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Abstract. Landslides are a major geohazard that cause thou-
sands of fatalities every year. Despite their importance, iden-
tifying unstable slopes and forecasting collapses remains a
major challenge. In this study, we use the 7 February 2021
Chamoli rock–ice avalanche as a data-rich example to in-
vestigate the potential of remotely sensed datasets for the
assessment of slope stability. We investigate imagery over
the 3 decades preceding collapse and assess the precursory
signs exhibited by this slope prior to the catastrophic col-
lapse. We evaluate monthly slope motion from 2015 to 2021
through feature tracking of high-resolution optical satellite
imagery. We then combine these data with a time series of
pre- and post-event digital elevation models (DEMs), which
we use to evaluate elevation change over the same area. Both
datasets show that the 26.9×106 m3 collapse block moved
over 10 m horizontally and vertically in the 5 years preceding
collapse, with particularly rapid motion occurring in the sum-
mers of 2017 and 2018. We propose that the collapse results
from a combination of snow loading in a deep headwall crack

and permafrost degradation in the heavily jointed bedrock.
Despite observing a clear precursory signal, we find that the
timing of the Chamoli rock–ice avalanche could likely not
have been forecast from satellite data alone. Our results high-
light the potential of remotely sensed imagery for assessing
landslide hazard in remote areas, but that challenges remain
for operational hazard monitoring.

1 Introduction

1.1 Landslide hazard

Landslides are a major geohazard that cause thousands of
deaths each year (Petley, 2012; Froude and Petley, 2018).
Mitigating landslide hazard is a major challenge facing geo-
scientists and hazard managers. Evaluating landslide hazard
is challenging due to the wide range of source conditions and
the varying temporal scales at which the driving processes
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interact. Landslides are also associated with a wide range
of short- to long-term triggers, ranging from earthquakes to
water flow, or simple weaknesses in the rock, which fur-
ther complicates their forecasting and process understanding
(van Westen et al., 2006).

Ground-based observations of displacement (e.g., with
GNSS/GPS – global navigation satellite system/Global Posi-
tioning System – or ground-based radar interferometry), tilt
(e.g., inclinometers), pressure (e.g., piezometers), and other
variables can be useful in monitoring landslide progression
(e.g., Uhlemann et al., 2016). When observed, landslide pre-
cursory signs may be used to forecast a failure time or im-
prove monitoring (Federico et al., 2012; Fukuzono, 1985;
Intrieri et al., 2019; Wegmann et al., 2003). In many cases
the nature and magnitude of these precursory signs precludes
their detection in the absence of sensitive equipment. In situ
observations can be sensitive to even small changes in slope
properties and are therefore valuable for forecasting a desta-
bilization (Sättele et al., 2015; Stähli et al., 2015). How-
ever, ground-based observations have important limitations:
(i) prior knowledge of a potential slope instability is required
in order for the correct instrumentation to be installed in
the right locations; (ii) the landslide source region may be
inaccessible, preventing the installation of in situ monitor-
ing equipment; (iii) monitoring systems can be prohibitively
expensive and require highly specialized expertise for data
evaluation; and (iv) the area that can be monitored is gen-
erally limited to individual hillslopes. Altogether, ground-
based monitoring techniques are useful for landslide moni-
toring in many cases but are insufficient for monitoring large
regions or where a priori knowledge is lacking.

An increase in satellite data availability and resolution has
promoted remote sensing as an alternative or complementary
landslide detection and monitoring tool (e.g., Kirschbaum
et al., 2019; Dille et al., 2021). Satellite remote sensing may
lack the precision of some ground-based monitoring tech-
niques, but it can provide a low-cost (for the end user) and
easily accessible way to monitor vast and inaccessible terrain
at daily to weekly revisit times and 0.3 to 30 m spatial reso-
lution. Qualitative visual analysis of satellite imagery allows
for the rapid identification of surface changes that may be as-
sociated with slope instabilities or the initiation of landslide
motion. Further quantitative processing of satellite imagery
enables the monitoring of horizontal and vertical land mo-
tions – for example via feature tracking or the stereographic
generation of digital elevation models (DEMs; Shean et al.,
2020; Dai et al., 2020a; Dille et al., 2021). Interferomet-
ric synthetic-aperture radar (InSAR) can provide millimeter-
to centimeter-resolution line of sight displacements (e.g.,
Handwerger et al., 2019; Jacquemart and Tiampo, 2021;
Manconi et al., 2018). Growing archives of high-resolution,
open-access Earth observation data remain largely untapped
for landslide monitoring. In this study we use the data-rich
7 February 2021 Chamoli rock–ice avalanche as a case study
for the remote identification of landslide precursory signs.

We first introduce landslide hazards in the Himalaya with a
specific focus on the Chamoli event and then offer a general
overview of remote sensing of slope instabilities. Next, we
explain the methods used in the current study and present
and discuss the results.

1.2 Landslide hazard and risk in the Himalaya

Landslides occur in high-mountain areas all over the world,
and the risk is greatest in areas where high topographic re-
lief intersects with high population densities or infrastructure
– which is the case across much of the Himalayan region.
Over 50 million people live directly within the Himalaya,
with a further 700 million living within associated water-
sheds (Dimri et al., 2019). A combination of extreme topo-
graphic relief, regular tectonic activity, high seasonal rainfall
intensities, and steep slopes make the Himalaya particularly
susceptible to landslides (Kirschbaum et al., 2019).

In recent decades, several factors have contributed to rais-
ing landslide risk across the region: first, climatic warming
has driven rapid thinning and retreat of Himalayan glaciers
– which are currently losing over 10 Gt of mass per year
(e.g., Kääb et al., 2012; Brun et al., 2017; Shean et al., 2020;
Jakob et al., 2021; Hugonnet et al., 2021). Glacier retreat
may contribute to a range of factors conducive to landslides,
including a reduction in slope buttressing and an increase
in meltwater availability (Holm et al., 2004; Fischer et al.,
2006; Huggel et al., 2012; Kos et al., 2016; Coe et al., 2018;
Dai et al., 2020a; Glueer et al., 2020). In addition to glacier
retreat, permafrost degradation has also been documented
to reduce slope stability (Gruber and Haeberli, 2007; Allen
et al., 2011; Fischer et al., 2012; Krautblatter et al., 2013;
Haeberli et al., 2017; Magnin et al., 2019; IPCC, 2019; Pat-
ton et al., 2019; Deline et al., 2021). Second, increasing pop-
ulations, economic growth, and infrastructure development
in high-mountain valleys have greatly expanded the poten-
tial consequences of landslides. This second point is apparent
for the Chamoli disaster, in which the majority of deaths oc-
curred at hydropower plants that were recently built or were
under construction (Shugar et al., 2021). Other factors, in-
cluding changes in precipitation patterns (e.g., Li et al., 2018;
Kirschbaum et al., 2020) and land use (Cummins, 2019) may
also contribute to evolving landslide hazard potential and as-
sociated risk.

