Validation of Aeolus wind profiles using ground-based lidar and radiosonde observations at La Réunion Island and the Observatoire de Haute Provence - INSU - Institut national des sciences de l'Univers Accéder directement au contenu
Article Dans Une Revue Atmospheric Measurement Techniques Discussions Année : 2022

Validation of Aeolus wind profiles using ground-based lidar and radiosonde observations at La Réunion Island and the Observatoire de Haute Provence

Mathieu Ratynski
  • Fonction : Auteur correspondant
  • PersonId : 1186093

Connectez-vous pour contacter l'auteur
Sergey Khaykin
Alain Hauchecorne
  • Fonction : Auteur
  • PersonId : 914935
Philippe Keckhut
  • Fonction : Auteur
  • PersonId : 918122

Résumé

European Space Agency's (ESA) Aeolus satellite mission is the first Doppler wind lidar in space, operating in orbit for more than three years since August 2018 and providing global wind profiling throughout the entire troposphere and the lower stratosphere. The Observatoire de Haute Provence (OHP) in southern France and the Observatoire de Physique de l'Atmosphère à La Réunion (OPAR) are equipped with ground-based Doppler Rayleigh-Mie lidars, which operate on similar principles to the Aeolus lidar, and are among essential instruments within ESA Aeolus Cal/Val program. This study presents the validation results of the L2B Rayleigh-clear HLOS winds from September 2018 to January 2022. The point-by-point validation exercise relies on a series of validation campaigns at both observatories: AboVE (Aeolus Validation Experiment) that were held in September 2019 and June 2021 at OPAR, and in January 2019 and December 2021 at OHP. The campaigns involved time-coordinated lidar acquisitions and radiosonde ascents collocated with the nearest Aeolus overpasses. During AboVE-2, Aeolus was operated in a campaign mode with an extended range bin setting allowing inter-comparisons up to 28.7 km. We show that this setting suffers from larger random error in the uppermost bins, exceeding the estimated error, due to lack of backscatter at high altitudes. To evaluate the long-term evolution in Aeolus wind product quality, twice-daily routine Météo-France radiosondes and regular lidar observations were used at both sites. This study evaluates the long-term evolution of the satellite performance along with punctual collocation analyses. On average, we find a systematic error (bias) of-0.92 ms-1 and-0.79 ms-1 and a random error (scaled MAD) of 6.49 ms-1 and 5.37 ms-1 for lidar and radiosondes, respectively. 1 Introduction Wind velocity is one of the fundamental meteorological variables describing the atmospheric state. Assimilating atmospheric wind observations into numerical weather prediction (NWP) models is crucial to understand the evolution and structure of weather dynamics, air quality monitoring, forecasting, and climate and meteorological studies. Accurate NWPs are essential
Fichier principal
Vignette du fichier
egusphere-2022-822.pdf (1.72 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

insu-03850451 , version 1 (13-11-2022)
insu-03850451 , version 2 (28-02-2023)

Licence

Paternité - Pas d'utilisation commerciale

Identifiants

Citer

Mathieu Ratynski, Sergey Khaykin, Alain Hauchecorne, Robin Wing, Jean-Pierre Cammas, et al.. Validation of Aeolus wind profiles using ground-based lidar and radiosonde observations at La Réunion Island and the Observatoire de Haute Provence. Atmospheric Measurement Techniques Discussions, 2022, pp.(Discussion). ⟨10.5194/egusphere-2022-822⟩. ⟨insu-03850451v1⟩
229 Consultations
50 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More