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Abstract. Aerosol–cloud interaction is the most uncertain component of the overall anthropogenic forcing of
the climate, in which cloud droplet number concentration (Nd) sensitivity to aerosol (S) is a key term for the
overall estimation. However, satellite-based estimates of S are especially challenging, mainly due to the diffi-
culty in disentangling aerosol effects on Nd from possible confounders. By combining multiple satellite obser-
vations and reanalysis, this study investigates the impacts of (a) updraft, (b) precipitation, (c) retrieval errors,
and (d) vertical co-location between aerosol and cloud on the assessment of S in the context of marine warm
(liquid) clouds. Our analysis suggests that S increases remarkably with both cloud-base height and cloud geo-
metric thickness (proxies for vertical velocity at cloud base), consistent with stronger aerosol–cloud interactions
at larger updraft velocity for midlatitude and low-latitude clouds. In turn, introducing the confounding effect
of aerosol–precipitation interaction can artificially amplify S by an estimated 21 %, highlighting the necessity
of removing precipitating clouds from analyses of S. It is noted that the retrieval biases in aerosol and cloud
appear to underestimate S, in which cloud fraction acts as a key modulator, making it practically difficult to bal-
ance the accuracies of aerosol–cloud retrievals at aggregate scales (e.g., 1◦× 1◦ grid). Moreover, we show that
using column-integrated sulfate mass concentration (SO4C) to approximate sulfate concentration at cloud base
(SO4B) can result in a degradation of correlation with Nd, along with a nearly twofold enhancement of S, mostly
attributed to the inability of SO4C to capture the full spatiotemporal variability of SO4B. These findings point
to several potential ways forward to practically account for the major influential factors by means of satellite
observations and reanalysis, aiming at optimal observational estimates of global radiative forcings due to the
Twomey effect and also cloud adjustments.

1 Introduction

Aerosol particles, by acting as cloud condensation nuclei
(CCN), can modify cloud properties and precipitation forma-
tion, altering the radiative flux at the top of the atmosphere,
which is known as effective radiative forcing from aerosol–
cloud interactions (ERFaci) (Forster et al., 2021). Addition-
ally, absorbing aerosols can also alter the cloud distribution
by perturbing the atmospheric temperature structure, known
as semi-direct effects (Allen et al., 2019). ERFaci may be fur-

ther subdivided into (i) the radiative forcing due to aerosol–
cloud interactions (RFaci), also known as the Twomey ef-
fect describing the increased cloud albedo resulting from en-
hancement in cloud droplet number concentration (Nd) due
to an increase in anthropogenic aerosol emissions (Twomey,
1974), and (ii) rapid adjustments, which are essentially the
consequent responses of liquid water path (LWP) and cloud
horizontal extent to changed Nd via the Twomey effect (Al-
brecht, 1989; Ackerman et al., 2004; Zhao and Garrett, 2015;
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Bellouin et al., 2020). Although extensive investigations have
been made to quantify the Twomey effect, significant uncer-
tainties remain regarding its magnitude. This study will dis-
cuss the Twomey effect with a focus on the sensitivity of Nd
to CCN perturbations due to its fundamental role in aerosol–
cloud interactions. Note that the related radiative forcing will
not be estimated here, as the anthropogenic perturbation to
CCN concentrations is highly uncertain and not easily acces-
sible from observational data.

Current climate models suggest diverse magnitudes of the
Twomey effect even with identical anthropogenic aerosol
emission perturbation (Gryspeerdt et al., 2020; Smith et al.,
2020). Thus, observational data at the climate-relevant scale,
i.e., satellite retrievals, are required to quantify and constrain
the Twomey effect globally, which is basically the sensitivity
of Nd to CCN perturbations (Seinfeld et al., 2016). As re-
viewed recently by Quaas et al. (2020), there are, however,
several uncertainties in inferring the Nd-to-CCN sensitivity
(S = d lnNd

d lnNCCN
, where NCCN means proxies for CCN num-

ber concentration) from satellite observations, hindering its
applicability to further evaluate climate models or quantify
RFaci from data. Most of them have been reported to bias
S toward a lower value, in turn leading to an overall under-
estimated ERFaci, including (i) the instrument detectability
limitations on aerosol loading in pristine environments (P.-L.
Ma et al., 2018), (ii) inadequate proxies (such as aerosol opti-
cal depth – AOD, or a variant thereof) for CCN owing to the
lack of information on the aerosol size and chemical com-
position (Stier, 2016; Hasekamp et al., 2019), (iii) the lim-
ited usability of the AOD–Nd relationship in the present day
(PD) to determine the change in Nd caused by anthropogenic
aerosol emission due to differing preindustrial (PI) and PD
aerosol environments (Penner et al., 2011; Gryspeerdt et al.,
2017), and (iv) satellite sampling biases, which tend to dis-
card clouds with a high cloud fraction due to the inabil-
ity to retrieve aerosol under cloudy conditions, thereby re-
sulting in an artificial cloud regime selection (i.e., omit-
ting more retrieval-reliable stratiform clouds; Gryspeerdt and
Stier, 2012; Jia et al., 2021). Additionally, meteorological
conditions, e.g., lower tropospheric stability (P.-L. Ma et al.,
2018), relative humidity (Quaas et al., 2010), availability of
water vapor (Qiu et al., 2017), and wind shear (Fan et al.,
2009), and vertical overlapping status of aerosol and cloud
layers (Costantino and Bréon, 2013; Zhao et al., 2019) also
play roles in regulating aerosol–cloud interactions. It is worth
noting that most of these studies calculated S based on cloud
effective radius rather than Nd, so they are subject to even
more errors from the problem of stratification by liquid wa-
ter path. Currently, a key difficulty in interpreting satellite-
observed aerosol–Nd relationships is to isolate the causal im-
pact of aerosols on Nd from other confounding factors mod-
ifying the variations of aerosol and cloud simultaneously,
specifically (i) updraft, determining cloud development as
well as the maximum supersaturation at cloud base and thus
aerosol population that can be activated, (ii) precipitation

processes, depleting cloud droplets via coagulation and scav-
enging sub-cloud aerosol particles, and (iii) retrieval errors,
biasing retrieved aerosol and cloud properties concurrently.
However, a clear understanding of how they affect the esti-
mates of S quantitatively is lacking from the perspective of
satellite observations (Quaas et al., 2020).

In terms of the updraft, in situ aircraft measurements (Berg
et al., 2011; Jia et al., 2019b), ground-based remote sensing
(Schmidt et al., 2015; McComiskey et al., 2009), and de-
tailed parcel model simulations (Reutter et al., 2009; Chen
et al., 2016) clearly showed the dependency of S on up-
draft, with generally larger S at stronger updraft. In partic-
ular, covariability of updrafts and aerosol concentrations has
been found to result in a stronger S than keeping vertical ve-
locity (w) constant (Bougiatioti et al., 2020; Kacarab et al.,
2020). As noted by Gryspeerdt et al. (2017), the updraft may
roughly explain 20 % of the variability in 1Nd from its PI–
PD difference, adding to the uncertainty of the ERFaci esti-
mate. Despite of the importance of dynamical constraint, it
is not easily applicable to the analysis of satellite data due to
the lack of updraft observations near cloud base at a global
scale. As an alternative, cloud-base height (CBH) may po-
tentially serve as a practical proxy for the updraft at the base
of liquid cloud because of the tightly linear correlation illus-
trated by in situ observations of cumuliform clouds (Zheng
and Rosenfeld, 2015). Although data used to draw this con-
clusion by Zheng and Rosenfeld (2015) were collected from
only three locations, they covered various boundary condi-
tions over both continents and oceans. Moreover, a theoret-
ical framework has also been established to support the ob-
served empirical relationship (Zheng, 2019), lending credi-
bility to applying CBH as a proxy for the updraft. Building on
this, recently developed CBH retrievals (Mülmenstädt et al.,
2018; Böhm et al., 2019) offer an opportunity to gain some
insight into the potential role updraft variability may play in
the global ERFaci assessment.

