Satellite-based evaluation of AeroCom model bias in biomass burning regions - INSU - Institut national des sciences de l'Univers Accéder directement au contenu
Article Dans Une Revue Atmospheric Chemistry and Physics Année : 2022

Satellite-based evaluation of AeroCom model bias in biomass burning regions

Qirui Zhong
  • Fonction : Auteur
Nick Schutgens
  • Fonction : Auteur
Guido van der Werf
  • Fonction : Auteur
Twan van Noije
  • Fonction : Auteur
Kostas Tsigaridis
  • Fonction : Auteur
Susanne E. Bauer
  • Fonction : Auteur
Tero Mielonen
  • Fonction : Auteur
Alf Kirkevåg
  • Fonction : Auteur
Øyvind Seland
  • Fonction : Auteur
Harri Kokkola
  • Fonction : Auteur
David Neubauer
  • Fonction : Auteur
Zak Kipling
  • Fonction : Auteur
Hitoshi Matsui
  • Fonction : Auteur
Paul Ginoux
  • Fonction : Auteur
Toshihiko Takemura
  • Fonction : Auteur
Philippe Le Sager
  • Fonction : Auteur
Samuel Rémy
  • Fonction : Auteur
Huisheng Bian
  • Fonction : Auteur
Mian Chin
  • Fonction : Auteur
Kai Zhang
  • Fonction : Auteur
Jialei Zhu
  • Fonction : Auteur
Svetlana G. Tsyro
  • Fonction : Auteur
Gabriele Curci
  • Fonction : Auteur
Anna Protonotariou
  • Fonction : Auteur
Ben Johnson
  • Fonction : Auteur
Joyce E. Penner
  • Fonction : Auteur
Nicolas Bellouin
  • Fonction : Auteur
Ragnhild B. Skeie
  • Fonction : Auteur
Gunnar Myhre
  • Fonction : Auteur

Résumé

Global models are widely used to simulate biomass burning aerosol (BBA). Exhaustive evaluations on model representation of aerosol distributions and properties are fundamental to assess health and climate impacts of BBA. Here we conducted a comprehensive comparison of Aerosol Comparisons between Observations and Models (AeroCom) project model simulations with satellite observations. A total of 59 runs by 18 models from three AeroCom Phase-III experiments (i.e., biomass burning emissions, CTRL16, and CTRL19) and 14 satellite products of aerosols were used in the study. Aerosol optical depth (AOD) at 550 nm was investigated during the fire season over three key fire regions reflecting different fire dynamics (i.e., deforestation-dominated Amazon, Southern Hemisphere Africa where savannas are the key source of emissions, and boreal forest burning in boreal North America). The 14 satellite products were first evaluated against AErosol RObotic NETwork (AERONET) observations, with large uncertainties found. But these uncertainties had small impacts on the model evaluation that was dominated by modeling bias. Through a comparison with Polarization and Directionality of the Earth's Reflectances measurements with the Generalized Retrieval of Aerosol and Surface Properties algorithm (POLDER-GRASP), we found that the modeled AOD values were biased by -93 % to 152 %, with most models showing significant underestimations even for the state-of-the-art aerosol modeling techniques (i.e., CTRL19). By scaling up BBA emissions, the negative biases in modeled AOD were significantly mitigated, although it yielded only negligible improvements in the correlation between models and observations, and the spatial and temporal variations in AOD biases did not change much. For models in CTRL16 and CTRL19, the large diversity in modeled AOD was in almost equal measures caused by diversity in emissions, lifetime, and the mass extinction coefficient (MEC). We found that in the AeroCom ensemble, BBA lifetime correlated significantly with particle deposition (as expected) and in turn correlated strongly with precipitation. Additional analysis based on Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) aerosol profiles suggested that the altitude of the aerosol layer in the current models was generally too low, which also contributed to the bias in modeled lifetime. Modeled MECs exhibited significant correlations with the Ångström exponent (AE, an indicator of particle size). Comparisons with the POLDER-GRASP-observed AE suggested that the models tended to overestimate the AE (underestimated particle size), indicating a possible underestimation of MECs in models. The hygroscopic growth in most models generally agreed with observations and might not explain the overall underestimation of modeled AOD. Our results imply that current global models contain biases in important aerosol processes for BBA (e.g., emissions, removal, and optical properties) that remain to be addressed in future research.
Fichier principal
Vignette du fichier
acp-22-11009-2022.pdf (6.3 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

insu-03824365 , version 1 (21-10-2022)

Licence

Paternité

Identifiants

Citer

Qirui Zhong, Nick Schutgens, Guido van der Werf, Twan van Noije, Kostas Tsigaridis, et al.. Satellite-based evaluation of AeroCom model bias in biomass burning regions. Atmospheric Chemistry and Physics, 2022, 22, pp.11009-11032. ⟨10.5194/acp-22-11009-2022⟩. ⟨insu-03824365⟩
26 Consultations
13 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More