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Abstract

The physical structure and properties of protoplanetary disks are typically derived from spatially resolved disk
images. Edge-on disks in particular provide an important view point on the vertical structure and degree of settling
of disks. Such analyses rely on radiative transfer (RT) calculations that are generally computationally intensive due
to the high optical depth of disks. Here we present a machine learning framework that has the potential to
dramatically speed up the forward modeling process by approximating the results of RT calculations. This
framework, trained on an initial set of RT calculations, utilizes an autoencoder neural network to enable the
generation of synthetic scattered light images of edge-on disks directly from a set of physical parameters. We
demonstrate that this framework generates synthetic images 2–3 orders of magnitude faster than using RT
calculations. These machine learning-generated images appear to approximate the RT images well, in particular
preserving their size and shape. We also find a strong correlation between the latent space representations of the
generated disk images and several of their associated physical parameters. Finally, we discuss potential changes to
the framework, such as methods to further improve the image quality, extending the framework to multiple
wavelengths, and inverting the process to infer physical parameters from observed images. Overall, these new tools
have the potential to enable a more efficient and uniform analysis of edge-on disk properties and the initial
conditions of planet formation.

Unified Astronomy Thesaurus concepts: Pre-main sequence stars (1290); Radiative transfer (1335)

1. Introduction

Understanding the diversity of planetary systems is a key
effort in modern astronomy. The heterogeneity of masses,
eccentricities, and orbital periods present within these popula-
tions of planets is thought to stem from the different
mechanisms from which they form, and thus from the initial
conditions of their birth sites (Winn & Fabrycky 2015, and
references therein). Characterizing the structure and evolution
of the protoplanetary disks (PPDs) in which these planets form
is a key step toward understanding the vast variety of systems
that have been observed in the last two decades. Spatially
resolved imaging of disks over a range of wavelengths has
become commonplace (e.g., Benisty et al. 2022; Miotello et al.
2022), providing the necessary data sets to achieve these goals.

A particularly informative case arises when these disks are
viewed edge-on. For the purpose of this study, we classify
PPDs as edge-on disks (EODs) when they are inclined highly
enough to occult the central starlight. In this configuration, a
disk is viewed as two parallel nebulae where the light from the
star scatters off of the outer surfaces of the disk, separated by a
dark midplane (Whitney & Hartmann 1992). This geometry
naturally exposes the vertical structure of the disk. Using
multiwavelength observations, quantities such as the scale
height and degree of settling of the dust component of the disk

can be inferred, whereas these properties typically cannot be
constrained for lower inclination disks (Watson et al. 2007).
Over three dozen EODs are currently known, many of which
have been observed at multiple wavelengths from the optical to
the millimeter (e.g., Burrows et al. 1996; Stapelfeldt et al.
2003; Villenave et al. 2020).
The physical parameters of these disks are typically derived

through forward modeling processes, where synthetic images
are generated through radiative transfer (RT) calculations and
fit to the observations (e.g., Duchene et al. 2010). However,
the high computational cost of these RT calculations provides
a severe limitation on this analysis. Because they are optically
thick at most wavelengths, modeling PPDs requires proper
treatment of multiple scattering during the RT calcula-
tions (Bastien & Menard 1988; Pinte et al. 2006). A further
challenge is imposed by the complexity of the underlying
physics of these objects. In order to avoid oversimplification
of the models, PPDs are typically described using a high
number of free parameters, which adds to the computational
cost. All of these factors contribute to the global computing
time problem for model fitting in this context. This becomes
an issue when high volumes of synthetic images must be
generated, such as during a Markov Chain Monte Carlo
(MCMC) approach. As a result, only a few individual studies
have been conducted using rigorous MCMC treatment to
constrain EOD parameters (e.g., Wolff et al. 2017). While
these can inform our perspectives of individual disks, a large-
scale statistical approach is needed to properly assess EOD
demographics in relation to planet-forming scenarios.
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In order to enable such large-scale analyses, a more efficient
means of modeling EODs is required. In this study, we explore
the use of generative modeling with machine learning to
achieve this goal. The term generative modeling describes the
process of identifying the joint distribution of lower-dimen-
sional variables—which define a so-called latent space—
describing the data of interest. This latent space is an optimized
decomposition of the input data into a minimum number of
quantities that contain most of the information in the image.
Sampling from this distribution enables the generation of new
instances that realistically could have come from the same data
set (Goodfellow et al. 2016). Deep generative models (DGMs)
use neural networks to learn this distribution and create new
samples. The main advantage of using neural networks for the
purpose of this study is the computing time. DGMs such as
autoencoders (AEs; Goodfellow et al. 2016), variational AEs
(Kingma &Welling 2014), and generative adversarial networks
(Goodfellow et al. 2014) have been used to efficiently generate
realistic astronomical data. Examples include the use of
generative adversarial networks by Dia et al. (2019) to generate
realistic images of galaxies, image inpainting conducted by Yi
et al. (2020) using a variational AE to restore missing data of
microwave background maps, and the use of a generative
adversarial network by Mustafa et al. (2019) to generate weak
lensing convergence maps. Generative modeling has even been
used in the context of PPDs. Ribas et al. (2020) used an
artificial neural network to generate spectral energy distribu-
tions (SEDs) of non-edge-on PPDs to allow more efficient
modeling of 23 disks. Convolutional neural networks have also
been used to perform planet mass prediction directly on face-on
images of PPD with gaps (Auddy et al. 2021; Zhang et al.
2022). Given this development, there is hope for significant
gains in using DGMs to improve the efficiency and breadth of
EOD image analysis.