In addition to the updraft, precipitation formation further
complicates the derivation of the strength of S, since it can
efficiently deplete cloud droplets and scavenge aerosols from
clouds (Gryspeerdt et al., 2015). In such cases, the change
in Nd is not necessarily related to actual aerosol perturba-
tions (Chen et al., 2014) but rather to the intensity of cloud
sink, and thus in principle, it should not be directly applied
to infer 1Nd driven by anthropogenic emissions. However,
due to the lack of simultaneous observations of precipita-
tion and aerosol–cloud properties from passive satellite re-
mote sensing alone, most aerosol–cloud interaction (ACI) es-
timates do not consider the influence of precipitation (Quaas
et al., 2008; Ma et al., 2014; Gryspeerdt et al., 2017; Jia et al.,
2021) or just roughly identify the occurrence of rain by re-
lying on some simplified metrics, such as the threshold of
14 µm cloud effective radius (CER) for rain initiation (Ger-
ber, 1996; Rosenfeld et al., 2019; Yang et al., 2021; Zhang
et al., 2022) or the difference of CER between retrievals em-
ploying the bands of 2.1 and 3.7 µm (Saponaro et al., 2017;
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Jia et al., 2019a). Even though few studies have explicitly
accounted for this by combining simultaneous precipitation
observations from active remote sensing (Chen et al., 2014),
how different treatments could influence the assessment of S

remains unclear. Solving this problem is helpful to reconcile
the current diverse ACI estimates in order to achieve a more
confident observational constraint.

For satellite-based investigations, it is crucial but difficult
to disentangle any physically meaningful attributable factors
from artificial aerosol–cloud linkage induced by retrieval bi-
ases. In terms of Nd, retrievals for 3D-shaped clouds and par-
tially cloudy pixels deviate from the retrieval assumptions of
overcast homogenous cloud and 1D plane-parallel radiative
transfer, thereby appearing to lead to an overestimation of
CER (Coakley et al., 2005; Matheson et al., 2006; Zhang and
Platnick, 2011; Zhao et al., 2012), and in turn, an underesti-
mated Nd (Grosvenor et al., 2018). This issue was reported
to be more pronounced for broken cloud regimes and could
to some extent be addressed by only sampling Nd for pixels
with either a high cloud fraction (Painemal et al., 2020) or
large cloud optical depth (COT; Zhu et al., 2018). In addition
to the assumptions for clouds, the existence of aerosols above
clouds can also affect the retrieval of cloud optical depth
(Haywood et al., 2004; Li et al., 2014), in turn bias Nd calcu-
lation. Meanwhile, the retrieved AOD or aerosol index (AI)
can be biased to a larger value due to inability to detect thin
clouds in an aerosol retrieval scene (Kaufman et al., 2005) or
due to enhanced reflectance from neighboring clouds (Várnai
and Marshak, 2009). It is noteworthy that the overestimation
of AOD tends to be enhanced with increasing cloud fraction
(Zhang et al., 2005) and COT (Várnai and Marshak, 2021)
as a result of both retrieval problems and aerosol swelling
(Quaas et al., 2010). Therefore, the potential covariations
between biases in Nd and AOD (AI) modulated by cloud
macrophysical properties could incur a spurious correlation
between the two variables, obscuring the causal interpreta-
tion. While a few studies pointed out that the AOD(AI)–Nd
correlation is substantially enhanced when analyzing reliable
Nd retrievals (Jia et al., 2019a; Painemal et al., 2020), how
and to what extent the satellite-diagnosed S varies with the
retrieval biases in terms of both aerosol and Nd, respectively,
has not been fully understood. Such understanding is quite
important for reconciling the previous estimates and propos-
ing a meaningful method applicable to satellite-based inves-
tigations.

While the problem of vertical co-location between re-
trieved CCN proxies and clouds has been noticed in many
previous studies, most of them placed focus on its influ-
ence on the correlation between aerosol and cloud (Stier,
2016; Painemal et al., 2020), i.e., a much higher correlation
between Nd and aerosol extinction coefficients near cloud
base compared to Nd vs. column-integrated aerosol quan-
tity (AOD or AI), rather than the influence on S. The lat-
ter is usually quantified as a regression coefficient (regres-
sion slope in log–log space) between Nd and the CCN proxy

and is a key determinant of radiative forcing estimates. Using
AI as a CCN proxy, Costantino and Bréon (2010) demon-
strated a weaker cloud susceptibility for the case with sepa-
rated aerosol–cloud layers than well-mixed ones. However,
it is unclear how the S would change when switching com-
monly used column aerosol quantities to aerosol measures
at cloud base. This understanding is particularly important
for the intercomparison and further reconciliation between
current ACI metrics relying on diverse CCN proxies, includ-
ing column-integrated, near-surface, and cloud-level aerosol
quantities.

In this study, we focus on the quantification of the impacts
of three major confounders mentioned above, namely up-
draft, precipitation, and retrieval errors, as well as the prob-
lem of vertical co-location between aerosol and cloud, on
the assessment of S in the context of marine warm clouds
by combining multiple active and passive satellite sensors
and reanalysis products. On the basis of current findings, this
study further suggests several potential ways forward to prac-
tically account for, to the extent possible, the major influ-
encing factors for the satellite-based quantification of S and
hence the ERFaci.

2 Data and methods

This work is based on observational data from multiple in-
struments on board Terra, Aqua, and CloudSat platforms
as well as reanalysis data from the Modern-Era Retro-
spective analysis for Research and Applications version 2
(MERRA-2) (Randles et al., 2017) and the European Centre
for Medium-Range Weather Forecasts (ECMWF) Reanaly-
sis v5 (ERA5) (Hersbach et al., 2020). Table 1 summarizes
the aerosol, cloud, and precipitation parameters and their cor-
responding sources, temporal–spatial resolutions, and time
periods analyzed in the present study. Note that due to the re-
quirement for co-located aerosol–cloud–precipitation obser-
vations, the data used in Sect. 3.2 are obtained from the A-
Train constellation of satellites (Aqua and CloudSat), which
are then interpolated to 5× 5 km2 resolution for analysis,
while the remaining parts are based on the observations from
Terra, for which all data are interpolated to 1◦×1◦ resolution.
The combination of datasets used in each section is summa-
rized in Table 2. It is worth mentioning that, as S was found
to vary with the spatial resolution of data (Sekiguchi et al.,
2003; McComiskey and Feingold, 2012), the different data
resolutions between Sect. 3.2 and other sections can lead to
a difference in S, but this is not the focus here. This study
is restricted to the global ocean with latitude between 60◦ S
and 60◦ N because of limited quality of retrievals of aerosol
size parameters (Levy et al., 2013) and Nd (Gryspeerdt et al.,
2021) over land and polar regions.

Aerosol properties (Levy et al., 2013) are obtained from
the level 3 Moderate Resolution Imaging Spectroradiometer
(MODIS) Dark Target product (MOD08 and MYD08; Plat-
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Table 1. The list of the parameters, sources, and their corresponding temporal–spatial resolutions applied in the present study.

Source Time period Resolution Parameters

MYD08/MOD08 Jan 2008–Dec 2008 for MYD08 Daily, 1◦× 1◦ AOD at 460/550/660 nm
Jan 2006–Dec 2009 for MOD08 Distance to nearest cloudy pixel (1L)

CF

MYD06/MOD06 Jan 2008–Dec 2008 for MYD06 Daily, 1× 1 km2 COT at 3.7 µm
Jan 2006–Dec 2009 for MOD06 CER at 3.7 µm

Cloud_Mask_SPI
Cloud-top temperature
Cloud multi-layer flag
Cloud phase flag

Daily, 5× 5 km2 CF5×5 km2

Solar zenith angle
Sensor zenith angle

CloudSat Jan 2008–Dec 2008 Daily, 1.4× 2.5 km2 Precipitation flag

MISR Jan 2006–Dec 2009 Daily, 0.25◦× 0.25◦ CBH
CTH

MERRA-2 Jan 2006–Dec 2009 3-hourly, 0.5◦× 0.625◦ Sulfate mass mixing ratio profile
Air density

ERA5 Jan 2006–Dec 2009 hourly, 0.25◦× 0.25◦ Temperatures at 700 and 1000 hPa

Table 2. The combination of datasets used in each subsection of the
Results section.