1.3 The 2021 Chamoli hazard cascade

During the morning of 7 February 2021, a 26.9×106 m3

wedge of rock and ice detached from the north face of the
peak of Ronti, a 5500 m elevation summit in the Uttarak-
hand Himalaya (Fig. 1). This wedge then dropped around
1800 m to the Ronti Gad valley floor, where it continued
down valley towards the Rishiganga and Dhauliganga rivers
and transformed into a debris flow (Shugar et al., 2021; Cook
et al., 2021). The collapse block was composed of approx-
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Figure 1. The 7 February Chamoli rock–ice avalanche. (a) The path of the collapse, along with key locations (HPP refers to hydropower plant)
annotated on a 10 February 2021 Sentinel-2 image. (b) Three-dimensional visualization showing the post-collapse scar with reconstruction
of the overlying bedrock and glacier ice. © CNES 2021 (Centre national d’études spatiales), distribution Airbus DS (Defence and Space).

imately 80 % bedrock and 20 % glacier ice (Shugar et al.,
2021). Frictional heat generation calculations suggest that
most or almost all of the glacier ice melted during the 3400 m
drop from the source to Tapovan hydropower station (Shugar
et al., 2021). This melting of the ice, combined with major
sediment deposition at the confluence of the Ronti Gad and
Rishiganga, increased the initial rock–ice avalanche’s water
content and converted it into a highly mobile debris flow
which left 204 people missing or killed and destroying two
hydropower stations.

1.4 Remote-sensing techniques

1.4.1 Feature tracking

Optical feature tracking is a versatile technique which can
be used to track surface motion by evaluating the relative
position of features or patterns in repeat imagery. Feature
tracking has been applied to a variety of problems, includ-
ing tracking post-seismic ground deformation (e.g., Leprince
et al., 2007), quantifying glacier flow velocities (e.g., Bind-
schadler and Scambos, 1991; Heid and Kääb, 2012; Millan
et al., 2019; Van Wyk de Vries and Wickert, 2021), or mea-
suring landslide displacements (e.g., Behling et al., 2014;
Aryal et al., 2012; Lucieer et al., 2014; Peppa et al., 2017;
Manconi et al., 2018; Darvishi et al., 2018; Jia et al., 2020;
Dai et al., 2020a; Dille et al., 2021). The accuracy of feature
tracking is limited by the spatial resolution of the imagery
and the magnitude of displacements: in best-case scenarios
displacement maps may reach a precision of ∼ 0.1 pixels

(Leprince et al., 2007; Dille et al., 2021). For openly avail-
able Sentinel-2 imagery, this means that displacements of
less than 1 m cannot be detected from a single image pair.
Commercial imagery datasets are available with higher spa-
tial resolution (e.g., 3 m for Planet Dove CubeSat, 0.3 m for
WorldView), which may resolve smaller displacements (e.g.,
Stumpf et al., 2014), but are expensive to procure and process
and do not offer systematic repeat coverage. Similarly, dis-
placements may be mapped from high-resolution UAV im-
agery (Peppa et al., 2017), but this requires prior knowledge
of the hazardous area and targeted acquisition campaigns.

1.4.2 InSAR

Satellite-based InSAR is a powerful tool for detecting small
changes at Earth’s surface from space. It has been widely
used to quantify ground displacements caused by processes
such as earthquakes (e.g., Massonnet et al., 1993; Barba-
Sevilla et al., 2018), groundwater extraction (e.g., Samsonov
and d’Oreye, 2017; Motagh et al., 2017), volcanic unrest
(e.g., Rosen et al., 1996; Tiampo et al., 2017), or landslides
(e.g., Manconi et al., 2018; Handwerger et al., 2019; Dai
et al., 2020b; Mondini et al., 2021; Jacquemart and Tiampo,
2021). By measuring the shift of the radar phase relative to
earlier measurements of the same features, InSAR can pro-
vide measurements of ground deformation at millimeter and
centimeter scales. Active radar sensors can image Earth’s
surface through clouds and darkness, a major advantage over
passive optical sensors particularly during the monsoon sea-
son (e.g., Massonnet and Feigl, 1998). However, leveraging
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InSAR data for the detection and assessment of mass move-
ments is challenging. The oblique viewing geometry of radar
satellites means that radar data can be rendered useless in
areas of steep topography due to the effects of shadowing,
foreshortening, and layover (Massonnet and Feigl, 1998; Wa-
sowski and Bovenga, 2014). In the case of rapid displace-
ments that surpass the phase-aliasing thresholds or dramatic
changes in the surface cover or geometry, a loss of interfero-
metric coherence can prohibit the quantification of (the full)
ground deformation (Manconi, 2021). Despite these draw-
backs, many studies have shown that InSAR can be success-
fully applied to assess the stability of slopes even in high-
relief terrain (e.g., Manconi et al., 2018; Handwerger et al.,
2019; Bekaert et al., 2020; Jacquemart and Tiampo, 2021).

1.4.3 Stereo-DEM generation

Stereo-DEM generation uses two or more overlapping opti-
cal images that were acquired at the same time from differ-
ent viewing angles to reconstruct surface topography. Pho-
togrammetric principles can then be used to derive DEMs
from these images. These approaches can now be used to
generate detailed DEM products over large spatial areas us-
ing very high-resolution satellite stereo imagery (e.g., Ko-
rona et al., 2009; Morin et al., 2016; Shean et al., 2016;
Porter et al., 2018; Howat et al., 2019). However, most very
high-resolution imagery is not open source and is expen-
sive to procure, limiting its use. Increased availability of this
commercial imagery and/or new open-source stereo-imagery
satellites would provide many new opportunities for haz-
ard monitoring. Repeat DEMs obtained at different time
periods can provide precise estimates of surface elevation
change associated with many processes, including glacier
change (e.g., Brun et al., 2017; Willis et al., 2018; Zheng
et al., 2019; Shean et al., 2020), snow accumulation/melt
(e.g., Deschamps-Berger et al., 2020; McGrath et al., 2019;
Bhushan et al., 2021), volcanic deformation (e.g., Bisson
et al., 2021; Schaefer et al., 2012), and landslide or debris
flow events (e.g., van Westen and Lulie Getahun, 2003).
In particular for landslide research, previous studies have
used DEM-differencing techniques to identify geomorphic
changes (e.g., Corsa et al., 2022)) and precursory motion
(e.g., Higman et al., 2018; Dai et al., 2020a) on timescales
ranging from years (e.g., Shugar et al., 2021; Geertsema
et al., 2022) to decades (e.g., Higman et al., 2018; Lacroix
et al., 2020).