Yet, a major limitation of using DGMs to generate new
synthetic images derives from the fact that they do not connect
predicted observables (disk image or SED) to physical
parameters (such as disk mass, radius, or inclination). In other
words, DGMs can produce plausible disk images but cannot
predict the image corresponding to a specific set of disk
properties. As a result, DGMs are generally not useful for
interpretive purposes. Martínez-Palomera et al. (2020) demon-
strated that this can be addressed by connecting the learned
joint distribution of the latent variables of a generative model to
the physical parameters that characterize the input data. This
allows for the creation of data associated with specific values of
the chosen physical parameters. Martínez-Palomera et al.
(2020) explored the usage of a variational AE paired with a
regressor to generate visually and physically realistic light
curves for periodic variable stars. This concept can be extended
to enable more efficient generation of 2D images directly from
physical parameters, with the potential of drastically improving
the computational cost of modeling processes typically
dependent on RT calculations.

In this study, we demonstrate and assess the efficacy of using
an AE neural network to enable generative modeling of Hubble
Space Telescope (HST)-like scattered light images of EODs,
building off of the machine learning framework described in
Martínez-Palomera et al. (2020). We accomplish this by first
training the AE to learn a compressed representation of our
input data, as described in Section 2. Section 3 describes how
we map the learned latent space representation of the data to the

physical parameters that characterize our EOD models using
multiple regression techniques. We use the resulting framework
to enable image generation directly from physical parameters
without performing RT modeling, as demonstrated in
Section 4. In Section 5, we discuss the successes and short-
comings of our current implementation, as well as the potential
of using ML to efficiently model EODs in the future. We note
that our choice of modeling visible light scattered light images
is mostly a proof of concept in a challenging regime, and that
the work conducted here could be generalized to other
wavelengths and/or observing regimes.

2. Autoencoder Architecture and Training

2.1. Motivation

The machine learning algorithm we used is an AE deep neural
network. AEs are trained to learn a condensed representation of
the inputted observations in order to enable generative modeling
of the data (Goodfellow et al. 2016). An AE consists of two
parts, an encoder and a decoder. The encoder learns how to
compress data into a lower-dimensional latent space representa-
tion, and the decoder then reconstructs the original data from this
representation, prioritizing specific aspects of the data through
this process. By nature, AEs do not provide perfect reconstruc-
tions of the data due to the fact that they discard some
information in order to learn a condensed representation of the
data. Nonetheless, this process represents the input data with a
dramatically smaller number of dimensions while still retaining
the key information that describes it.
The purpose of this study is to train an AE to learn a

condensed representation of synthetic scattered light EOD
images, translating the (187× 187 pixel in our case) images
into latent vectors of only a few values. We then aim to expand
these results beyond the typical usage of AEs and connect the
physical parameters that describe PPDs to the learned latent
space. In order to accomplish this, we use a regressor to learn
the relationship between the disk physical parameters and the
latent space representation of its corresponding image. This
allows us to input any combination of physical parameters,
obtain the corresponding latent space representation, and use
the decoder side of the AE to expand this representation into
the predicted full-sized image. This method of going from
physical parameters to disk image is much more efficient than
computing the images through RT calculations, allowing us to
generate an image corresponding to any combination of
parameters within the range considered during the training
phase in a fraction of the time.
We first tried a simple forward model (FM) as our machine

learning framework, but found that this performed rather poorly
(see Appendix), which led us to use an AE instead. In addition,
the mirrored architecture of AE enables the possibility of
inverting the generative modeling process. This would allow us
to pass an image into our machine learning framework and
receive the predicted physical parameters of the EOD, without
the need for forward modeling. While we leave the inverse
problem for a future work, using an AE leaves this option open.
This choice was further motivated by the work of Martínez-
Palomera et al. (2020), who demonstrated that a (variational) AE
could be used in combination with a regression function to
enable generative modeling of the light curves of variable stars
given a set of physical parameters. The need for a variational AE
in that work arose from the sparse nature of the observational
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data set, which made it difficult to smoothly interpolate between
points in that space. In the present work, we are using synthetic
data and can virtually fill up the entire range of physical
parameters to generate training data, so that a standard AE is
sufficient for our needs. Here, we build off of the AE architecture
presented in Martínez-Palomera et al. (2020), extending it to a
2D problem and tailoring it to handle our own data.

2.2. Autoencoder Architecture

Our AE consists of two types of layers: convolutional layers
that extract key features from the data, and fully connected
layers that combine and compress these features into the lower-
dimensional latent space (see Figure 1).

The convolutional layers follow the standard structure
outlined in Goodfellow et al. (2016), beginning with several
instances of convolution followed by an activation function (AF)
and pooling operation. The convolutional layers operate by
performing 2D convolutions of each image with a kernel, which
is a 2D array of weights that are learned during the training
process. Next, the outputs from the convolution stage pass
through a rectified linear unit (ReLU) AF, i.e., a piecewise linear
function that takes in the output from the previous layer and
directly returns numbers greater or equal to 0, while outputting 0
for negative numbers. This acts as a nonlinear transformation of
the data to allow for greater complexity in the learned model.
These blocks are concluded by a max pooling layer that replaces
a 2D data window of a given size with the maximum value of
the whole window. Each block extracts higher-order features,
and combining many of these blocks helps with covering
different scales of features in the image (Goodfellow et al. 2016).
The AE uses batch normalization within these layers, i.e., the
absolute lowest and highest pixel values in each batch are set to
0 and 1, respectively, to standardize the input data and allow for
faster training times and quicker convergence (Ioffe &
Szegedy 2015). Following standard procedures, we create each
convolutional block as follows: [(Conv + BN)× 2 + MaxPool]
(see Figure 1). We stack 4 of these blocks to reduce the image
size by a factor of 45, taking into account the channels in the
output, from (187× 187) pixels to 16 channels× (7× 7) pixels.