Subsection Datasets

Sect. 3.1 MOD08, MOD06, MISR, ERA5
Sect. 3.2 MYD08, MYD06, CloudSat
Sect. 3.3 MOD08, MOD06, MISR
Sect. 3.4 MERRA-2, MOD06, MISR

nick et al., 2017c, d). In order to collect co-located (adja-
cent) aerosol and cloud retrievals for analysis, aerosol re-
trievals on a coarsely resolved grid (1◦× 1◦ on a latitude–
longitude grid) are used to match cloud pixels (1× 1 km2),
assuming that aerosol properties in adjacent clear areas are
homogeneous enough to represent those under cloudy con-
ditions (Anderson et al., 2003; Quaas et al., 2008). Note
that this assumption would be questionable, especially when
aerosol is scavenged by precipitation (Gryspeerdt et al.,
2015). In addition to commonly used AOD, the aerosol in-
dex (AI=AOD×Ångström exponent) containing informa-
tion on aerosol size is also employed since it is considered a
better proxy for CCN (Nakajima et al., 2001). The Ångström
exponent is calculated from AOD at wavelengths of 460 and
660 nm. To eliminate 1◦ by 1◦ scenes in which the aerosol
distribution is heterogeneous, retrievals with a standard de-
viation higher than the mean values are discarded (Saponaro
et al., 2017). As suggested by Hasekamp et al. (2019), the
lowest 15 % of data for AOD (AI) at a global scale are ex-

cluded to avoid large retrieval uncertainty at low aerosol con-
centrations (P.-L. Ma et al., 2018). Note that leaving out the
low AOD (AI) yields a larger S compared to using all data
(Hasekamp et al., 2019).

Cloud optical properties, including CER and COT at
3.7 µm (Platnick et al., 2017e), are obtained from the MODIS
level 2 cloud products (MOD06 and MYD06; Platnick et al.,
2017a, b) and then applied to compute Nd based on the adi-
abatic approximation (Quaas et al., 2006). It was found that
the filtering of cloud adiabaticity only has a negligible impact
on the estimate of S, but in turn results in a reduction of up
to 63 % in the data volume (Gryspeerdt et al., 2021). For this
reason, we do not apply such filtering here. Note that Nd is
calculated on the level of the satellite pixel (order 1 km) be-
fore being aggregated to larger scales. Thus, the aggregation
bias caused by the derivation of Nd from the highly nonlinear
function of CER and COT as shown by Feingold et al. (2022)
does not affect the results presented here. To ensure confident
retrievals, the Nd is filtered to include only single-layer liq-
uid clouds with top temperature higher than 268 K. Pixels
for which CER < 4 µm and COT < 4 are discarded due to
the large uncertainty of retrievals (Sourdeval et al., 2016). In
addition, only pixels with a cloud fraction at 5 km resolution
(CF5×5 km2 ) > 0.9 and with a sub-pixel inhomogeneity index
(cloud_mask_SPI) < 30 are used to reduce the retrieval er-
rors induced by cloud edges and broken clouds (Zhang and
Platnick, 2011). Further, we only consider pixels with a so-
lar zenith angle of less than 65◦ and a sensor zenith angle of
less than 41.4◦ to minimize the influence of known biases as
detailed in Grosvenor et al. (2018). With the above sampling
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strategy, the random uncertainty in Nd was reported at 78 %
on a pixel level, and this dropped substantially when aver-
aged to a 1◦ by 1◦ region (Grosvenor et al., 2018). However,
as stated in Gryspeerdt et al. (2021), the systematic bias in
the Nd retrievals for in situ measurements is low, with deter-
mination coefficients of 0.48 for all cloud types and 0.5–0.8
for stratocumulus clouds.

To overcome the lack of global updraft observations, we
utilize satellite-based retrievals for CBH as a proxy for
cloud-base updraft for cumuliform clouds based on the find-
ing that these two quantities exhibit an approximately lin-
ear correlation for convective clouds (Zheng and Rosenfeld,
2015). Here, clouds are considered convective for lower tro-
posphere stability (LTS) less than 16 K (Rosenfeld et al.,
2019). Additionally, cloud geometrical thickness (CGT; the
difference between cloud-top height and CBH) is used as
an alternative proxy for the updraft regardless cloud types,
since it has been observed to be associated with the cloud-
base updraft for shallow cumuliform clouds (Lareau et al.,
2018) and also correlated with cloud-base updraft for strati-
form clouds via modulating cloud-top cooling (Zheng et al.,
2016). To obtain CBH and CGT, we apply a recently de-
veloped retrieval algorithm (0.25◦× 0.25◦ resolution, Böhm
et al., 2019) based on Multi-angle Imaging SpectroRadiome-
ter (MISR)/Terra observations, i.e., the MISR Level 2 Cloud
Product (MIL2TCSP; NASA/LARC/SD/ASDC, 2012). The
best performance of this algorithm is achieved for clouds
with CBH around 1 km and CGT below 1 km. For such
heights, which are characteristic for oceanic clouds con-
sidered in this analysis, the root mean square error ranges
300–350 m. It is important to note that the MISR cloud-
base height retrieval is limited to CBH > 560 m (Böhm et al.,
2019). At this lower end of the detection range, a slight un-
derestimation of the CBH is expected (Böhm et al., 2019).
The ERA5 reanalysis is employed here to calculate LTS
as the difference in potential temperature between 700 and
1000 hPa (Klein and Hartmann, 1993). The hourly LTS is
then matched to 10:30 local solar time to approximate the
overpass time of the Terra satellite.

To identify the role of precipitation, CloudSat radar pre-
cipitation observations co-located with AOD and AI as well
as Nd from MODIS/Aqua are adopted as well. Here, we
use the precipitation flag from the 2B-CLDCLASS product
(Sassen and Wang, 2008) to distinguish precipitating (with
the flags of “liquid precipitation” and “possible drizzle”) and
non-precipitation clouds (with the flag of “no precipitation”).
As a sink of Nd, drizzle could also affect the aerosol–cloud
interactions even without rain falling on ground (Yang et al.,
2021), so we also include drizzling clouds in precipitating
cases. The CloudSat data at a 1.4× 2.5 km2 resolution are
matched to the nearest MYD06 5× 5 km2 pixels for further
analyses.

The MERRA-2 product assimilates observations of the at-
mospheric state as well as remotely sensed AOD so that it
can generate reasonable aerosol horizontal and vertical dis-

.

Figure 1. Schematic diagram of the procedure for calculating the
sensitivity (linear regression coefficient in log–log space) of Nd to
CCN; AI is taken as a example. The upper panel shows the global
joint Nd–AI histogram, wherein each column is normalized so that
it sums to 1. The blue line is a linear regression on the 20 paired
Nd–AI (blue dots) that are the medians of each AI bin with an equal
number of samples, and the yellow dashed line shows a linear re-
gression on all data points. Note that the lowest 15 % of AI values
have been left out according to occurrence (bottom) before binning
the data. The cloud susceptibilities to AI (SAI) derived from both
approaches are shown along with 95 % uncertainty estimates (ac-
cording to a Student’s t test). The data used here are the same as in
Sect. 3.1.

tributions (Buchard et al., 2017). The use of aerosol reanaly-
sis also largely avoids the spuriously high AOD near clouds
caused by retrieval artifacts from the satellite (Jia et al.,
2021). Given that variability in sulfate aerosols contributes
the most strongly to variability in Nd among all aerosol
species (McCoy et al., 2017), the sulfate concentration is
considered be to the CCN proxy here. We utilize vertically
resolved sulfate mass concentrations from MERRA-2 reanal-
ysis in combination with the MISR CBH retrieval to obtain
sulfate mass concentrations near cloud base (SO4B). In addi-
tion, sulfate surface mass concentrations (SO4S) and column
mass density (SO4C) are also used to investigate if there will
be different behaviors of Nd-to-CCN sensitivity when apply-
ing CCN proxies at different levels. The MERRA-2 3 h av-
eraged fields are interpolated to 10:30 local solar time to ap-
proximate the overpass time of the Terra satellite.