1.5 Objectives

The objective of this study is to use the 7 February 2021
Chamoli rock–ice avalanche as a detailed case study to as-
sess the potential and limitations of satellite-based landslide
monitoring. We first assess the pre-collapse conditions of the
7 February 2021 Chamoli rock–ice avalanche and then inter-

pret them in a broader context. Our research question is the
following.

Can the pre-collapse remotely sensed datasets be used au-
tomatically to identify the location or timing of the 7 Febru-
ary 2021 Chamoli rock–ice avalanche, and is it possible for
these monitoring techniques to be upscaled for hazard moni-
toring on a regional or global scale?

2 Methods

We used a range of datasets and processing workflows to in-
vestigate the pre-collapse conditions of the Chamoli rock–ice
avalanche:

1. optical satellite imagery (Landsat and Sentinel-2) was
used to investigate visible changes in the collapse re-
gion over the years to decades prior to the rock–ice
avalanche;

2. feature tracking of optical satellite imagery (Sentinel-
2, Planet, Cartosat-1, and SPOT 7) was used to derive
horizontal displacements;

3. Sentinel-1 C-band radar imagery was used to calculate
interferometric synthetic-aperture radar (InSAR) dis-
placement maps;

4. digital elevation models (DEMs) from optical satellite
stereo imagery (WorldView-1/2/3, GeoEye-1, Pléiades-
HR (high resolution), SPOT 7, and Cartosat-1) were
used to derive vertical changes.

2.1 Qualitative observations of slope change

We investigated 3 decades of pre-collapse optical satellite
imagery to gain a preliminary understanding of pre-landslide
changes. We documented changes in the north-facing slope
of the peak of Ronti, which sourced the February 2021 rock–
ice avalanche, using all available data from Landsat 5 (TM,
Thematic Mapper), Landsat 7 (ETM+, Enhanced Thematic
Mapper Plus), Landsat 8 (OLI, Operational Land Imager),
and Sentinel-2 with a cloud cover of less than 60 %. We fo-
cused our observations on surface changes, including defor-
mation and fracturing, and rock or ice avalanches originating
from the collapsed block or surrounding area.

Our ability to detect change is limited by the spatial reso-
lution of the imagery used (15–30 m for Landsat and 10 m for
Sentinel-2). We examined a 31-year (1990–2021) time series
of satellite imagery (Fig. 2), including 122 Landsat 5 images,
43 Landsat 7 images, 34 Landsat 8 images, and 155 Sentinel-
2 images. A full list of images is provided in the Supplement,
along with a brief description of any anomalous features.

2.1.1 Optical feature tracking

We used feature tracking with a range of medium- (10 m)
to high-resolution (2.5 m) satellite imagery to evaluate the
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Figure 2. Timeline of images analyzed for change at the Chamoli site prior to the 7 February 2021 collapse, with major events or changes
seen over this period. The first image (6 February 1990) was taken 31 years before the collapse, and the last image (5 February 2021) was
taken 2 d before the collapse.

pre-collapse motion of the north slope of the peak of Ronti.
We used two different feature-tracking toolboxes: GIV for
rapid processing of Sentinel-2 data (Glacier Image Velocime-
try; Van Wyk de Vries and Wickert, 2021) and autoRIFT
(Autonomous Repeat Image Feature Tracking; Lei et al.,
2021) for processing Planet data as part of a pipeline also
including orthorectification of imagery. Both GIV and au-
toRIFT are based on three core components: a pre-processing
module which applies one or more filters (described below)
to images to enhance distinct surface features for tracking,
a multipass two-dimensional image correlator, and a post-
processing module to identify and filter erroneous displace-
ment values (Van Wyk de Vries and Wickert, 2021; Lei
et al., 2021). The GIV toolbox performs image cross cor-
relation in the frequency domain, while autoRIFT performs
the cross correlation in the spatial domain. Using GIV, we
pre-processed the imagery using an orientation filter and ran
the cross correlation with a reducing window size from 20 to
5 pixels and a window overlap of 50 %. In autoRIFT we pre-
processed the imagery with a Laplacian filter and used adap-
tive window sizes between 32 and 64 pixels with a skip rate
of 8 pixels for the cross correlation.

We calculated velocities using all available Sentinel-2 im-
ages through February 2021, excluding any images with a
local cloud cover greater than 60 % (based on the L1-C QA
– Level-1C Quality Assessment – band cloud mask). A total
of 155 images were available, for a total of 5237 image pairs
with a time separation between 50 and 500 d. We processed
these image pairs using GIV. We also resampled the veloc-
ity time series to monthly resolution (see Fig. 4c–g) using a
weighted-averaging scheme described in Van Wyk de Vries
and Wickert (2021), with weights based on the proportion of
the time period within a given month.

We also downloaded all PlanetScope Dove Classic (four-
band) Level-1B imagery with less than 20 % cloud cover
acquired between January 2020 and January 2021. We pro-
cessed 4701 image pairs using autoRIFT with a time sepa-
ration of 100 to 350 d. The near-infrared (NIR) band from

the L1-B images was orthorectified on the 2015 pre-event
reference DEM (Bhushan and Shean, 2021), and the system-
atic median offset (computed over static, non-glacierized sur-
faces) was removed from each pairwise surface displacement
map in both east–west and north–south directions. Despite
the higher product resolution (3 vs. 10 m Sentinel-2 images)
and use of a high-resolution DEM for improved orthorecti-
fication, the Planet velocity maps had a high random back-
ground noise. We attribute this to spurious correlation over
surfaces with varying shadow cover due to steep slopes and
changing illumination, as the images were captured by dif-
ferent satellites during different times of the day/year. To
compensate for this higher background noise, we chose a
higher minimum temporal separation (100 d, compared to
50 d for Sentinel-2) between Planet image pairs when calcu-
lating time-averaged velocity maps. We also calculated dis-
placements (using both GIV and autoRIFT) on one pair of
high-resolution Cartosat-1 images (October 2017 to Novem-
ber 2018).

We used these velocity data to evaluate whether the col-
lapsed block moved prior to collapse – with a null hypothesis
that the block moved no more than the surrounding “stable”
(non-glacierized) bedrock. We tracked the motion of a me-
dial bedrock ridge (Fig. 1) to measure the motion of the un-
derlying bedrock, which is independent from the flow of the
overlying glaciers. We divided the collapse block into three
different regions alongside a zone of stable ground and create
a time series of average displacement for each zone.