Note that, since the original images are in a single filter, the
number of input channels is 1.
The fully connected layers consist of linear combinations

whose weights are also learned during the training process.
These layers combine the features outputted by the convolu-
tional layers and further compress them into the latent space.
This part of the AE also includes batch normalization layers
(BN) and ReLU activations.
Given this structure, the flow of data through the AE is as

follows. A batch of images enters the encoder, where a stack of 4
convolutional layers (as defined above) reduces the dimensions
of each image into a vector of hundreds of features. Next, we
have a series of fully connected layers that combine the image
features with metadata (which in our case are the physical
parameters that describe the EODs; see Section 2.4 for more
details) and compress the resulting vectors into the latent space,
which acts as the bottleneck of the neural network. After testing
the latent space dimensionalities shown in Table 1, we found
that many yielded similar reconstruction loss values. We found a
latent space dimensionality of 8 to be a good compromise
between capturing relevant features to reconstruct the data and
keeping a low dimensionality. This remained true in both the
case where we embedded the metadata into the architecture and
the case where we did not. This is also convenient because we

Figure 1. Adopted architecture for the autoencoder neural network. The autoencoder takes the inputted images, breaks them down into a lower-dimensional latent
space through a series of layers, and reconstructs them through a symmetric process. Brackets denote a block unit, while each element inside is a layer. In this study,
we adopt nc = 1 (single wavelength image), but the architecture can be readily expanded to multiple images of a given disk. Metadata is the set of physical parameters
that describes each disk.

Table 1
Values of Hyperparameters Tested in the Grid Search

Parameter Grid Search

Batch size [64, 128, 256, 512]
Learning rate [10−5, 10−4, 5 × 10−4, 10−3, 5 × 10−3, 10−2]
Learning rate schedulera [Step, Exponential, Cosine, Plateau]
Latent space dimension [4, 8, 12, 16, 24, 32, 48, 64]
Dropout probabilityb [0.01, 0.1, 0.2, 0.3, 0.4, 0.5]

Notes. The parameters of the best-performing model are in bold.
a Function that defines how the learning rate changes over training time (steps)
to improve convergence.
b Probability that the neurons in a given layer will be turned off to prevent over
fitting (Srivastava et al. 2014).
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have 8 physical parameters, so choosing this dimensionality
simplifies the regression process, especially if we want to
invert it.

The latent space vectors then pass through the decoder of the
neural network, which uses the same hyperparameters (e.g.,
number and type of layers) as the encoder. The decoder mirrors
the architecture of the encoder, starting with linear layers and
passing the results into a series of deconvolutional layers (see
the decoder side in green of Figure 1). These layers use
transpose convolutions (Zeiler et al. 2010) to expand the
images back to their original shape, as well as convolutional
layers to smooth out the high-frequency noise characteristic of
deconvolved data. A sigmoid AF then rescales the data to
values between 0 and 1 to match the range of the input images
that were previously normalized to this range. Finally, the AE
outputs the rescaled, reconstructed images.

2.3. Training Methodology

The inputs of the AE are synthetic EOD images that are
described in detail in the next subsection; here we focus on the
methodology of the AE training itself. Before training the AE,
we randomly split our data set in separate training (80%) and
test (20%) sets. Since we are focused on the morphology of the
disks and not their absolute brightness, we only need to
preserve the relative fluxes of the pixels. This allows us to
perform image-by-image min–max normalization to speed up
the training process and allow for quicker model convergence.
In a single training epoch, batches of the training images enter
the architecture, where the encoder compresses them into their
latent space representation vectors. The decoder then expands
these vectors into full-sized images. The AE compares the
reconstructed images to their original counterparts using a loss
function, i.e., a function that measures the degree of similarity
between the two images (akin to a goodness-of-fit metric in
standard model fitting problems). The model parameters are
learned by minimizing the loss function via the backpropaga-
tion algorithm (Rumelhart et al. 1986). Each epoch uses the
entire training set split up into batches. When a new epoch
begins, the AE is trained with the same data but in a different
order and with slight variations, such as vertical flipping and
rotations to allow for a rotationally invariant model (Cabrera-
Vives et al. 2017). We trained our neural network using 150
epochs to prevent underfitting and ensure convergence. At the
end of each epoch, the loss function is evaluated for the test
models as an independent check on the quality of the training.

For the loss function, we tested mean squared error (MSE)
and binary cross entropy (BCE) functions. We tested MSE
because it is a standard loss function for neural networks but
found that it did not lead to quality image reconstructions. We
were motivated to try BCE next because our EOD images
contain a sharp contrast between bright and dim pixels, and this
loss function rewards accurate relative pixel brightness levels.
The BCE loss is calculated pixel by pixel using the following
functional form:

[ ˆ ( ) ( ˆ)]= - + - -ℓ y y y ylog 1 log 1 ,n

where y is the pixel value of the input image, and ŷ is the pixel
value predicted by the AE. We then take the average across all
of the pixels in an image as our loss value.

After training the AE with this loss function, we found that
BCE yielded visually convincing image reconstructions and
plausible loss values at that point in the model development

process. As with any machine learning model, AEs require the
user to fix certain hyperparameters that are external to the
model and must be set before training. These hyperparameters
include values such as the dimensionality of the latent space,
the number of each type of layer in our architecture, and the
size of the kernel used for convolution. In order to choose the
hyperparameters of our model, we conducted a grid search
while altering five hyperparameters between commonly used
values (see Table 1), using the sweep method provided by
Weights & Biases (Biewald 2020). In this sweep, we trained a
model for each hyperparameter combination in the grid and
recorded their training and test loss values. Once this was
finished, we selected the model architecture with the lowest
loss values. The loss values for the selected model are shown in
Figure 2, where we can see that the loss decreases throughout
the training process until it converges. The fact that the test loss
value has converged is a sign that enough epochs have been
completed.
We visually inspected the image reconstructions and the

residual maps between the input and predicted images to make
sure they were of sufficient quality. While we selected the model
that performed the best in our sweep, this is not necessarily the
optimal combination of hyperparameters. After training many
AEs with different hyperparameter combinations and comparing
their loss values, we can see that multiple combinations of
hyperparameters provide similarly good results, meaning the
results presented here are not overly sensitive to this selection.