Figure 1 illustrates the regression procedure for calculat-
ing the S. After excluding the lowest 15 % AOD (AI), the
data are then divided into 20 bins of CCN proxy, with each
bin having an equal number of samples. The same num-
ber of samples ensures the same statistical representativeness
within each bin. The values of Nd and the CCN proxy for a
certain bin are the medians of all values in that bin. The gen-
erated 20 paired values of Nd and CCN proxies are then used
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Figure 2. Dependence of the linear regression slopes of ln Nd versus ln AOD (blue) and ln AI (green) on (a) CBH and (b) CGT derived via
the pre-binned approach. Data are grouped into 10 fixed CBH (CGT) intervals for regressions. Error bars indicate the 95 % confidence interval
of the linear regression, and the gray bars denote the total number of samples for each CBH (CGT) bin. The corresponding regression slopes
computed from the data over all CBH (CGT) bins are shown as horizontal dashed lines (green for AI and blue for AOD). The equivalent
figure (Fig. S1) shows similar results based on the all-data approach.

in linear regression to determine S unless otherwise stated.
The uncertainties of estimated S are reflected by the 95 %
confidence interval of the regression slope. We also tried 100
and 1000 bins and found that the derived susceptibilities do
not change significantly with the number of bins. Addition-
ally, the linear regression on all data points is also shown
(yellow dashed line) in Fig. 1 for comparison with the pre-
binned approach, since both approaches have been used ex-
tensively by previous studies (Quaas et al., 2008; Gryspeerdt
et al., 2017; Hasekamp et al., 2019; Rosenfeld et al., 2019),
but it is still unclear how large the difference in estimates
between the two approaches could be. Figure 1 illustrates
that the pre-binned approach has a larger slope than lump-
ing together all data points by 18 %, suggesting that attention
should be paid when comparing S derived from different ap-
proaches. In our study, both approaches lead to similar con-
clusions; as such, we will only focus on the results from the
pre-binned approach in the main text. Meanwhile, we also
put the results associated with the all-data approach in the
Supplement.

3 Results

3.1 Dependence on updraft

In adiabatic clouds, Nd is essentially a function of both CCN
and updraft (Feingold et al., 2001). To quantify how Nd re-
sponds to CCN perturbations, the variation of updraft must
be constrained. In practical terms, however, the observation
of in-cloud vertical velocity is possible only from in situ air-

craft measurements or ground-based remote sensing, limit-
ing the estimations to individual locations and sites. In order
to obtain S at a global scale, which is only possible from a
satellite, meteorological parameters (X. Ma et al., 2018) or
cloud regimes (Gryspeerdt and Stier, 2012) were generally
employed to roughly approximate cloud dynamics. However,
it should be noted that even in similar meteorological back-
grounds and cloud regimes, the vertical velocity within indi-
vidual clouds can still vary significantly (Hudson and Noble,
2014). Instead, based on previous findings from in situ ob-
servations (see the section “Data and methods”), our study
utilizes CBH as a proxy for cloud-base updraft for cumuli-
form clouds and CGT as a proxy for the updraft regardless
of cloud type. Note that with similar cloud-top heights, the
higher cloud base means thinner cloud layer. To avoid the po-
tential interference by CGT, the analysis of the dependence
of S on CBH (Fig. 2a) is conducted within a quasi-constant
CGT bin of 650–750 m. This range is chosen because of its
relatively strong S, low possibility of precipitation, and suf-
ficient data points (Fig. 2b).

Figure 2 shows the dependence of linear regression slopes
of ln Nd versus ln AOD (ln AI), i.e., SAOD (SAI), on CBH
and CGT, respectively. To constrain the variation of cloud
dynamics, the data are grouped over CBH and CGT bins
with intervals of 80 and 100 m, respectively. It is seen that
SAOD and SAI exhibit increases with both CBH and CGT,
consistent with the expectation of stronger aerosol–cloud in-
teractions under larger in-cloud vertical velocity conditions.
The result is in accord with previous findings based on sur-
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Figure 3. Joint histograms between AI and Nd (CER) created for weak and strong updraft conditions, as defined by the lowest and highest
CGT quartiles, respectively. The difference plots between strong and weak cases are shown at the end of each row. The histograms are
normalized so each column sums to 1 such that the histograms show the probability of observing a specific Nd (CER) given a certain AI.

face remote sensing under stratus (McComiskey et al., 2009)
and altocumulus clouds (Schmidt et al., 2015). Also, using
ground-based observations, Feingold et al. (2003) quantified
this linkage and gave a correlation of 0.67 between S and
column maximum updraft. In our study, the correlation coef-
ficients are 0.83 (0.98) for CBH–SAOD (SAI) and 0.96 (0.95)
for CGT–SAOD (SAI). The higher correlations likely stem
from the large volume of data used to stratify CBH(CGT),
which enhances the representability of samples from a sta-
tistical perspective compared to the more limited number of
cases used in Feingold et al. (2003).

It is also noted that, unlike the monotonic increase with
CBH, SAOD (SAI) increases with CGT at a small to moderate
CGT range (< 900 m) and then levels off (Fig. 2b). This is
likely due to the tighter linkage between the occurrence of
precipitation and CGT than CBH. Specifically, larger CGT
is an indicator of strong updraft, tending to generate larger
SAOD (SAI), whereas in the meantime it is also associated
with the higher possibility of precipitation, which acts as an
efficient sink of droplets (see Sect. 3.2) and thereby partly
offsets the increase in Nd induced by CCN, i.e., smaller
SAOD (SAI). In short, the situation of SAOD (SAI) at larger
CGT (Fig. 2b) is a result of the competition between the ef-
fects of updraft and precipitation. Comparing the different
CCN proxies, we see that, in agreement with previous results
(Hasekamp et al., 2019), SAI is consistently higher than SAOD
for both the all-data cases (dashed lines) and almost all CBH
(CGT) bins except for CGT > 900 m. For the remainder of
the paper, only AI that is a better CCN proxy is used unless
otherwise stated.

To gain insight into the mechanism underlying the appar-
ent dependence of S on updraft, we contrast AI–Nd (CER)
joint histograms for weak and strong updraft conditions

(Fig. 3). As the data volume for the CBH case is too small
to populate the joint histogram, only the CGT-related result
is shown. Here, the subsets of data with CGT lower than the
25th percentile and higher than the 75th percentile are de-
fined as weak and strong updrafts, respectively. Note that ap-
plying the 10th and 90th percentiles also yields similar re-
sults as shown in Fig. S2. It is known that the aerosol–Nd
relationship is nonlinear and particularly regime-dependent.
Reutter et al. (2009) proposed three distinct regimes accord-
ing to the ratio of vertical velocity and aerosol concentration:
(a) an aerosol-limited regime characterized by a high ratio
value, nearly linear dependence of Nd on aerosol, and insen-
sitivity of Nd to updraft, (b) an updraft-limited regime char-
acterized by a low ratio value and weak dependence of Nd
on aerosol but quite strong dependence on updraft, and (c) a
transitional regime falling between the above two regimes.
Since we have limited the proxy for updraft (CGT) to a cer-
tain range, AI is thus assumed to be an indicator of regime.
Specifically, the low AI zone is more likely aerosol-limited,
while the high AI zone is close to an updraft-limited regime.
As illustrated in the difference plots in Fig. 3, under polluted
conditions with AI > 0.4, the samples of the strong updraft
case tend to concentrate in the larger Nd bins compared to the
weak updraft (Fig. 3c), reflecting the critical role of updraft
in facilitating activation of cloud droplets. Nevertheless, the
distributions of CER do not exhibit systematic differences,
except for less scattering for the strong updraft (Fig. 3f). As
for clean conditions, what should be expected is a similar
distribution of Nd between different cloud dynamics as de-
termined by the nature of the aerosol-limited regime, or at
least a slightly higher Nd for the strong updraft case. How-
ever, looking at the clean zone (AI < 0.15) in Fig. 3, it is clear
that strong updraft is associated with much lower Nd as well
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Figure 4. Joint histograms between AI and Nd created for (a) all clouds, (b) non-raining, and (c) raining clouds, as well as (d) the difference
of joint histograms between the raining and non-raining cases. Cloud susceptibilities to AI derived via the pre-binned approach are also
shown along with 95 % uncertainty estimates (according to a Student’s t test). The fitting lines for three cases are merged into one single plot
(e), with clean and polluted zones marked as blue and red, and the corresponding sample distributions are also shown (f, g).

as larger CER (generally larger than 14 µm, the threshold for
drizzle initiation suggested by Freud and Rosenfeld, 2012)
compared to the weak updraft, indicating a higher possibil-
ity of precipitation and/or drizzle. Consequently, the strong
sink of droplets via precipitation at low AI and the enhanced
activation of droplets at high AI will jointly create a much
larger regression slope of ln Nd versus ln AI for the strong
updraft compared to the weak updraft condition. Moreover,
these results also imply that the interference of precipitation
tends to amplify realistic dependence of SAI on the updraft,
highlighting the need to remove the influence of precipitation
on the Nd budget.