2.2 InSAR maps

We processed Sentinel-1 data from ascending and descend-
ing orbit tracks 56 and 63, respectively, to investigate
whether the precursory motion of the collapse block could
have been detected in radar interferograms. All radar data
were downloaded from the Alaska Satellite Facility Dis-
tributed Active Archive Center (ASF DAAC). Because the
descending track is heavily affected by layover artifacts, we
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only performed the full processing with data from the as-
cending orbit. We processed the data with the InSAR Sci-
entific Computing Environment (ISCE; Rosen et al., 2012),
removed the topographic phase using the 2015 pre-event
WorldView DEM (Bhushan and Shean, 2021) composite
(resampled to 8 m), and masked out all pixels with an in-
terferometric coherence of less than 0.3. Single-look com-
plex (SLC) images were multi-looked to one and three looks
in azimuth and range, respectively. We generated 108 inter-
ferograms covering the period of January 2017 to Novem-
ber 2020, each spanning 12 d. We manually selected the
best interferograms and performed unwrapping with the
Statistical-Cost, Network-Flow Algorithm for Phase Un-
wrapping (SNAPHU; Chen and Zebker, 2002).

2.3 DEM generation

We produced multiple pre-event and post-event DEM
products from very high-resolution (Maxar–DigitalGlobe
WorldView-1/2/3, GeoEye-1, and Airbus–CNES Pléiades;
0.3 to 0.5 m GSD, ground sample distance) and high-
resolution (Airbus SPOT 7 and ISRO Cartosat-1, 1.5 m to
2.5 m GSD; Indian Space Research Organisation) satellite
imagery captured between 2015 and February 2021. The
DEM products were used to calculate the vertical motion of
the collapse block from 2015 to 10 February 2021.

We used the NASA Ames Stereo Pipeline (ASP; Shean
et al., 2016; Beyer et al., 2018) to process all of the im-
ages. For this particular study, we primarily used four prod-
ucts spanning two time periods: the 2015 pre-event World-
View DEM composite (Bhushan and Shean, 2021); an in-
termediate period, a 2018 pre-event DEM composite pro-
duced by averaging the November 2018 Cartosat-1 (Ap-
pendix A1) and December 2018 SPOT 7 (Appendix A2)
DEMs; and the 10–11 February 2021 post-event composite
DEM derived from Pléiades and WorldView–GeoEye stereo
imagery (Shean et al., 2021). We calculated the difference be-
tween three composite DEM products to create 2015–2018,
2015–2021, and 2018–2021 DEMs of difference (DoDs).
The 2015–2018 DoD provides insight into vertical changes
in the hillslope prior to failure, while the 2015–2021 DoD
provides the volume and geometry of the collapsed block. We
calculated an empirical uncertainty estimate for each DoD
using the tiling method (Berthier et al., 2016; Miles et al.,
2018; Jacquemart et al., 2020).

3 Results

3.1 Qualitative observations of slope change

We identified four main types of processes in our 31-year
optical satellite image time series.

1. Major ice avalanches (January–April 2000 and
September–October 2016). These large-volume ice

avalanches originated from the steep hanging glacier
to the west of the collapse block and temporarily filled
Ronti Gad with ice, snow, and sediment.

2. Minor snow or ice avalanches (2005, 2006, 2007, 2008,
2012, and 2015). These smaller-volume avalanches may
have originated from either the adjacent hanging glacier
or the seasonal snowpack and did not appear to infill
the underlying valley with any significant quantity of
material (with the exception of one∼ 500 m long snow–
ice deposit in May 2006).

3. Minor landslides avalanches (2007, 2009, 2011, 2012,
2013, and 2015). These minor rockfalls or rock
avalanches originated from the peak of Ronti or as the
unconsolidated sediment on the flanks of Ronti Gad and
also do not appear to have deposited major volumes of
sediment.

4. Opening and widening of cracks at the headwall of the
collapse block (2016–2021). This is the gradual opening
of a wide crack in the north face of the peak of Ronti.

We only interpret the fourth process type (crack opening)
as a real sign of pre-collapse conditions. Minor rockfalls and
snow–ice avalanches are a common feature of high-relief,
high-slope active landscapes (e.g., Petley, 2012; Huggel
et al., 2012; Vincent et al., 2015; Kirschbaum et al., 2020).
The major ice avalanches represent a serious geohazard in
the upper Ronti Gad but appear to relate to internal dynamics
of the western hanging glacier rather than instability in the
underlying bedrock. The area of these 2000 and 2016 major
ice avalanches was estimated at 0.16 and 0.2 km2, with melt-
ing and/or redistribution of the resulting valley floor deposits
within 3 years of the event (Shugar et al., 2021; Supplement
Sect. 3.1). Regular large ice avalanches have been observed
at many other hanging glaciers in active, high-mountain en-
vironments (e.g., Faillettaz et al., 2008; Vincent et al., 2015).

The conspicuous crack at the headwall of the failed block
was first visible in optical imagery in March 2016, al-
though its location roughly aligns with a pre-existing glacier
crevasse – suggesting that a minor crack opening in the
bedrock may have preceded this date. The crack grew until
the end of 2018 and appeared to become infilled with snow
over the course of 2019 and 2020 based on the amount of ex-
posed bedrock on the rock walls. The crack widened further
between 2018 and the 7 February 2021 collapse to a total
width of 50–70 m but less rapidly than the opening in 2016–
2018. We confirmed our observations of the crack opening
with several very high-resolution (∼ 0.5 m) images (Fig. 3).

3.2 Optical feature tracking

Feature tracking provides the most complete spatiotemporal
assessment of displacement of the methods used in this study
– with data coverage from late 2015 until early 2021. We
used results from the Cartosat-1 image pair and the Planet
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Figure 3. Time series of the headwall crack opening in high-resolution optical images from SPOT 7 and Pléiades-HR. Please note that the
date format used in this figure is day/month/year.

archive for validation of the Sentinel-2 displacements. In all
three cases, the collapsed block (most notably, the bedrock
ridge at the center of this block) exhibited displacements ex-
ceeding the background noise level on stable bedrock (<
1 m yr−1).

The horizontal velocity of the collapsed block ranged from
around 5 to 20 m yr−1, with the most rapid motion occur-
ring in the summers of 2017 and 2018 (see Fig. 4d–g).
We do not observe an increase in velocity of the collapsed
block immediately prior to its failure in February 2021. The
Sentinel-2 image record includes seven cloud-free images
from early 2021, including one image taken 2 d prior to the
collapse; therefore this lack of speedup is unlikely the re-
sult of a temporal data gap. Periods with the highest block
velocity (2017–2018) correspond to periods of the greatest
increase in headwall crack width – particularly the summers
of 2017 and 2018. This is consistent with motion occurring
on the entire collapsed block, rather than only on the glaciers
or a superficial layer of rock.