2.4. Training Data Set

We computed the training and testing images using the RT
modeling code MCFOST (Pinte et al. 2006, 2009). In order to
account for the diversity in morphologies that we observe, we
built our training data set around the grid of HST-like 0.6 μm
scattered light PPD images detailed in Angelo et al. (in prep.).
Specifically, the seven key physical parameters listed in
Table 2 are varied, and for each model, scattered light images
are computed using MCFOST at 15 inclinations ranging from
45° to 90°. The resulting images are convolved with an HST
point-spread function (PSF) produced using the TinyTim
package (Krist 1995) and resampled to 0″.04 pixel scale. A
total of 23,040 models at 15 inclinations each were computed
as part of this grid.
The range of parameter values is informed by empirical

distributions and designed to cover the parameter space
sparsely but as broadly as possible (Angelo et al., in prep.).
The models assume a tapered power law surface density profile
(Williams & Cieza 2011),

( ) ( ) ( )S = S g g- +R R R e ,c c
2R

Rc

where Rc is the critical radius of the disk, and γ is the surface
density exponent, which defines how the dust is radially
distributed at radii R<< Rc. A vertically isothermal gas
density profile, ( ) ( )r µ -z e

z
H R2

2
, along with a flared structure,

( ) ( )= bH R H R R0 0 where we arbitrarily set R0= 100 au, is
adopted. Dust settling is implemented following the model of
Fromang & Nelson (2009), which depends on the degree of
turbulence in the disk measured by the α viscosity parameter
and grain size.
Each model is evaluated as part of a single star system 140 pc

away, with a radius of 2 Re and a blackbody temperature of 4000
K. More detail about the choice of variable and fixed parameters
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can be found in I. Angelo et al. (2022, in preparation), but we
stress that the detailed disk parameterization is unimportant for the
purposes of image reconstruction using machine learning. This
exercise could be repeated for any combination of varied para-
meters, or other parameters altogether. So long as the resulting disk
images provide a large diversity of apparent morphologies, the
basic methods and results would remain qualitatively unchanged.

Using this grid allowed us to cover a broad parameter space
while making use of preexisting resources to cut computational
costs. However, the coarse nature of the resulting training set
resulted in preliminary poor image reconstruction for areas of
the parameter space that lay between the grid points. In order to
achieve better interpolation between the grid points, we also
computed 15,000 models with parameter values (linearly or
logarithmically) uniformly randomly sampled between the grid
boundaries, at the same 15 inclinations sampled in the grid.

For both the initial grid and the additional randomly sampled
models, some combinations of parameters lead to non-edge-on
configurations. Since these are outside the scope of this study,
we applied criteria designed in Angelo et al. (in prep.) to filter
out the non-EODs. In short, these tests ensure that the central
star is not seen directly in the image so that all photons received
have scattered off the disk. Altogether, this led to a final library
of 73,764 distinct EOD images to be used in the AE training
(Telkamp et al. 2022). The top row of Figure 3 shows a sample
of RT images with different morphologies, demonstrating the
variety of disk shapes and sizes within this library. In this

figure, we can see that the disks span broad ranges in radius,
thickness, and flaring.

2.5. Autoencoder Results

After training the AE on the RT images, we examined the
reconstructed images, examples of which are shown in Figure 3.
The remarkable similarity between the input and reconstructed
images indicates that the AE successfully learned how to
encapsulate most of the information contained within a disk image
in an 8D space. The images in Figure 3 demonstrate the ability of
the AE to preserve features such as the size and shape of the disks,
the separation between the two nebulae, and the brightness ratio of
the two nebulae. The residuals are structured but faint, indicating
that the reconstructions are close to the input images but not perfect,
as we expected from the dimensionality reduction taking place
before the image reconstruction. The most significant shortcoming
of the AE-produced images is that they are blurrier than the original
RT images. Coupled with the min–max normalization of the image,
which enforces the peak pixel to have the same values in both the
RT and AE images, this leads to residuals, which are predominantly
negative (see Figure 3) but of modest amplitude. Given the broad
diversity of disk images that we trained it on and the inherent
imperfection of such reconstructions, this level of performance
was not guaranteed, although it is a necessary outcome to achieve
our goal of generating new disk images to be used for forward
modeling problems.

3. Connecting the Physical and Latent Space

So far, we have discussed the training of an AE neural
network to reconstruct synthetic images of EODs without any
explicit information about the physical parameters. However,
our ultimate goal is to produce such images for any
combination of physical parameters that are not part of our
limited training set without having to generate computationally
expensive RT model images. Achieving this goal entails
tackling two distinct challenges toward this goal: ensuring that
the AE framework can determine whether a specific combina-
tion of parameters leads to an EOD configuration, and
translating the learned latent space of the AE to the physical
parameters that are astrophysically compelling.

Table 2
Disk Physical Parameters Varied in Creating the Training and Test Images

Parameter Sampling Ranges

Dust Mass (Me) log-uniform 6×(10−7
– 10−4)

Critical Radius Rc (au) log-uniform 10–300
Flaring Exponent β (-) uniform 1.0–1.3
Scale Height H0 (au) uniform 5–25
Inner Radius (au) log-uniform 0.1–10
Surface Density γ (-) uniform −1.5–0
Dust Settling α (-) log-uniform 3×(10−6

– 10−3)

Figure 2. Training (blue) and test (orange) loss values over epoch number. The loss values decrease rapidly during the first few epochs of the training process before
converging. The test losses are more erratic because of the much smaller number of models involved.

