Skip to Main content Skip to Navigation
New interface
Journal articles

A Machine Learning Framework to Predict Images of Edge-on Protoplanetary Disks

Abstract : The physical structure and properties of protoplanetary disks are typically derived from spatially resolved disk images. Edge-on disks in particular provide an important view point on the vertical structure and degree of settling of disks. Such analyses rely on radiative transfer (RT) calculations that are generally computationally intensive due to the high optical depth of disks. Here we present a machine learning framework that has the potential to dramatically speed up the forward modeling process by approximating the results of RT calculations. This framework, trained on an initial set of RT calculations, utilizes an autoencoder neural network to enable the generation of synthetic scattered light images of edge-on disks directly from a set of physical parameters. We demonstrate that this framework generates synthetic images 2-3 orders of magnitude faster than using RT calculations. These machine learning-generated images appear to approximate the RT images well, in particular preserving their size and shape. We also find a strong correlation between the latent space representations of the generated disk images and several of their associated physical parameters. Finally, we discuss potential changes to the framework, such as methods to further improve the image quality, extending the framework to multiple wavelengths, and inverting the process to infer physical parameters from observed images. Overall, these new tools have the potential to enable a more efficient and uniform analysis of edge-on disk properties and the initial conditions of planet formation.
Complete list of metadata

https://hal-insu.archives-ouvertes.fr/insu-03860260
Contributor : Nathalie POTHIER Connect in order to contact the contributor
Submitted on : Saturday, November 19, 2022 - 9:07:20 AM
Last modification on : Sunday, November 20, 2022 - 3:05:00 AM

File

Telkamp_2022_ApJ_939_73.pdf
Publisher files allowed on an open archive

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

Collections

Citation

Zoie Telkamp, Jorge Martínez-Palomera, Gaspard Duchêne, Aishabibi Ashimbekova, Edward Wolfe, et al.. A Machine Learning Framework to Predict Images of Edge-on Protoplanetary Disks. The Astrophysical Journal, 2022, 939, ⟨10.3847/1538-4357/ac96f1⟩. ⟨insu-03860260⟩

Share

Metrics

Record views

0

Files downloads

0