Total 2016–2021 horizontal displacements were ∼ 20–
30 m (Fig. 4a), which is similar in magnitude to the width
of the crack as measured directly from Sentinel-2 imagery.
Due to the steep topography (mean slope of 42.6◦), the vis-
ible horizontal motion does not account for all of the true
deformation. After correcting for the viewing angle, the to-
tal block motion is 25–40 m. Overall, the feature-tracking re-
sults demonstrate that the collapse block was mobile several
years prior to its collapse in 2021.

3.3 InSAR maps

Even with knowledge of the location of the failed block,
the processed interferograms do not allow for a pre-collapse

identification of the instability on the peak of Ronti. Of the
108 available interferograms, roughly half exhibited a com-
plete loss of coherence, largely due to snow cover (Novem-
ber through May). Good-quality interferograms are limited
to summer months, and on the collapse block, coherence
is only retained on the ice-free part at the bottom of the
wedge. The upper, glacier-covered part of the collapse block
remains decorrelated, likely due to shadowing and glacier–
snow cover. Figure 5a highlights the very low radar backscat-
ter in this zone, and Fig. 5b and c confirm the spatial agree-
ment between the loss of coherence and glacier cover. Data
gaps lower in the valley are also related to loss of coher-
ence, possibly due to vegetation cover or moisture variabil-
ity. Many interferograms are characterized by high amounts
of noise, likely from variable atmospheric properties or other
artifacts.

A high-quality interferogram from July 2020 (Fig. 5b)
does not indicate any motion on the lower part of the col-
lapse block in the summer prior to the failure, but it is im-
possible to determine whether this is consistent in other in-
terferograms of that year due to high noise levels. Areas of
high coherence are small and discontinuous on the collapse
block, making it hard to determine any changes. In less steep
terrain northwest of the collapse block, the motion of a rock
glacier (on the order of centimeters per year) can be detected
consistently in all interferograms that remain coherent over
that part of the image (Fig. 5b). This highlights that the reli-
ability and information content of InSAR velocity maps can
be highly variable even across a small study area. Despite
its sensitivity, InSAR is not able to provide any conclusive
information about the pre-failure conditions of the collapse
block in this challenging terrain.
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Figure 4. Surface displacement and horizontal velocity from optical-image feature tracking. (a) The total displacement over the entire
Sentinel-2 era. (b) A snapshot velocity during an episode of rapid displacement in summer 2018. (d)–(g) Time series of velocity averaged
across specific zones shown in panel (c). Note the episodes of rapid displacement in 2017–2018 relative to 2016 or 2020, corroborated by
the Cartosat-1- and Planet-derived velocities.

3.4 DEM analysis

We calculated the geometry of the collapsed block, equal
to the zone of negative elevation change in the 2018–2021
DoD (Fig. 6c; volume: 26.9×106 m3, 95 % confidence in-
terval: 26.5–27.3×106 m3; Shugar et al., 2021). The earlier
DoD (2015–2018) shows a very different pattern (Fig. 6b),
with a ∼ 100 m wide zone of elevation loss at the upper al-
titude limit of the collapsed block (“headwall crack”) and a
broad zone of elevation gain over the remainder of the block
(“bulge”). The magnitude of this pre-collapse elevation loss
is greatest in the central and western portion of the headwall
crack, while the elevation gain is most pronounced on the
central and eastern portions of the bulge.

DEM analysis further confirms the results from direct im-
age observations and feature tracking – large changes oc-
curred on the collapsed block prior to its collapse. The zone
of negative elevation change is wider than the crack as di-
rectly observed in optical imagery, which may result from

limits in the DEM resolution or partial collapse of the sur-
rounding rock or ice into the crack.

4 Discussion

The pre-collapse motion of the avalanche block raises im-
portant questions about the causes and timing of the 7 Febru-
ary 2021 Chamoli rock–ice avalanche. In this section, we use
this disaster as a case study to discuss the potential and lim-
itations of satellite data for remote hazard monitoring. Fur-
thermore, we explore the conditions of the collapse using our
multi-dataset observations and evaluate whether the location
or timing of the collapse could have been identified before-
hand.
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Figure 5. (a) Sentinel-1 radar backscatter amplitude from ascending orbit track 56. (b) Wrapped-phase (0π to 2π or 2.8 cm) interferogram
from July 2020. (c) Corresponding false-color image. Large areas of low coherence (masked as white) and patchy coverage illustrate the
complexities of InSAR monitoring in high-alpine terrain. The avalanche block is outlined in black and red. Image: Sentinel-2. Please note
that the date format used in this figure is year/month/day.

Figure 6. Elevation change of the avalanche zone pre- and post-collapse. (a) SPOT 7 true-color composite image from September 2020 with
the location of cross-sections A and B for context. (b, c) DoD maps at different times. (d, e) Two cross-section profiles (a) across the DoD.
The composite 2018 DEM was used for panel (b). Cross-sectional uncertainties are assigned for an area equal to the length of the section
line multiplied by the pixel size. Note that the elevation change bounds are different in panels (b) and (c).

4.1 Future perspectives: remote-sensing-based hazard
monitoring

Our work on the Chamoli avalanche took place after the
collapse, with the full knowledge of the position of the
avalanche source. This work is useful for better understand-
ing the conditions of the slope collapse. However, to be di-

rectly useful for hazard monitoring and prevention, these
techniques must identify avalanche locations and sizes before
– rather than after – they occur. The key questions therefore
remain: would it have been possible to identify the Chamoli
landslide prior to its collapse using the methods used in our
study, and can these methods be applied elsewhere to identify
future failures?
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The qualitative analyses of optical satellite images,
feature-tracking results, and DEM analysis all indicate that
precursory signs of slope failure were detectable. Satellite
images show a crack growing over the 5 years prior to failure
(Fig. 3), feature tracking reveals tens of meters of horizontal
displacement of the collapsed block, and DEM differences
show tens of meters of vertical elevation change over the col-
lapsed block. Combining this information with background
knowledge about the district of Chamoli, such as the extreme
relief, steep slopes, and historic avalanches, it would in prin-
ciple have been possible to identify this as an unstable slope
with high collapse potential.

While the data are sufficient to identify precursory signs
of this rock–ice avalanche after the collapse has already oc-
curred, there are important limitations to their use for auto-
mated hazard monitoring and pre-collapse detection of un-
stable slopes. The first key limitation is the very low signal-
to-noise ratio of feature-tracking horizontal velocity maps,
DEM-derived elevation change maps, and InSAR velocity
maps in the steep terrain most susceptible to slope failure.
For feature tracking, the noise level of the composite 2016–
2021 mean velocity maps is low (< 1 m yr−1). However, the
background noise level (as evaluated over stable bedrock) of
individual velocity maps is much higher – and in some cases
comparable to the magnitude of the signal (∼ 5–20 m yr−1).
For the DEMs, artifacts range from meters to tens of meters
in scale, and additional “noise” is introduced by real eleva-
tion changes from glacier and snowpack change (Fig. 7b).
While these issues with false positives can be mitigated, this
is challenging without knowing the signal of interest.