5

The Astrophysical Journal, 939:73 (13pp), 2022 November 10 Telkamp et al.



3.1. Automated Edge-on Classification

The AE described so far has only been trained to predict
images of EODs, as our training data set only consists of such
systems. This is because training an AE simultaneously on edge-
on and non-edge-on images represents a much greater challenge
due to the large variation in morphologies the AE would need to
learn to predict. Furthermore, an additional complication would
arise from systems where the star is in direct view, introducing a
bright point source and a high contrast between the star and disk.
This could degrade the quality of the EODs reconstructions,
which are the focus of our analysis.

Since non-EODs are outside of the AE’s learned parameter
space, the AE always predicts EOD-like images, even if the
combination of physical parameters leads to a non-EOD
configuration. Therefore, without determining a priori which
combination of parameters leads to an EOD configuration, the
output of the AE could not be trusted.

To solve this problem, we trained a random forest classifier
(RFC; Breiman 2001) to predict, from a set of physical
parameters, whether a disk would be considered an EOD based
on the criteria defined by Angelo et al. (in prep.). RFCs train a
set of decision trees on subsets of the data and then average the
results of all of the trees. We trained and tested the RFC using all
of the EOD and non-EOD image parameters in both the grid of
models and the batches generated to fill in the gaps. We used a
90%–10% split between training and test images. We used 800
trees in the random forest with a binary classification threshold
of 0.61, which we fine-tuned using precision-recall curves. We
performed a grid search to select the number of trees, number of
features considered at each split, maximum number of levels in a
tree, minimum number of samples needed to split a node,

minimum number of samples needed at each leaf node, and
whether or not bootstrapping is used (Breiman 2001).
From the testing results (see Table 3), we found the RFC to

correctly predict the class of a disk in the vast majority of cases.
While its false negative probability is larger than one could hope,
we note that the RFC-determined category is correct in 97.5% of
cases. In other words, we have successfully trained the RFC to
have a similar (and small) fraction of both false positives and false
negatives. In addition, the false predictions showed no clear
correlation with any of the physical parameters. The main features
that drive the classifier were inclination, dust mass, and critical
radius, which are the same features that are most correlated with
the latent space (see Section 3.3).

3.2. Correlation with Physical Parameters

We have shown that the AE has learned how to compress the
data into latent vectors while retaining the necessary informa-
tion to produce accurate image reconstructions. Given this
framework, we could generate a random sample of latent space
vectors and pass them through the decoder side of the trained
model to create new EOD images. However, these images
would be untethered by any physical constraints and would
have limited usefulness in a forward modeling context. Instead,

Figure 3. Comparison between machine learning (ML) and RT images during the testing phase. The first two rows represent the RT and AE-reconstructed images,
respectively, while the third row shows the difference between the two. The fourth row provides a histogram plot of the residual map evaluated at all pixels with a
brightness of at least 3% of the peak, in either the ML or RT image. For cosmetic purposes, all images are shown with the same orientation, corrected for the flips and
rotations introduced during the training phase.

Table 3
Random Forest Classifier Precision-recall Probabilities for the Test Images

True Category Nimages Predicted Category

Non-EOD EOD
Non-EOD 48,174 0.99 0.01
EOD 7380 0.12 0.88
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we aim to connect the learned latent space to the physical
parameters that define our images, allowing the generation of
new images directly from physical parameters. In order to
connect the two parameter spaces, however, a sufficiently
strong correlation must already exist between them. In other
words, the AE must encode enough information about the
physical parameters into the latent space to allow us to identify
a strong relationship between the latent and physical parameter
spaces. To ensure that this type of connection can be made, we
embed the physical parameters that describe the input images
into the latent space along with their compressed representa-
tions. We accomplish this by injecting the physical parameters
as extra features after the convolutional layers (see the encoder
side of Figure 1). In this way, the spatial features extracted by
the convolutional layers are combined with the physical
parameters when passing through the fully connected layers.

The insertion of the physical parameters into the latent vector
is intended to strengthen the correlation between the embedded
data and the physical parameters themselves. In Figure 4, we
visualize a series of t-distributed stochastic neighbor embed-
ding (t-SNE; van der Maaten & Hinton 2008) projections of the
latent space, color-coded by physical parameter value. T-SNE
projections map a high-dimensional data space to 2D
representations that preserve the distances between data points.
A visual examination of these projections reveals clear
groupings by disk parameter values. This indicates that disks
of similar physical parameter values are close together in the
latent space, meaning the AE has embedded a correlation
between the multidimensional latent and physical parameter
spaces. In these projections, we observe strong clustering by
dust mass (see left projection in Figure 4), critical radius,
flaring exponent, scale height, and inclination. Not all of the
physical parameters, however, appear to be correlated with the
latent space. As shown in the right plot of Figure 4, the surface
density exponent values appear to be randomly distributed in
the t-SNE projection, which suggests that the AE has not
learned a connection between this parameter and the embedded
data. We observe a similarly random scatter in the t-SNE
projections for the inner radius and the dust settling parameter.
Rather than pointing at a shortcoming of the neural network,
this confirms the expectation that these parameters have a much
smaller, if any, impact on the morphology of the disks observed

in scattered light (e.g., Burrows et al. 1996). This supports the
idea that the AE has only learned physically significant
connections between the disk morphology and physical
parameters.
To investigate the strength of the connection between the