3.2 Dependence on precipitation

In this section, the role of precipitation in the quantifica-
tion of S will be explicitly accounted for by using the si-
multaneous aerosol–cloud–precipitation observations from
CloudSat–MODIS combined datasets (see Sect. 2). The hy-
pothesis is that for precipitating clouds, a sink to Nd exists
(via the coagulation) that does not reflect the Twomey ef-
fect, so the CCN–Nd relationship is biased low in cases of
precipitation formation. Figure 4 shows the AI–Nd joint his-
tograms for non-raining, raining, and all clouds as well as
the difference between non-raining and raining cases. The
raining clouds exhibit a lower Nd relative to non-raining
clouds over all AI bins, caused by the intensive sink of cloud

droplets by collision–coalescence when precipitation forms
(Fig. 4b, c, d). In addition, as the droplet sink and aerosol
removal by precipitation can act together to veil the actual
effect of aerosol on Nd, and the Nd in raining clouds shows
a weaker response to increasing AI than that in non-raining
clouds, with the corresponding SAI of 0.45 versus 0.56, re-
spectively. The result is in agreement with Chen et al. (2014),
who reported a consistently smaller CER-to-AI sensitivity
in the precipitating case than in the non-precipitating case
throughout different environmental conditions.

Interestingly, the regression slope of ln AI versus ln Nd
is enhanced after lumping all cloud scenes together regard-
less of whether it rains or not (Fig. 4a). The corresponding
SAI (0.68) increases by 21 % relative to the non-raining case
(0.56). This phenomenon was also noted by Painemal et al.
(2020), and they speculated that drizzle appears to strengthen
the aerosol–Nd relationship, which is, however, contrary to
the weaker SAI for raining clouds as illustrated above. For a
clearer comparison of the SAI for non-raining, raining, and all
clouds, the fitting lines for these three cases are put into one
single plot (Fig. 4e), with clean and polluted zones marked as
blue and red, and the corresponding sample distributions are
presented in Fig. 4f and g. It is shown that the fitting line for
all clouds nearly coincides with that for the non-raining case
under polluted conditions but is closer to the raining case
under clean conditions (Fig. 4e), consequently leading to a
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Figure 5. Dependence of the linear regression slopes of ln Nd (ln NdAll) versus ln AOD (ln AI) on (a) 1L and (b) 1Nd derived via the pre-
binned approach. Data are grouped into 10 fixed 1L (1Nd) intervals for the calculation of slopes. Error bars indicate the 95 % confidence
interval of the linear regression, and the gray bars denote the total number of samples for each bin. The change in AOD (AI) with 1L is also
shown in the panel (a). The equivalent figure (Fig. S3) shows similar results based on the all-data approach.

much steeper slope. This behavior is further corroborated by
the different distributions of Nd. As shown in Fig. 4g, the pol-
luted clouds consist predominately of the non-raining clouds
as a result of the suppression of precipitation by aerosols,
thus maintaining a high value of Nd. Instead, the majority of
the clean clouds are raining ones that are significantly sub-
jected to the sink processes for Nd and/or aerosol scavenging
(Boucher and Quaas, 2013) (Fig. 4f), hence corresponding
to a lower Nd. The results presented here imply that intro-
ducing the dependence of the possibility of precipitation on
aerosols (i.e., cloud lifetime effect) into the estimation of the
Twomey effect, as commonly done in most previous studies,
would perturb the statistical analysis and artificially bias the
strength of the Twomey effect to a higher value. Moreover,
it should be noted that a more extensive zone with Nd being
insensitive to aerosol is evident under low aerosol conditions
after raining clouds are included (Fig. 4a), which means that,
in addition to the overestimation of regression slope, the in-
terference of precipitation also gives rise to an apparent non-
linearity of the aerosol–Nd relationship, hence adding sub-
stantial complexity in quantifying S using a linear regression
(Gryspeerdt et al., 2017).

3.3 Dependence on retrieval biases in AOD (AI) and Nd

Aerosol retrieval errors due to 3D radiative effects as well
as cloud contamination, aerosol swelling, and cloud re-
trieval errors for 3D-shaped and heterogeneous clouds have
been shown to artificially introduce biases in the esti-
mation of aerosol–cloud interactions (Quaas et al., 2010;

Christensen et al., 2017; Neubauer et al., 2017; Jia et al.,
2019a, 2021). Here, we dig deeper on S as a function of re-
trieval errors by defining two metrics that characterize the
retrieval biases quantitatively. In order to obtain horizon-
tally “co-located” aerosol–cloud retrievals for analysis, the
often adopted choice is a 1◦ by 1◦ gridding scale, at which
aerosol concentrations are considered homogeneous (Ander-
son et al., 2003). Within a 1◦ by 1◦ grid box, sub-grid clear-
sky and cloudy pixels co-exist (if clouds are not fully over-
cast) and are used for retrieving cloud and aerosol proper-
ties, respectively. However, in the case that most clear-sky
pixels are close to clouds, the problems of 3D radiative ef-
fects, cloud contamination, and aerosol swelling arise. Thus,
the metric of aerosol retrieval errors (including 3D radiative
effects and cloud contamination) and aerosol swelling is de-
fined as the average distance to nearest cloudy pixel from
clear pixels for aerosol retrieval (1L), which is provided di-
rectly by the MODIS L3 aerosol product. As for the cloud
retrieval, the metric is the difference between Nd retrieved
from all cloudy sub-pixels (NdAll, without the cloud screen-
ing on CER, COT, CF5×5 km2 , and the sub-pixel inhomogene-
ity index) and that retrieved from sub-pixels only with fa-
vorable situations for reliable cloud retrieval (see “Data and
methods” for details), which is tightly related to the degree
of cloud heterogeneity. Note that NdAll and Nd are concur-
rently calculated for each 1◦ by 1◦ cloud scene, and thus 1Nd
(NdAll-Nd) only reflects the role of retrieval errors, with other
conditions held constant (e.g., cloud types and meteorology).
Generally, a negative value of 1Nd is expected since a pos-
itive bias in CER and a negative bias in COT for spatially
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inhomogeneous scenes act together to generate negatively bi-
ased NdAll according to the Eq. (1) in Quaas et al. (2006). In
this section, we also look at AOD in addition to AI, since
AOD is a directly retrieved quantity and thus more closely
related to retrieval problems.