InSAR, while also being susceptible to false positives, is
additionally prone to false negatives. The north-facing as-
pect of the peak of Ronti provides a twofold challenge:
the illumination of the slope is limited (low backscatter,
Fig. 5a), and any motion – assuming it is largely in the di-
rection of the steepest slope – is oriented in the direction
in which the radar instrument is least sensitive. Addition-
ally, the non-glacierized area of the collapse wedge is small,
making it challenging to identify fringe patterns amongst the
noise. Furthermore, with the largest velocities reaching tens
of meters per year, the InSAR measurements are prone to
phase aliasing and underestimation of the true displacement.
Sentinel-1 InSAR would not have provided an adequate tool
for monitoring in this case, even with knowledge of the loca-
tion of the instability.

The second key limitation is that none of the datasets
produced in this work could predict the timing of collapse.
While most methods pick up precursory signs of slope fail-
ure, these begin almost 5 years prior to eventual collapse. The
largest measured changes did not occur immediately prior to
failure but rather preceded failure by around 3 years. Mao
et al. (2022) propose that abrupt growth of the “summit”
crack (which they term bergschrund) and lateral cracks is
visible in the 5 February 2021 Sentinel-2 image (2 d prior to
collapse). This summit crack was, however, already promi-

nently visible and growing over the 5 years prior to col-
lapse (e.g., Fig. 2), and the proposed lateral cracks do not
precisely correspond to the margins of the eventual collapse
zone. In addition, the proposed crack growth episode visi-
ble was not associated with any detectable peak in displace-
ment (Fig. 4). Even with the knowledge that the collapse oc-
curred on 7 February 2021, signs pointing to an imminent
collapse in remote-sensing data from late 2020 or early 2021
are highly ambiguous. Tiwari et al. (2022) show that seismic
signals were detectable from the Chamoli block as early as
2.5 h prior to collapse. While they do not explore how eas-
ily detectable the pre-collapse signals would have been with-
out prior knowledge of the event, they do note that the ∼
15 min between initial collapse and impact of the Tapovan
dam would have enabled evacuation if a local early-warning
system had been in place.

One final limitation is related to the immense size of haz-
ardous areas relative to the scale of hazards themselves. The
Chamoli collapsed block had an area of around 0.25 km2,
while the Himalaya cover over 0.5×106 km2. Any methods
aimed at automatically detecting hazards prior to their occur-
rence must have a low “false-positive” (identified as a hazard
in the database but not of real concern) rate or any resulting
database will be populated primarily with these incorrectly
flagged regions. This becomes a major challenge when con-
sidering the high incidence of noise and artifacts in feature-
tracking-derived displacement or DoD maps (e.g., Fig. 7). In
addition, any hazard detection methods involving manual in-
tervention, for instance an expert assessment of crack growth
across a time series of optical satellite images, is not feasible
on a large scale and will be limited to previously identified
zones of high hazard. In addition, the DEMs and elevation
change maps used in this study were generated from imagery
not accessible in open-source archives. Changes in the acces-
sibility of commercial data or the launch of new, open-access,
stereo-imagery satellites would facilitate the use of elevation
change in large-scale geohazard monitoring.

4.2 Three-dimensional block motion

We examined the three-dimensional motion of the collapse
block as a first step towards understanding the Chamoli rock–
ice avalanche collapse mechanism(s). Rotation and transla-
tion are the two primary modes of landslide motion (e.g.,
Záruba and Mencl, 2014), with each having a distinct sur-
face displacement pattern. We used a combination of hor-
izontal displacement (feature tracking), vertical displace-
ment (2015–2018 DoD), collapse block thickness (2018–
2021 DoD), and post-landslide topography to calculate the
dominant mode of pre-collapse motion for the Chamoli col-
lapse block.

We compared our observations of vertical and horizontal
slope displacement to a synthetic displacement, with the hy-
pothesis that all of the observed change could be explained
by translation. We used the 2018–2021 DoD to calculate the
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Figure 7. Optical satellite image (a; Sentinel-2, 28 September 2020) and DoD (b; 2018–2015) of the Chamoli collapse site. Note the large
number of steep slopes, complex terrain, and high noise levels in the DoD. In order to be useful for hazard prevention, these methods need to
be able to identify potentially hazardous slopes without prior knowledge about collapses (e.g., green arrow shows the location of the headwall
crack).

Figure 8. (a) Observed and (b) modeled elevation change of the Chamoli landslide block prior to collapse. The modeled scenario (b) is based
on 20 m of pure downslope translation. (c) A scatterplot comparing each observed and modeled pixel.

thickness and location of the mobile block and translated
this using the direction of the steepest slope (∼NNE) and
a displacement magnitude of 20 m. The displacement magni-
tude is chosen to match our observed horizontal displacement
from feature tracking and is consistent with the findings of
Qi et al. (2021). We then calculated the difference in surface
elevation between the original and translated surfaces.

Figure 8 shows a comparison between the observed
change in surface elevation of the landslide block and the
modeled change. The pattern of elevation change is similar
for the observed and modeled cases – both exhibit a deep
crack, bulging in the lower collapse zone, and greater eleva-
tion gain on this bulge to the east relative to the west. The
two-dimensional correlation score is 0.64, with the great-
est model–data difference at the headwall crack, which is as
much as 150 m deeper in the model case. These results are

consistent with the Chamoli collapsed block moving downs-
lope by translation in the years prior to collapse.

4.3 A possible avalanche-triggering mechanism

A viable triggering mechanism for the Chamoli landslide
must explain both the lag between the initial instability and
collapse and the timing of the collapse – in the middle of
the winter. Syn-collapse seismic signals show that there was
no seismic trigger for the collapse (Pandey et al., 2021;
Shugar et al., 2021; Cook et al., 2021). Nearby meteorolog-
ical stations and reanalysis data reveal heavy snowfall and
a ∼ 5 K positive temperature anomaly in the week preced-
ing collapse, as well as a temperature inversion in the valley
(e.g., Pandey et al., 2021; Dandabathula et al., 2021; Zhou
et al., 2021; Shugar et al., 2021). In the longer term, this re-
gion has warmed an estimated 0.014 (Zhou et al., 2021) to
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0.033 K yr−1 (Shrestha et al., 2021) since 1980, for a total
warming of 0.4 to 0.9 K over the past 3 decades.