physical and latent spaces, we calculate the Spearman
correlation coefficient between each physical-latent vector pair.
As shown in Figure 5, each latent parameter exhibits significant
correlation with one or more physical parameters. The presence
of correlation between each latent space variable and multiple
physical parameters indicates the presence of a nonbijective
relationship between the spaces. We also observe that certain
physical parameters, such as the disk inclination, exhibit a
much stronger connection with the latent space and will thus
control the generative process more. Other parameters, such as
the surface density exponent, show a much weaker relationship
with the latent space. These physical parameters also are not
associated with any grouping in the t-SNE plots, as shown in
Figure 4. Both of these facts indicate that these parameters will
remain poorly constrained, as expected from the minimal
impact that these parameters have on the morphology of the
EODs observed in scattered light (e.g., Burrows et al. 1996).
We note that the Spearman correlation coefficients are very
similar in both the case where we embed the physical parameter
information into the latent space and the case where we do not,
with slightly larger correlations in the former case. This
indicates that the AE gains most of its knowledge from the
images, not the parameters themselves. Since the inclusion of
the physical parameters does not improve or diminish the
reconstructed images, the motivation to include them is mostly
to strengthen the correlation with the latent space.
We also calculated the Pearson correlation coefficients

between the two sets of variables as a test of their linear
relationship and found that there is an almost nonexistent linear
correlation between most of the physical parameters and the
latent variables. This indicates that the mapping between the
physical and latent space parameters that our machine learning
framework has learned is nonlinear. This is in line with the
known degeneracies in fitting scattered light images of PPDs
(e.g., Burrows et al. 1996; Wolff et al. 2021).

Figure 4. T-SNE projection color-coded by dust mass (left) and surface density exponent (right). The left panel provides an example of a parameter that is well
correlated with the latent space, whereas the right panel is an example of a parameter with weak or no correlation with the latent space.
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3.3. Identifying the Relationship between Physical and Latent
Space Parameters

To leverage the correlation between the latent and physical
parameter spaces, we aimed to identify an explicit mapping
between them. Such mapping would take in a particular
combination of physical parameters and predict its corresp-
onding position in the latent space. Due to degeneracies and the
intrinsically imperfect nature of the latent space representation of
the data, we expected to need a nonlinear mapping between the
two spaces. To confirm this assumption, we first tried using an
ordinary least squares linear regression model, using scikitʼs
implementation (Pedregosa et al. 2011) to produce an invertible,
multivariate linear model mapping the physical parameters of
our data to their latent space vectors. As predicted, this produced
poor results, with a coefficient of determination (R2) score of
0.56 (compared to the ideal score of 1 for a perfect prediction).

To produce a nonlinear mapping between the two spaces, we
tried random forest regression, where we used the random forest
regressor (RFR) implementation of Pedregosa et al. (2011) to
predict the latent space vectors from a given physical vector.
This technique is similar to the RFC discussed in Section 3.1 but
returns values of continuous variables instead of a class. We
trained an RFR with 100 trees. This method consistently attained
an R2 score of 0.91 in the case where we embedded the physical
parameters in the latent space and 0.90 when we did not. As with
the correlation coefficients, the minimal difference between these
two scores indicates that the AE embeds sufficient information
about the physical parameters into the latent space regardless of
whether or not we provide the parameters during training. Since
the RFR performed significantly better than the linear regressor,
we adopted this method in our image generation process. Once
we trained the RFR to map physical parameters to latent space

values, we were equipped to generate new disk images directly
from physical parameters.

4. End-to-end Framework

Figure 6 shows a schematic of the overall process of
translating a set of physical parameters into an EOD image.
This process begins with a set of physical parameter values
sampled between the boundaries described in Table 2. Next,
the parameters are either (a) input into the (MCFOST) RT code,
which outputs the corresponding scattered light image directly
at a comparatively high computational cost, or (b) inserted into
the machine learning framework. If the latter route is taken, the
RFC first uses these parameters to predict whether or not the
disk is viewed as edge-on. For non-EODs, the algorithm
outputs the PSF as the image to represent the fact that the
image is dominated by a central star. For EODs, the RFR
function translates the physical parameter combination into a
latent vector. This latent vector then passes through the decoder
side of the AE. The result is a full-sized image that our machine
learning framework has predicted from the inputted physical
parameters.
To assess the performance and efficiency of this end-to-end

algorithm in approximating the results of RT calculations, we
defined a group of 300 test disks with randomly sampled
parameter values and computed both the machine learning and
RT images that correspond to these points in parameter space.
On average, the RT process took 5.1± 2.3 s to generate an
image at a single inclination, whereas the machine learning
image generation took 18.9± 4.4 ms. Typically, computing an
ML image using a CPU takes around 2 to 3 orders of
magnitude less time than computing the corresponding RT
image. Using a single graphics processing unit (GPU), another
order of magnitude in efficiency is gained. Furthermore, when
using a GPU, the majority of the computing time stems from
porting information between the CPU and GPU. Thus, it takes
roughly the same amount of time to generate an arbitrarily large
batch of images (only constrained by the GPU memory) from a
set of physical parameter combinations as it does to generate a
single image. All in all, this work confirms that the computing
time gain from the machine learning process has the potential
to speed up the modeling of any disk image by several orders
of magnitude. This is particularly true for image modeling in an
MCMC framework, as a single batch of many walkers can be
computed at once on a GPU.
After we obtained the RT and machine learning images, we

computed the residual maps that correspond to each ML–RT
pair. These images are shown in Figure 7. Similar to the
reconstructions in Figure 3, the machine learning-generated
images typically preserve features of the original disk image,
such as the disk size and shape and the brightness ratio and
distance between the two nebulae. The median fraction of
pixels which are within 5% of the RT intensity is 72%. It is
important to stress that, unlike the reconstructions shown in
Figure 3, these new disk images were generated directly from
the physical parameters corresponding to a given disk. From
this figure, we can see that the AE is able to produce images
reasonably close to the corresponding RT images without any
RT calculations or previous knowledge about the disk
morphology. While the generated images are able to preserve
the disk size and shape without this information, on a more
detailed level, the images are somewhat noisy and blurry. The
same shortcoming was observed in the reconstructed images

Figure 5. Spearman pairwise correlation coefficients between latent and
physical parameters (vertical and horizontal axes, respectively). Greater color
saturation indicates a stronger connection between parameters.
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used in the training process (see Figure 3) and thus is an
intrinsic limitation of the current AE implementation.