Figure 5a shows the dependences of both AOD (AI) and
linear regression slopes of ln Nd (NdAll) versus ln AOD (ln
AI) on 1L. We note that AOD (AI) is the largest for the first
1L bin with a value of 0.24 (0.17) and then drops rapidly
to around 0.16 (0.13) for the other distances from clouds,
indicating a quite strong near-cloud enhancement of AOD
(AI) induced by retrieval biases and/or aerosol swelling. The
Ångström exponent (AE) is calculated from AOD at wave-
lengths of 460 and 660 nm. As the AE was found to increase
with 1L (Várnai and Marshak, 2015), the reduction of AI
with 1L is thus less strong than AOD. Based on published
in situ aircraft measurements, we roughly isolate the contri-
bution of aerosol swelling from retrieval issues (i.e., 3D ra-
diative effects and cloud contamination). During the Indian
Ocean Experiment (INDOEX), Twohy et al. (2009) mea-
sured a rise in relative humidity (RH) from about 70 % more
than 20 km from cloud to 90 % with 1–4 km of cloud edge
(equivalent to the distances of the third and first 1L bins in
Fig. 5a), which in turn results in about a 69 % increase in the
aerosol scattering cross section (Twohy et al., 2009). Con-
sidering that aerosol humidification only occurs near cloud
level, i.e., one-quarter to one-third of the aerosol column
could be affected according to lidar observations (Twohy
et al., 2009), the increase in AOD by aerosol swelling is esti-
mated to be 17 %–23 %. This is up to about a third of the rel-
ative increase in AOD from the third to first 1L bins (64 %)
in Fig. 5a, implying that the retrieval errors in aerosol could
contribute the majority of the S reduction in the first 1L bin.
It should be noted that the estimated AOD rise due to hu-
midification relies on observed RH variability surrounding
cloud and also the vertical profile and chemical composition
of aerosol, which could vary with geographic location.

Corresponding to the biased-high AOD (AI), SAOD and
SAI for the first 1L bin are very low relative to other bins,
especially for AOD, suggesting that both retrieval biases and
aerosol swelling near clouds could result in a severe under-
estimation in S. These results imply that screening out the
aerosol retrievals within the first 1L bin (i.e., the average dis-
tance to the nearest cloud pixel less than 10 km) could be an
applicable approach to side-step the interference of aerosol
retrieval biases. It is also noted that SAOD (SAI) shows an in-
crease first and then a decrease from the third 1L bin. How-
ever, the following decrease is unlikely linked to the aerosol
retrieval bias since the AOD (AI) remains almost constant
(the upper panel in Fig. 5a). One interpretation for this would
be that AOD and/or AI is getting less representative for the
aerosol concentrations near cloud with increasing 1L, espe-
cially for grid boxes with precipitation wherein aerosol is not
as homogeneous as assumed (Anderson et al., 2003). More-
over, as 1L is also negatively correlated with CF (Várnai and

Figure 6. Relationships between 1L and 1Nd, with the data
grouped as a function of CF and each CF bin containing the same
number of samples. A joint histogram between CF and CGT is
shown in the inner plot; the blue dot shows the median CGT at each
CF bin.

Marshak, 2015), the decreasing SAOD (SAI) is probably asso-
ciated with other factors modulated by CF (such as retrieval
error in Nd as demonstrated in the following analysis).

Interestingly, Fig. 5a also depicts the SAOD (SAI) calcu-
lated from NdAll as consistently lower than that from Nd
for each 1L bin, indicating that the cloud retrieval biases
for partly cloudy pixels appear to lead to an underestima-
tion of S. The increase in the difference between them with
1L reveals that more underestimation occurs for high 1L

(typically low CF) conditions in which clouds are more par-
tially cloudy, thereby deviating from the retrieval assump-
tions of overcast homogeneous cloud. As previously men-
tioned, 1Nd can act as a measure of some of the retrieval
errors in cloud; the more negative the 1Nd, the larger the
retrieval error in Nd. As shown in Fig. 5b, the SAOD (SAI)
calculated from NdAll increases with 1Nd and then reaches
its maximum when 1Nd approaches 0, demonstrating that
the satellite-diagnosed S highly depends on the retrieval bias
in cloud. In terms of the quality-assured Nd, the correspond-
ing SAOD (SAI) is not anticipated to be affected by retrieval
issues and is thus independent of 1Nd, but this is obviously
not the case; the SAOD (SAI) also significantly increases with
1Nd, which means that the criteria used for selecting homo-
geneous clouds within a 5 km× 5 km grid would not be as
sufficient for an optimal performance of retrieval (Grosvenor
et al., 2018) as we thought.

Figure 6 depicts relationships between 1L and 1Nd, with
the data grouped as a function of CF for 50 cloud fraction
bins containing the same number of samples. It is clearly il-
lustrated that CF regulates the negative correlation between
1L and 1Nd. Under the condition of large CF, clear pix-
els are very close to the nearest cloud pixel, correspond-
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Figure 7. Two-dimensional probability density functions of ln Nd versus (a) ln SO4B, (b) ln SO4S, and (c) ln SO4C for the period 2006–
2009. Sample numbers (N ), correlation coefficients, and regression slopes with 95 % uncertainty estimates (according to Student’s t test) for
pre-binned SO4-Nd pairs are displayed in the upper left of each plot.

ing to a lower 1L; meanwhile, most sub-grid cloud pixels
meet the criteria for confident cloud retrievals, leading to a
higher (near-zero) 1Nd. The reverse is true in the case of
low CF. This means that it is practically difficult to balance
the accuracies of retrievals on both aerosol and cloud, since
the aerosol retrieval should stay away from clouds, requir-
ing low CF, whereas the Nd retrieval should be performed in
more homogeneous clouds (high CF) in order to satisfy the
retrieval assumption of 1D plane-parallel radiative transfer.
To avoid the spuriously high AOD (AI) retrieval near clouds,
the use of aerosol reanalysis would be a way forward (Jia
et al., 2021). In terms of Nd, however, the situation is more
complicated. Given that CF also correlates closely with cloud
dynamics (CGT; Fig. 6), it does not make sense to simply re-
strict the analysis to low 1Nd (thus high CF) to reduce the
retrieval uncertainty of Nd; in doing so, a selection of cloud
regime could be artificially applied.

3.4 Dependence on vertical co-location between
aerosol and cloud

Currently, the use of reanalyzed and/or modeled aerosol ver-
tical profiles seems to be the only feasible alternative to
exploit the problem of vertical co-location since it is im-
possible to obtain aerosol retrievals below or within clouds
from satellites (Stier, 2016; McCoy et al., 2017). Thus, un-
like the previous sections based on satellite-retrieved AOD
and AI, vertically resolved SO4 from the MERRA-2 reanal-
ysis is utilized here to obtain the CCN proxies for differ-
ent altitudes. Although not as commonly adopted as AOD
and AI, SO4C and SO4S were also used as CCN proxies
by previous studies (McCoy et al., 2017; Jia et al., 2021).
Here, the SO4C and SO4S are used, respectively, to mimic
the behaviors of AOD (AI) and the surface aerosol extinc-
tion coefficient, which are two commonly used CCN proxies
in satellite-based and ground-based methods (Quaas et al.,
2008; Liu and Li, 2018), respectively. As demonstrated by

Stier (2016), the SO4B derived in combination with CBH is
expected to be more relevant to the amount of CCN actually
activated at cloud base than SO4C and SO4S. The compari-
son of susceptibilities inferred from these three proxies helps
us to understand whether the uses of column-integrated and
near-surface aerosol quantities make sense and, more impor-
tantly, to reconcile the large range of existing estimates of the
Twomey effect from different observational methods.

Figure 7 shows the two-dimensional probability density
functions of ln Nd and ln SO4 along with fitting lines. We
note that the pre-binned method yields similar high corre-
lation coefficients (R) for SO4B (0.96), SO4S (0.95), and
SO4C (0.98) due to the data stratification. When moving
to the regression on all data points (Table S1), we can see
that the R for SO4B is the highest (0.6), followed by SO4S
(0.57), and the R for SO4C is the lowest (0.54), consistent
with the results reported by Stier (2016) and Painemal et al.
(2020). In contrast, the regression slopes for SO4C (0.88) are
nearly twice as large as that for SO4B (0.47) and SO4S (0.46)
(Fig. 7), implying that the strength of S derived on the basis
of column-integrated aerosol quantity, which is often the case
for most previous satellite-based estimates, is overestimated
by nearly a factor of 2. Note that to explain the same change
in ln Nd, ln SO4B and ln SO4S increase by about 5, while ln
SO4C only increases by 2 (Fig. 7). Translating to the linear
scale, this means that SO4B (SO4S) increases by 148-fold,
whereas only a 10-fold increase can be seen in SO4C, result-
ing in the much larger slope of ln Nd versus ln SO4C. The
underlying reason would be that the variability of SO4C is
insufficient to explain the variabilities of SO4B (SO4S) .