Zhou et al. (2021) and Dandabathula et al. (2021) propose
that this sudden temperature increase may have triggered the
collapse, and Rana et al. (2021) associate it with lubrication
of pre-existing fractures via melting of fresh snow. Kropáček
et al. (2021) and Pandey et al. (2021) suggest that load-
ing from heavy snowfall may have contributed to the fail-
ure. Despite the positive temperature anomaly, temperatures
at the collapse altitude (∼ 5000 m) would have been below
the freezing point on the day of collapse, and liquid water
would not have been present at the surface (Shugar et al.,
2021; Dandabathula et al., 2021). Positive summer tempera-
tures (Shrestha et al., 2021) and a steep surface slope of the
collapse block will have prevented strong cumulative surface
loading of the collapse block through snow deposition. Ex-
isting hypotheses do not provide strong mechanistic links be-
tween observed meteorological changes and the slope failure.

The stability of a slope can be described by the bal-
ance between two terms: driving forces (FD) and resistive
forces (FR). Driving forces are primarily gravitational, while
resistive forces are primarily related to slope cohesion and
friction (Appendix B). For a detached wedge such as the
Chamoli collapse block, dominant resistive forces are likely
friction along the margins and base of the collapsed block.
The balance between these two forces is known as the factor
of safety FS:

FS=
FR

FD
. (1)

A slope is considered unstable when its factor of safety
falls below 1 (e.g., Záruba and Mencl, 2014; Das and Sivaku-
gan, 2016).

The Chamoli collapse area is composed of heavily jointed
bedrock (e.g., Shugar et al., 2021). A pure translational pre-
collapse motion is consistent with a collapse block basal
shear plane along a single bedding plane. High-resolution
post-collapse satellite imagery also suggests that the detach-
ment occurred along a bedding plane. This failure plane may
have been superficially weakened by freeze–thaw fractur-
ing (Qi et al., 2021; Kropáček et al., 2021; Shrestha et al.,
2021) or at greater depth by changes in permafrost condi-
tions (e.g., Gruber and Haeberli, 2007; Krautblatter et al.,
2013). The surface velocity peaks in summers 2017 and 2018
suggest that surface meltwater may have reached into the
later failure surface. Meltwater infiltration may directly im-
pact friction (FD) and, in a delayed way, also alter ground
temperatures through advection of heat and release of la-
tent heat upon refreezing. Gruber and Haeberli (2007) note
that advection-driven melt of permafrost thaw corridors may
drive destabilization of large volumes of rock. Deep per-
mafrost thaw may occur over long timescales (e.g., Gruber
and Haeberli, 2007; Krautblatter et al., 2013) and provides
one potential explanation for the 5-year lag between initial
instability and collapse.

The deep headwall crack provides accommodation space
for cumulative snow accumulation and loading and also lim-
its the melting of accumulated snow by reducing its surface
exposure. Observations of elevation change over 2015–2018
show the opening of a crack at least 25 m deep at the collapse
block headwall (Fig. 8a), although DEMs may underestimate
the true depth of the crack due to the viewing angle, slope ge-
ometry, and stereo-DEM processing parameters. The purely
translation model of block motion (Fig. 8b) suggests that the
true crack depth would have been closer to 150 m. Snow, ice,
or rock debris loading within a headwall crack would exert a
horizontal force on the collapse block. This horizontal force
(“push”) acts to reduce the factor of safety both by directly
increasing the driving force of the collapse block and reduc-
ing the angle between the driving force vector and slope di-
rection (equivalent to an increase in slope; see Appendix B).

Accumulation of snow or ice in the crack is visible in
optical satellite imagery, with additional input from snow–
ice avalanches from the overlying slope (e.g., Fig. 3b–d). A
storm in the days preceding the 7 February collapse brought
substantial snowfall to the Chamoli region, with local snow-
fall estimates ranging from 8.5 to 48 mm water equivalent
of precipitation (Shugar et al., 2021; estimates from local
weather stations and the Weather Research and Forecasting
model). We use these data to calculate the potential range
of snow loading on the collapsed block, which is equivalent
to a slope-parallel force of 7000–40 000 kN (Appendix A3).
Considering the total precipitation between crack initiation
(March 2016) and collapse (February 2021) this rises to
6.3× 109 to 9.9× 109 N, i.e., 2 %–3 % of the total driving
force of the collapse block.

In the absence of in situ instrumentation and observa-
tions, it may not be possible to determine the exact cause
of the failure at Chamoli. Nevertheless, we propose a mech-
anism which is compatible with both the lag between ini-
tial instability and collapse and the timing of the even-
tual collapse. Snow and ice loading in the headwall crack
would progressively increase the driving force of the collapse
block, while meltwater infiltration and permafrost degrada-
tion in a bedrock fracture would steadily reduce its resistive
forces (basal friction). The combination of these two pro-
cesses would reduce the factor of safety and pre-condition
the block for failure, with the early February positive tem-
perature anomaly and loading from snowfall providing a final
driver for mid-winter collapse.

Overall, forecasting the 7 February 2021 Chamoli rock–
ice avalanche prior to its occurrence from remotely sensed
datasets would have been very challenging and certainly not
routine work using well-established methods. Current image
resolution, characteristics, and processing algorithms result
in noise levels on a similar order to the signal itself. Only the
joint interpretation of feature-tracking results, DEM differ-
ences, and satellite images reveals clear precursory signs of
slope instability. In addition, none of the data in this study are
able to adequately forecast the timing of collapse. As such,
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current archives of satellite images do not currently appear
to be practical for forecasting individual events. At the same
time, this should not prevent remote monitoring of hazardous
zones, particularly when adjacent to vulnerable areas. Every
slope failure will exhibit a different range of pre-collapse sig-
nals, and new instabilities might be recognized in some cases.
Even though the forecasting of individual events remains a
challenge, these data have value for identifying zones of the
highest risk for in situ monitoring or the installation of early-
warning systems (Cook et al., 2021).

Feature tracking, DEM difference, and InSAR datasets can
be processed and analyzed on a regional or even global scale
– and in many cases pre-processed datasets are already avail-
able online (e.g., Morin et al., 2016; Gardner et al., 2018;
Crosetto et al., 2020; Dai et al., 2020a; Provost et al., 2022).
While these pre-processed datasets are not generally pro-
duced for slope stability monitoring, they can be used to im-
prove hazard maps and reduce landslide-related damage. Fu-
ture advances in Earth observation satellite capabilities and
processing algorithms will improve the quality of such prod-
ucts.