To further evaluate the performance of the AE, we also
considered how its predictions compared to images of known

EODs. To this end, we selected two objects that have previously
been modeled using the same disk parameterization as we adopted
here. These disks are ESOHα 569 and STSC2D J163131.2-
242627 (Wolff et al. 2017, 2021, respectively). For both systems,

Figure 6. Schematic showing the image generation process from physical parameters, either through the radiative transfer code or through the machine learning
pipeline.

Figure 7. Comparison of EOD images computed through the standard RT approach (top row) and through the end-to-end machine learning pipeline (second row from
top). As in Figure 3, the bottom two rows show the difference between the two and a histogram of the residuals for all pixels with a brightness of at least 3% of the
peak, in either the ML or RT image. Unlike the reconstructions shown in Figure 3, these images were generated directly from physical parameters.
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we extracted the physical parameters from the best-fitting RT
model to the HST image of the disk. We adjusted a handful of
parameters to remain within the scope of the AE (see Table 2): the
flaring of the STSC2D J163131.2-242627 disk was reduced from
the original (unphysical) value of β= 1.5 to 1.3, the maximum
value considered here. Similarly, the surface density exponent for
ESOHα 569 was modified from γ=− 1.77 to −1.5. Since the
model for ESOHα 569 did not include settling, we set the
turbulence parameter to its highest value (α= 3 10−3), which
effectively leads to negligible settling. Finally, we adjusted the
characteristic disk radius of ESOHα 569 from Rc= 125 au down
to 100 au to compensate for the fact that, in the original model, the
disk surface density was artificially truncated at that radius. We
also note that the total dust mass for both disks is close to, if not
equal to, the maximum value considered in our study. As a
general rule, using ML predictive models close to the edge of the
parameter space included in the training set increases the risk
of incorrect predictions. Nonetheless we proceed to compute RT
and ML images corresponding to both sets of physical parameters
(see Figure 8). Interestingly, the two disks represent markedly
different morphologies, thus providing complementary tests of the
performance of the AE. The shortcomings of the ML prediction
discussed above are also apparent for these models. The aspect
that is least well reproduced is the lower nebula in the
STSC2D J163131.2-242627 disk. This is most likely a conse-
quence of the AE difficulty in reproducing sharp structures,
further enhanced by the large flux ratio between both nebulae.

We will discuss possible solutions to the AE shortcomings in
Section 5. Nonetheless, these results shown here demonstrate
that our machine learning framework can approximate, albeit
imperfectly, RT calculations of EOD scattered light images
using a computing time that is several orders of magnitude
smaller.

5. Discussion and Conclusion

In its current state, the machine learning algorithm we presented
here is capable of producing realistic and reasonably accurate
synthetic EOD images directly from a set of physical parameters.
These images typically take 2–3 orders of magnitude less time to
generate than the corresponding RT images, significantly reducing
the computation time of any model fitting technique (such as
MCMC runs) that requires the generation of large volumes of
images. While the AE produces images that are qualitatively very
similar to the ground truth RT calculations, the algorithm has
several limitations that currently restrict its quantitative accuracy.
In particular, the quality of the produced images is degraded by
extraneous noise as well as excessive blurriness, which we have
not been able to suppress despite a large sweep of the
hyperparameters of the model. Nonetheless, future modifications
of the AE architecture could alleviate some of these issues.
For example, extending the AE architecture to a variational AE

would help produce smoother latent spaces. This would improve
the sampling process and could also lead to a better quality of
reconstructed images. A second advantage of variational AEs is
that their loss function can be used to impose orthogonality
between the dimensions of the latent space, which could help to
isolate different aspects of the generative process. Furthermore,
Böhm & Seljak (2020) recently showed that coupling a
normalizing flow with an AE (making it a probabilistic AE)
improves the sample quality without requiring special tuning
parameters with a longer training time, unlike variational AEs. In
that approach, a normalizing flow is used to probabilistically
interpret the latent space after training the AE. This allows for the
generation of new data sets by sampling from the normalizing
flow distribution and using the normalizing flow to obtain a point
in the latent space. The latent space coordinate is then passed
through the decoder to generate the corresponding image. Other

Figure 8. Observed 0.6 μm images of two known EODs (left column; Wolff et al. 2017, 2021) and corresponding RT- and ML-predicted model images. All images
are shown on the same angular scale and stretch. The two faint point sources seen in the image of STSC2D J163131.2–242627 are unrelated background stars. Note
that the ESO Hα 569 hosts a jet that is visible in the HST 0.6 μm and increases the disk’s peak brightness toward its center. The image normalization applied here thus
artificially reduces the contrast in the observed image compared to the RT and ML images.

10

The Astrophysical Journal, 939:73 (13pp), 2022 November 10 Telkamp et al.



issues, such as the limited sensitivity of the algorithm to small
changes in parameter values, could represent a fundamental
limitation to the accuracy of results derived from using machine
learning-generated images, but the work presented here has not
reached that point, and it could be that these limitations exist at a
level that is negligible in practice. It is therefore valuable to
continue to improve the architecture and performance of the AE
presented here.

