a cold winter, 
enhance radiative cooling and stabilize the vortex to last longer into spring; similar results were found in earlier 
single-model studies (Lin & Ming, 2021; Oehrlein et al., 2020). These effects can however be counterbalanced 
by retuning and/or additional physics, especially the non-orographic gravity wave schemes added or modified in 
GFDL-ESM4 and CESM2-WACCM (both versions).

Based on first principles, additional “physics” such as ozone chemistry can be expected to better capture Earth 
system feedbacks. However, this will only lead to a better reproduction of atmospheric dynamics and climate if 
other processes are tuned to account for its presence in a climate model. In particular, NGWD schemes are often 
adjusted to improve the simulation of stratospheric dynamics. In the absence of such tuning, adding in interactive 
ozone chemistry may degrade performance, which might erroneously be understood to count against including 
this process in a climate model. Philosophically, this situation is of course dissatisfying. It exemplifies that model 
behavior reflects the necessary presence of parameterizations that substitute actual climate physics. Changing 
model physics generally upsets the balance of these parameterizations achieved in a previous tuning step, explain-
ing some increased biases. We assert that interactive ozone chemistry, a costly addition to a climate model, does 
require retuning of stratospheric climate, or else the benefit of coupling in chemistry may not be obvious.
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Data Availability Statement
CMIP6 data are available at https://esgf-node.llnl.gov/search/cmip6/. Specifically, the following datasets are 
used: Dix et  al.  (2019); Danabasoglu  (2019b,  2019a,  2019d,  2019c); Séférian  (2018); Voldoire  (2018); Guo 
et al. (2018); Krasting et al. (2018); Yukimoto, Koshiro, et al. (2019); Wieners et al. (2019); Tang et al. (2019); 
Byun (2020); Ridley et al. (2019a, 2019b). CCMI2 data are downloaded from ftp://ftp.ceda.ac.uk/badc/ccmi/data/
post-cmip6/ccmi-2022. Specifically, the following datasets have been used: Dennison and Woodhouse (2021); 
Rozanov et al. (2021); Abraham and Keeble (2021). NCEP-DOE2 data were provided by the NOAA/OAR/ESRL 
PSL, Boulder, Colorado, USA, from their web site at https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.
pressure.html. Hersbach et al. (2018, 2019) was downloaded from the Copernicus Climate Change Service (C3S) 
Climate Data Store. The results contain modified Copernicus Climate Change Service information. Neither the 
European Commission nor ECMWF are responsible for any use that may be made of the Copernicus informa-
tion or data it contains. MSR-2 data are available at https://www.temis.nl/protocols/O3global.php (van der A 
et al., 2015b). Scripts and intermediate data used in the generation of the figures of this paper may be downloaded 
at Morgenstern et al. (2022).
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