5 Conclusions

The deadly 7 February 2021 Chamoli rock–ice avalanche
was initiated by the failure of more than 25×106 m3 of
rock and ice high in the Uttarakhand Himalaya. We inves-
tigated the conditions of the avalanche source zone over the
decades preceding collapse through a combination of optical
and radar satellite images. We used feature tracking to cal-
culate horizontal slope displacements and differenced pho-
togrammetrically generated DEMs to investigate vertical dis-
placements. We showed that the collapsed block moved 20–
30 m prior to its collapse, with the most rapid motion oc-
curring around 3 years prior to failure. Comparison between
our datasets and modeled displacement maps shows that the
motion occurred primarily via downslope translation, open-
ing up a deep crack at the headwall. A combination of per-
mafrost degradation and snow and ice debris loading within
this headwall crack may explain both the lag between ini-
tial instability and collapse and the mid-winter timing of the
collapse. Finally, we assessed the potential of these datasets
and approaches for monitoring other unstable slopes. While
they are effective at identifying precursory signals at a known
collapse site, it remains very challenging to predict such col-
lapses with sufficient levels of confidence in high-mountain
areas.

Appendix A: Pre-event DEM mosaics

A1 Cartosat-1 (2017–2018)

We procured four Cartosat-1 stereo pairs from October 2017
and November 2018 (data sheet in the Supplement) to com-

pute DEMs for an intermediate period between 2015 and
2021. Initial assessments of the Cartosat-1 products revealed
high stereo-ray intersection errors (> 100 m) and offsets
from reference elevation models (∼ 400 m), indicative of
poor relative and absolute accuracy of the vendor-supplied
RPC (rational polynomial coefficient) models. To address
these issues we employed ASP’s “bundle_adjust” utility on
all of the eight overlapping images and the correspond-
ing RPC models using similar techniques as described in
Bhushan et al. (2021) and Dehecq et al. (2020). The bun-
dle adjustment procedure matches similar features between
all input overlapping images and minimizes their reprojec-
tion error by updating the RPC camera with translation and
rotation parameters. Using the updated RPC model obtained
after bundle adjustment, we generated a draft DEM from one
of the four pairs using the default ASP settings and aligned
it to a filtered and masked version of the HMA (High Moun-
tain Asia) 8 m DEM mosaic v2 (Shean, 2021). The align-
ment matrix was used to further update the self-consistent
RPC model output from bundle adjustment, ensuring im-
proved absolute geolocation accuracy. Following this, the in-
put images were orthorectified at their native resolution of
2.5 m using the 30 m Copernicus DEM (converted to ellip-
soidal heights), and stereo processing (correlation and trian-
gulation) was performed for all of the four input pairs using
the settings described in Shean and Bhushan (2021).

The Cartosat-1 DEMs were posted at 10 m resolution
with the UTM 44N (Universal Transverse Mercator) pro-
jection and heights above the WGS84 (World Geodetic
System 1984) ellipsoid. Consequently, the DEMs were co-
registered to the HMA 8 m DEM mosaic v2 (Shean, 2021)
over non-glacierized surfaces using a two-step procedure:
ASP’s “pc_align” followed by Nuth and Kääb (2011) align-
ment implemented in Shean et al. (2019) to remove any resid-
ual horizontal and vertical offsets in the final output DEMs.

A2 SPOT 7 (2018)

We also derived a DEM from the 24 December 2018 SPOT 7
stereo pair using ASP’s Semi-Global Matching correlator
and other settings similar to those described in Lacroix
(2016) and Deschamps-Berger et al. (2020). The final output
DEM was posted at a resolution of 10 m with the UTM 44N
projection and heights above the WGS84 ellipsoid. The DEM
was co-registered to the HMA 8 m DEM mosaic v2 (Shean,
2021) over non-glacierized surfaces to ensure consistency
with all the DEM products derived in this study.

Appendix B: Factor of safety calculations for the
Chamoli block

The factor of safety FS is calculated from the balance driving
and resistive forces (e.g., Záruba and Mencl, 2014; Das and
Sivakugan, 2016):
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FS=
FR

FD
=
AC+Mg cos(α) tan(φ)

Mg sin(α)
, (B1)

where A is slip surface area, C is cohesion, M is the mass
of the unstable region, g is gravity, α is slope, and φ is the
friction angle. A system may be considered unstable when
the factor of safety falls below 1.

Introducing an additional horizontal force FH modifies this
balance in two ways: firstly by increasing the driving force
and secondly by altering the angle between the driving force
vector and resistive forces vector as

FS=
AC+Mg cos(α+α′) tan(φ)

FH+Mg sin(α+α′)
. (B2)

The change in angle of the driving force vector α′ is then
given by α′ = arctan

(
FH

Mg sin(α)

)
. In our situation, for a given

mass accumulated in the headwall crack MC, we have FH =

MC sin(α).
The pre-event storm brought 8.5 to 48 mm water equiva-

lent of precipitation (Shugar et al., 2021; estimates from local
weather stations and the Weather Research and Forecasting
model). We may use this data to calculate possible loading
of this snow on the collapsed block – considering a 500 m
long, 70 m wide crack with a 500 m long and fed by a 180 m
wide avalanche zone. Assuming that all of the snowfall was
channeled into the crack, total loadingMC would be equal to

MC = AA ·P · ρP · g, (B3)

with AA being the accumulation area feeding the crack,
P being precipitation (in meters), and ρP being the density
of the precipitation. Total snow loading in the headwall crack
associated with this single precipitation event would there-
fore be 10 000–60 000 kN, equivalent to a slope-parallel hor-
izontal force of 7000–40 000 kN.

IMGERG (Integrated Multi-satellitE Retrievals for GPM,
Global Precipitation Measurement) precipitation data sug-
gest that around 9± 2 m of precipitation fell in the collapse
area between crack initiation in 2016 and collapse in 2021.
Using the same calculation, maximum snow load in the
headwall crack is equal to 8.6–13.5× 109 N, equivalent to a
slope-parallel horizontal force of 6.3–9.9× 109 N. For refer-
ence, the estimated total driving force of the collapse block,
composed of 21×106 m3 of rock and 6×106 m3 of ice, is
∼ 4.0× 1011 N.

Code and data availability. All code used in this study is openly
available online: GIV at https://doi.org/10.5281/zenodo.4904544
(Van Wyk de Vries, 2021), autoRIFT at https://github.
com/nasa-jpl/autoRIFT (Kennedy, 2022), ASP at https:
//github.com/NeoGeographyToolkit/StereoPipeline (Alexan-
drov, 2022), and ISCE (Interferometric synthetic aper-
ture radar Scientific Computing Environment) at https:

//github.com/isce-framework/isce2 (Burns, 2022). The 2015 pre-
event DEM is available at https://doi.org/10.5281/zenodo.4554647
(Bhushan and Shean, 2021), and the 2021 post-event DEM is at
https://doi.org/10.5281/zenodo.4558692 (Shean et al., 2021).
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