While the current implementation of the AE is designed to
generate 0.6μm scattered light images, it can be easily extended to
make simultaneous predictions at multiple wavelengths. To do
this, the AE needs to be trained on images at multiple wavelengths.
The architecture we have adopted can facilitate this, since the
various images of each model can be injected as associated
multiple channels of a single data set. This extension would enable
the use of the AE in multiwavelength studies of PPD, which is
desirable as different wavelengths are generally sensitive to
physical parameters in different ways. In particular, thermal
continuum emission maps probe millimeter-sized grains in the
disk, which have decoupled from the gas component. As a result,
disks are typically more compact and vertically thinner in the
millimeter regime (e.g., Louvet et al. 2018; Villenave et al. 2020).
Extending the image generation process presented here to the
millimeter regime would allow us to better analyze the degree of
dust settling in these disks, a key process in the formation of
planets. Crucially, the physical distinction between thermal
emission and scattered light images is irrelevant to the machine
learning process, so long as it is trained on an adequately defined
set of RT images.

While this process could be extended to non-EODs, this
would present new challenges. By limiting our algorithm to
EODs, we sidestepped the high-contrast problem introduced by
lower inclination disks. Indeed, in these cases, the bright
central point source produces a few pixels of high intensity, and
the disk is distributed over many pixels of very low intensity, a
contrast that is difficult to encode accurately. Besides, the
instrumental PSF results in most pixels containing a complex
(and generally hard to predict) combination of star and disk
light. For both of these reasons, it is likely that an AE such as
the one presented here would produce less accurate predictions.

Ultimately, one of the key goals of this work is to provide a
more efficient means of generating model PPD images. This
would enable uniform analyses of the entire sample of EODs that
have been imaged in scattered light. Furthermore, the machine
learning architecture could provide a solution to the inversion
problem, i.e., a direct path from a disk image to the latent space
and, from there, to the disk’s physical parameters. To enable this,
we would need to identify an inverted regressor between the latent
and physical parameter spaces. We would then use the encoder to
map images into the latent space, and then use the inverted
regressor to get the physical parameters. The RFR currently
implemented in our ML framework is not invertible. One possible
option is the use of normalizing flows, which would provide a
probabilistic estimator of the physical parameters from the latent
space vector. Achieving this inversion would allow us to constrain
the physical parameters of a disk directly from the observations,
without the need for RT or machine learning image generations
and without computationally expensive MCMC runs. Either way,
machine learning image generation of EODs offers a massive
computational gain over RT calculation and, provided that the
limitations of our current AE architecture can be overcome, could
enable large-scale, systematic, and uniform analyses of large

samples of PPDs. In turn, this would inform the role that disk
structure plays in planet formation.
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Apprenticeship Program.
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Appendix
Forward Model

A.1. Forward Model Architecture

While there were incentives to build an AE model for EOD
image generation, we also wanted to test the limitations of a
simpler model. We aimed to demonstrate the need for the inherent
complexity of the AE by testing the performance of a model that
does not make use of an encoder and therefore does not break
down an image into latent space. To this end, we built an FM that
takes in a list of physical parameters as input, instead of an image
like the AE, and aims to directly infer an EOD image. That FM is
trained using the same data set as the AE.
Our FM mirrors the functionality of the decoder structure of

the AE (only swapping the latent space for the physical
parameter space), and their architectures are thus similar,
consisting of the same two types of layers: convolutional and
fully connected layers. In order to allow our model to perform
well, a variety of structures and hyperparameters were tested.
We varied kernel size on the convolutional layers, AFs (i.e.,
hyperbolic tangent, ReLU, sigmoid), number of neurons in the
fully connected layers, as well as number of convolutional and
fully connected layers, among others. We found that a
LeakyReLU AF combined with a higher number of fully
connected layers and slightly fewer convolutional layers than
the AE worked best for our structure.
Our fully connected blocks consist of fully connected linear

layers (FC), BN, and LeakyReLU AFs, connected to dropout
layers (DO). Our fully connected blocks are structured as follows:
[FC + BN + AF + DO]x7 + [FC + AF]. The complete FM
contains a total of 8 blocks with the last block connected to an
activation layer and directly to the convolutional layers. The
convolutional layers’ architecture is exactly the same as that of the
AE: [DeConv + 2x(Conv + BN)]x4, where DeConv refers to a
deconvolutional layer, and Conv to a convolutional layer, and each
block is structured as previously defined for a total of 4 blocks.
However, we have an extra block that consists of a deconvolution
to convolution layer with a sigmoid AF at the end to rescale the
data values accordingly. Due to the restricted similarity in structure
of the FM to the AE, the flow of data is similar with the defining
difference that we do not feed the model images but rather the
physical parameters.
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A.2. Forward Model Performance

After testing our FM and comparing its performance to the
AE model, we have found that, on average, the training time of
the FM is about 4 times faster than the AE model due to its

simpler architecture. On the downside, the FM generates lower
quality images with often very high residuals (see Figure 9). By
examining the loss distribution of the two models (Figure 10),
we found that the FM has a higher loss function than the AE,

Figure 9. Comparison of predicted images from both machine learning models. The middle row represents the true images obtained from the RT model from random
combinations of physical parameters. The second and fourth rows are the images recreated by the AE and the FM, respectively. The first and last rows show the
residuals from the RT image (i.e., RT—ML, where ML is a model either FM or AE).

Figure 10. Distribution of loss values for roughly 15,000 individual images computed with the FM and AE models (blue and orange histograms, respectively),
indicating that the latter generally performs significantly better than the former.
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i.e., the AE model produces more accurate images with a
higher quality. An important general trend is that the FM
performs poorly when the disks are the most compact (in either
direction) but generates a roughly similar image to the AE-
generated image for the larger and thicker disks. After testing
the limitations of this FM, we conclude the AE model to
perform better in general, producing higher quality images,
lower residuals, and a lower loss function. Therefore, we have
elected to use an AE model over the simpler FM for the
purposes of this work.
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