In order to verify whether SO4C has the capability to cap-
ture the variability of SO4B quantitatively, the coefficient of
variation (CV; calculated as the ratio of the standard devia-
tion to the mean) is employed, which is a measure of rela-
tive variability that is particularly useful for the comparison
among quantities with different magnitudes and units, e.g.,
SO4C (in units of µg m−2) versus SO4B or SO4S (in units

https://doi.org/10.5194/acp-22-7353-2022 Atmos. Chem. Phys., 22, 7353–7372, 2022



7364 H. Jia et al.: quantifying droplet number response to aerosol

Figure 8. Map of coefficients of variation (CV) of (a) SO4B, (b) SO4S, and (c) SO4C, (d) the ratio of column mass of SO4 below clouds
(SO4BC) to SO4C (%) and Pearson’s correlation coefficients of SO4B with (e) SO4C and (f) SO4S, which are calculated for each 1◦× 1◦

grid box over the period of 2006–2009.

of µg m−3) here. Since S is generally inferred from the spa-
tiotemporal variability of aerosol and cloud properties, here
we calculate the temporal and spatial CVs, respectively; the
temporal CV is calculated from the daily time series for the
period 2006–2009 for each 1◦× 1◦ grid box, and the spa-
tial CV is derived from the multi-annual averaged global ge-
ographical distribution. As shown in Fig. 8a, b, and c, the
temporal CVs of SO4C are smaller than those of SO4B and
SO4S almost everywhere, with globally averaged CVs of
0.52 versus 1.02 and 1.03. Spatially, the larger CVs are gen-
erally located over aerosol outflow regions, such as the west-
ern North Pacific, the Atlantic, and the east coasts of South
America and southern Africa, indicative of an impact of the
strong variation of continental, specifically anthropogenic,
emissions. Similarly, the spatial CV of SO4C exhibits a much
smaller (0.88) value than those of SO4B and SO4S (1.84 and
1.79). In other words, the variability of SO4C is only able to
reflect about half of the variability of SO4 near cloud base.
This is mainly due to the important role of SO4 above cloud
in total column SO4. However, above-cloud aerosol is much
more homogeneous compared to SO4B and SO4S that are
directly driven by rapid changes in anthropogenic emissions
near the surface.

This is demonstrated in Fig. 8d, which shows that the ratio
of SO4C below cloud (SO4BC) to SO4C is quite low, with
a global average of 11.89 %. Spatially, the ratio can be up to
35 % over aerosol outflow regions but generally below 10 %
over vast remote oceans. The low ratio confirms the com-
paratively small role that sub-cloud aerosols have in deter-

mining the aerosol loading within a column. Interestingly,
there is also good consistency between the spatial patterns
of the ratio of SO4BC to SO4C and the correlation coeffi-
cient of SO4C with SO4B (Fig. 8d, e); i.e., the high-ratio re-
gions (the ratio > 15 %) generally have strong correlations
(R > 0.7). Therefore, with regard to the vertical co-location,
it is comparatively sensible to use column-integrated quanti-
ties such as AOD and AI to represent CCN near cloud base
over polluted continents and the immediate outflow region,
where the correlation coefficient of SO4C with SO4B is over-
all larger than 0.7, but this is obviously not the case over re-
mote oceans. The loose correlation between cloud-base and
column-integrated aerosols found here (R < 0.4), in combi-
nation with the detectability limitations of satellite instru-
ments for aerosol loading (P.-L. Ma et al., 2018), makes it
more challenging to detect any meaningful aerosol–cloud as-
sociations in pristine environments from retrieved AOD and
AI. Nevertheless, unlike the SO4C, rather strong correlations
between SO4S and SO4B (R > 0.7) can generally be found
with the only exception of high-latitude oceans (Fig. 8f),
which, in combination with the highly similar aerosol–Nd
slopes and CVs between SO4S and SO4B, hints at surface
observations as promising in terms of the vertical co-location
issue.

4 Future improvements

Although this study has demonstrated the significant impacts
of major confounders on the estimation of Nd-to-CCN sen-
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sitivity, some caveats remain. In order to achieve an optimal
estimate of radiative forcing from the remote sensing per-
spective, the following sources of uncertainty should be ac-
counted for in future investigations.

The derivation of Nd from satellite observations relies on
a number of assumptions (Grosvenor et al., 2018), making it
prone to systematic biases. While some sampling strategies
have been applied to side-step the biases in Nd retrieval (see
Sect. 2), the uncertainties remain. To further ensure the cloud
adiabaticity, there are two practical methods for use, includ-
ing comparing the CER at different wavelengths (Bennartz
and Rausch, 2017) and locating the cloud “core” (Zhu et al.,
2018). Appropriate Nd sampling strategies are beneficial in
future investigations, though they have relatively little impact
on S (and the implied RFaci) (Gryspeerdt et al., 2021).

The retrieved AOD (AI) as well as reanalyzed SO4 were
treated as CCN proxies in this study. However, the usabil-
ity is limited due to the lack of information on the aerosol
size and/or hygroscopicity for AOD (AI) and also due to the
fact that SO4 cannot fully explain the variability of CCN
since organic aerosols also contribute significantly (Ruehl
et al., 2016), particularly in the remote marine boundary layer
(Zheng et al., 2020). Therefore, the application of direct CCN
retrievals from polarimetric satellites (Hasekamp et al., 2019)
is promising in future investigations of aerosol–cloud inter-
actions. However, it would need to be combined with an esti-
mate of the contribution of above-cloud aerosol, especially in
regions unaffected by continental outflow. More importantly,
the PD CCN–Nd relationship has been shown to be a better
approximation of the PI and hence the “actual” sensitivity of
Nd to aerosol perturbations than the AOD (AI)–Nd relation-
ship, as it is not affected by the differing PI and PD aerosol
environments (Gryspeerdt et al., 2017). This again highlights
the importance of directly retrieved CCN in the assessment
of the radiative forcing from the Twomey effect.

Notably, using a linear regression slope from an ordinary
least-squares (OLS) line-fitting method to describe the actual
nonlinear aerosol–Nd (Fig. 1) can introduce additional uncer-
tainties related to the problem of regression dilution (Pitkä-
nen et al., 2016; Quaas et al., 2020). The OLS method is
also likely to overestimate the change in Nd from PI to PD
over polluted continents, as a saturation effect will occur as
aerosols keep rising under a polluted background. A joint his-
togram method proposed by Gryspeerdt et al. (2017) can be
useful to account for the nonlinearity.

In addition to the precipitation, entrainment mixing is a
crucial droplet sink process (Blyth et al., 1988). However,
given that it is practically difficult to infer a quantitative mea-
sure of the strength of entrainment mixing from satellite ob-
servations, its impacts were not explicitly considered here.
It has been proven that entrainment mixing process is as-
sociated with dynamical and cloud regimes (Warner, 1969;
de Roode and Wang, 2007), so the updraft constraint in this
study would also incorporate the effect of entrainment mix-
ing to some extent. Although there have been some attempts

to characterize entrainment mixing via the combination of
lower tropospheric stability and relative humidity near cloud
top (Chen et al., 2014; Jia et al., 2019a) or the Nd–LWP re-
lationship at a certain phase relaxation timescale describing
evaporation–entrainment feedback (Zhang et al., 2022), they
are relatively rough approximations or qualitative differentia-
tions. An updated approach for deriving measures of entrain-
ment mixing at the global scale would be highly beneficial.

