Insights Into the Aerodynamic Versus Radiometric Surface Temperature Debate in Thermal-Based Evaporation Modeling - INSU - Institut national des sciences de l'Univers Access content directly
Journal Articles Geophysical Research Letters Year : 2022

Insights Into the Aerodynamic Versus Radiometric Surface Temperature Debate in Thermal-Based Evaporation Modeling

Kaniska Mallick
  • Function : Author
Dennis Baldocchi
  • Function : Author
Andrew Jarvis
  • Function : Author
Tian Hu
  • Function : Author
Ivonne Trebs
  • Function : Author
Mauro Sulis
  • Function : Author
Nishan Bhattarai
  • Function : Author
Christian Bossung
  • Function : Author
Yomna Eid
  • Function : Author
Jamie Cleverly
  • Function : Author
Jason Beringer
  • Function : Author
William Woodgate
  • Function : Author
Richard Silberstein
  • Function : Author
Nina Hinko-Najera
  • Function : Author
Wayne S. Meyer
  • Function : Author
Darren Ghent
  • Function : Author
Zoltan Szantoi
  • Function : Author
William P. Kustas
  • Function : Author

Abstract

Global evaporation monitoring from Earth observation thermal infrared satellite missions is historically challenged due to the unavailability of any direct measurements of aerodynamic temperature. State-of-the-art one-source evaporation models use remotely sensed radiometric surface temperature as a substitute for the aerodynamic temperature and apply empirical corrections to accommodate for their inequality. This introduces substantial uncertainty in operational drought mapping over complex landscapes. By employing a non-parametric model, we show that evaporation can be directly retrieved from thermal satellite data without the need of any empirical correction. Independent evaluation of evaporation in a broad spectrum of biome and aridity yielded statistically significant results when compared with eddy covariance observations. While our simplified model provides a new perspective to advance spatio-temporal evaporation mapping from any thermal remote sensing mission, the direct retrieval of aerodynamic temperature also generates the highly required insight on the critical role of biophysical interactions in global evaporation research.
Fichier principal
Vignette du fichier
Geophysical Research Letters - 2022 - Mallick - Insights Into the Aerodynamic Versus Radiometric Surface Temperature Debate.pdf (3.08 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

insu-03863704 , version 1 (21-11-2022)

Licence

Attribution - NonCommercial - NoDerivatives

Identifiers

Cite

Kaniska Mallick, Dennis Baldocchi, Andrew Jarvis, Tian Hu, Ivonne Trebs, et al.. Insights Into the Aerodynamic Versus Radiometric Surface Temperature Debate in Thermal-Based Evaporation Modeling. Geophysical Research Letters, 2022, 49, ⟨10.1029/2021GL097568⟩. ⟨insu-03863704⟩
38 View
7 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More