It was found that S can vary not only with the spatial reso-
lution of data (Sekiguchi et al., 2003; McComiskey and Fein-
gold, 2012) but also with the spatial scale at which the re-
gression is performed (Grandey and Stier, 2010). Grandey
and Stier (2010) demonstrated that conducting analysis over
large regions could induce spurious aerosol–cloud correla-
tions, mainly owing to the spatial covariations in aerosol
type, cloud regime, and meteorological conditions. Despite
the global analyses employed in this study, the applied up-
draft constraint may make our results less susceptible to this
issue. It is expected that, with joint use of an updraft con-
straint and CCN retrieval that greatly eliminate the spatial
gradient effects, global analysis would be preferable com-
pared to a regional or local method, since the latter could
lead to a large bias in the aerosol–Nd slope over pristine
oceans where either the instrument detectability limitations
on aerosol (P.-L. Ma et al., 2018) or the inability of column-
integrated measure to represent aerosol near cloud base for
low aerosol conditions (see Sect. 3.4) could play a major role.

Given the impossibility of combining all datasets used in
different sections together (e.g., the CBH and CGT from
Terra are observed at 10:30 but the precipitation from Aqua
at 13:30 local solar time), this work evaluates the individual
impact of each bias on the estimate of S separately. Nev-
ertheless, the sources of bias could also be correlated with
each other; thus, an optimal estimate of S with all biases
constrained is desirable. Future studies are being planned
to make use of CALIOP/CloudSat satellite observations,
which provide simultaneous retrievals of aerosol extinction
profiles, precipitation, and cloud-base height (Mülmenstädt
et al., 2018) such that an analysis accounting for all potential
sources of bias can be performed.

5 Conclusions and discussion

By employing a statistically robust dataset from multiple ac-
tive and passive satellite sensors as well as a reanalysis prod-
uct, we systematically assessed the aerosol impact on ma-
rine warm clouds and found that the Nd-to-CCN sensitivity
(S) shows a strong dependence on (a) updraft proxy, (b) pre-
cipitation, (c) satellite retrieval biases, and (d) vertical co-
location between aerosol and cloud layer. The key results and
the corresponding implications are summarized as follows,
and the impacts of issues highlighted here on the overall es-
timation of S are listed in Table 3.
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Table 3. Issues highlighted in this study and their impacts on the overall estimation of S.

Process not considered Impact on S

Updraft dependency To be assessed
Precipitation Biased high by ∼ 21 % (∼ 29 %) for AI (AOD)
Aerosol retrieval bias and aerosol swelling Biased low by ∼ 3 % (∼ 3 %) for AI (AOD)
Cloud retrieval bias Biased low by ∼ 8 % (∼ 17 %) for AI (AOD)
Vertical co-location between aerosol and cloud Biased high by ∼ 87 %

1. SAOD and SAI are found to increase remarkably with
both CBH and CGT (treated as proxies for vertical ve-
locity at cloud base), suggesting that stronger aerosol–
cloud interactions generally occur under larger updraft
velocity conditions. Although a similar dependency has
been reported by some previous studies utilizing in situ
aircraft measurements or ground-based remote sensing,
they were limited to certain time periods and regions.
Instead, S here is characterized as a function of CBH
(CGT) based on 4 years of global satellite observations,
which can thus reflect the full variability of cloud dy-
namic conditions. This functional relationship, as a bet-
ter alternative to large-scale meteorological condition
constraints (less directly linked to cloud dynamics on
a cloud scale), could be promising in application to the
estimation of global aerosol–cloud radiative forcing, by
which the change in Nd from the PI to the PD may be
inferred based on CBH (CGT) climatology from satel-
lite and anthropogenic aerosol emission perturbation as-
suming first-order unchanged CBH distributions.

2. There is an intensive sink of cloud droplets by precip-
itation, thereby leading to a much lower Nd in rain-
ing clouds (55 cm−3) compared to non-raining clouds
(125 cm−3). In turn, a weaker S was found in raining
clouds than in non-raining clouds, with the correspond-
ing SAI of 0.45 versus 0.56, respectively. Surprisingly,
after lumping all cloud scenes together, the derived
SAI (0.68) is amplified by 21 % (51 %) relative to the
non-raining (raining) case, and also a more nonlinear
aerosol–Nd relationship is diagnosed. We showed that
this amplification is just an artifact governed by the joint
impacts of the suppression of precipitation by aerosols
and the aerosol removal by precipitation. That is, intro-
ducing the confounding effect of aerosol–precipitation
interactions into the estimation of the Twomey effect
can artificially bias the S to a higher value. The find-
ing highlights the necessity of removing precipitat-
ing clouds from statistical analyses when quantifying
S and assessing the Twomey effect. To achieve this,
the only way would be simultaneous aerosol–cloud–
precipitation retrievals (e.g., from the A-Train satellite
constellation). However, due to the fact that most of ex-
isting estimates of S and its radiative forcing did not
take this aspect into consideration, the relative change

in SAI from all clouds to non-raining clouds presented
here could serve as a useful reference for the intercom-
parison of cloud susceptibilities from different studies.

3. Aerosol retrieval biases (3D radiative effects and cloud
contamination), aerosol swelling, and cloud retrieval
bias (heterogeneity effect) tend to lead to an underes-
timation of S. Although SAI (SAOD) for the first 1L

bin, in which evident AI(AOD) enhancement exists,
is about 29 % (50 %) less than other unaffected bins,
the overall underestimation is only ∼ 3 % because of
the small data volume in the first bin (Fig. 5a). Never-
theless, for low-1L-dominated regions (e.g., stratocu-
mulus regions), the underestimation can be more pro-
nounced. By comparing SAI (SAOD) calculated by NdAll
and Nd, the underestimation by cloud retrieval issues is
roughly estimated to be∼ 8 % (∼ 17 %). It is noted that
the CF can act as a key modulator of these two kinds
of retrieval issues; i.e., an increase in CF enhances the
aerosol retrieval biases via intensifying near-cloud en-
hancement of AOD (AI) but reduces cloud retrieval er-
rors via alleviating the cloud heterogeneity, making it
practically difficult to balance the accuracies of both re-
trievals within the same grid. In terms of aerosol, the use
of aerosol reanalysis is a potential way to avoid the near-
cloud enhancement of AOD (AI), but note that the issue
of aerosol swelling remains to some extent. As for Nd,
the retrievals under high CF (over a 1◦× 1◦ grid) con-
ditions would be preferable even though strict criteria
for cloud screening (Grosvenor et al., 2018) have been
applied, which, however, could incur an artificial selec-
tion of cloud regime since CF also covaries with cloud
dynamics. Therefore, applying a CF updraft constraint
in the Nd screening would be a path forward.

4. Use of vertically integrated SO4 (SO4C) as a proxy for
CCN near cloud base results in a degradation of cor-
relation with Nd, with an approximately twofold en-
hancement of S compared to using SO4 near cloud base
(SO4B). This is mostly attributed to the inability of
SO4C to capture the full variability of SO4B. Generally,
SO4C is dominated by SO4 above cloud, which is rel-
atively homogeneous compared to SO4B that is tightly
linked to rapid changes in anthropogenic but also natu-
ral emissions near the surface. As a result, to explain the
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same change in Nd, the corresponding fractional change
in SO4C is much smaller than SO4B, hence leading to
a higher regression slope that, however, is not associ-
ated with physically meaningful enhancement of S. The
similar aerosol–Nd slopes, correlation coefficients, and
relative variability between SO4S (SO4 near the sur-
face) and SO4B suggest that the use of near-surface
aerosol measurements, such as particulate matter (Guo
et al., 2018) or aerosol extinction coefficients (Liu and
Li, 2018), is an effective solution to the problem of ver-
tical co-location in the case that observations of the ver-
tical profile of aerosol and cloud-base height are un-
available, although its suitability would depend on the
degree of coupling of the boundary layer (Painemal
et al., 2020). Moreover, the result further raises com-
plications to compare and reconcile the diverse cloud
susceptibilities from studies utilizing CCN proxies at
different altitudes. It should be noted that the deriva-
tion of Nd change from PI to PD (thus radiative forc-
ing) is expected to be less affected given that the ver-
tical co-location issue also applies to fractional change
in aerosol due to anthropogenic emissions, thus partly
compensating for the enhancement of S; nevertheless,
the net effect on radiative forcing still needs further ex-
ploration.
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