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S U M M A R Y
Passive imaging techniques from ambient seismic noise requires a nearly isotropic distribution
of the noise sources in order to ensure reliable traveltime measurements between seismic sta-
tions. However, real ambient seismic noise often partially fulfils this condition. It is generated
in preferential areas (in deep ocean or near continental shores), and some highly coherent
pulse-like signals may be present in the data such as those generated by earthquakes. Sev-
eral pre-processing techniques have been developed in order to attenuate the directional and
deterministic behaviour of this real ambient noise. Most of them are applied to individual
seismograms before cross-correlation computation. The most widely used techniques are the
spectral whitening and temporal smoothing of the individual seismic traces. We here propose
an additional pre-processing to be used together with the classical ones, which is based on the
spatial analysis of the seismic wavefield. We compute the cross-spectra between all available
stations pairs in spectral domain, leading to the data covariance matrix. We apply a one-bit
normalization to the covariance matrix eigenspectrum before extracting the cross-correlations
in the time domain. The efficiency of the method is shown with several numerical tests. We
apply the method to the data collected by the USArray, when the M8.8 Maule earthquake
occurred on 2010 February 27. The method shows a clear improvement compared with the
classical equalization to attenuate the highly energetic and coherent waves incoming from
the earthquake, and allows to perform reliable traveltime measurement even in the presence
of the earthquake.

Key words: Seismic interferometry; Seismic tomography; Statistical seismology.

1 I N T RO D U C T I O N

Fifteen years ago, Weaver & Lobkis (2001) demonstrated that the
Green’s function between two receivers probing a diffuse acous-
tic wavefield could be retrieved from the cross-correlation of the
receivers’ records. First applications of this theory in seismology
(Campillo 2003; Shapiro & Campillo 2004; Sabra et al. 2005a;
Shapiro et al. 2005) and oceanography (Roux et al. 2004; Sabra
et al. 2005b) have led to a class of routinely used passive imaging
methods in both domains. Ambient-noise based surface wave to-
mography studies have been done at global scale using hum (Nishida
et al. 2009; Haned et al. 2015), at regional scale (Shapiro et al. 2005;
Sabra et al. 2005a; Behm et al. 2016), at local scales (e.g. for the
study of faults and volcanoes Brenguier et al. 2007; Roux 2009;
Jaxybulatov et al. 2014; Hillers et al. 2016; Lanza et al. 2016) and
in industrial contexts (Mordret et al. 2013, 2014; de Ridder et al.
2014). Body-waves can also be extracted from the cross-correlation
of ambient noise at global scale (Boué et al. 2013; Lin et al. 2013)

and at local scale (Nakata et al. 2015). Also, several applications
have been done in passive monitoring (known as 4-D tomography) of
active zones such as faults (Wegler & Sens-Schnfelder 2007; Bren-
guier et al. 2008a; Wu et al. 2016) or volcanoes (Sens-Schönfelder
& Wegler 2006; Duputel et al. 2009; Brenguier et al. 2008b, 2014,
2015).

A full recovery of the Green’s functions from the noise cross-
correlations is based on the assumption that the wavefield is equipar-
titioned, that is, all the modes are uncorrelated and equally excited.
To reach this regime, the seismic noise should be generated by un-
correlated sources evenly distributed in the medium (Derode et al.
2003; Wapenaar 2004). Nevertheless, this condition is often not
verified: seismic events such as earthquakes (that are localized
in time and space) often produce strong-amplitude transient sig-
nals which are highly coherent. Also, the ambient microseismic
noise (Longuet-Higgins 1950) is generated at specific regions of
the Earth’s surface, and shows a seasonal dependence due to its
generating mechanisms (e.g. Stehly et al. 2006). While the primary
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microseisms are likely due to the direct interaction between oceanic
swells and the seafloor in shallow water (e.g. Traer et al. 2012;
Ermert et al. 2015), the secondary microseisms can be both gen-
erated in deep ocean or coastal areas by the non-linear interaction
of oceanic gravity waves propagating in opposite directions, from
which are generated pressure oscillations on the seafloor responsible
for seismic waves generation (e.g. Longuet-Higgins 1950; Landès
et al. 2010; Bromirski et al. 2013). Also, localized and persistent
sources may exist and can contaminate the cross-correlations. This
is the case of the 26-s microseismic source observed in Holcomb
(1980), Shapiro et al. (2006), Xia et al. (2013) and Seydoux et al.
(2016b). The effect of non-isotropically distributed noise sources
have been discussed in Tsai (2009), Weaver et al. (2009), Froment
et al. (2010), Kimman & Trampert (2010), Tian & Ritzwoller (2015)
and Fichtner et al. (2016). They show that anisotropic seismic source
distributions contribute to produce spurious arrivals or asymmetry
of the cross-correlations functions, resulting in a bias of the travel-
time measurements.

Pre-processing techniques therefore are usually applied to the
seismic data in order to reduce the effect of noise anisotropy and
strong events influence. First, the data time-segments that contain
strongly coherent signals are clipped above a given threshold or
down-weighted (e.g. Sabra et al. 2005a; Hillers et al. 2014; Wu
et al. 2016). These data time-segments can even be rejected (e.g.
Rhie & Romanowicz 2004; Gouédard et al. 2008; Seats et al.
2011) which results in a decrease of exploitable data. Also, the
individual traces are often equalized in both spectral and tem-
poral domains as described in Bensen et al. (2007). This atten-
uates the strong directional sources. Nevertheless, even if these
pre-processing techniques strongly improve the seismic wavefield
isotropy, some anisotropic features of the seismic wavefield may
remain in the cross-correlations, as it has been recently discussed
in Seydoux et al. (2016a,b). In particular, earthquakes and strong
microseismic events most of the time resist to this amplitude equal-
ization process which is performed on individual traces.

More recently, array-based filtering techniques have been devel-
oped in order to enhance the recovery of Green’s functions from
the cross-correlations (Gallot et al. 2012; Leroy et al. 2012; Menon
et al. 2012; Carrière et al. 2013). A passive inverse filter was pro-
posed in Gallot et al. (2012) to enhance the isotropy of surface
waves in the ambient seismic noise, and the results are compared
with an active seismic experiment. In ocean acoustics, Leroy et al.
(2012) proposed to improve the emergence rate of Green’s function
with a spatio-temporal filter built up from the first singular vec-
tors of a reference covariance matrix. Finally, Carrière et al. (2013)
proposed a spatial-filter approach based on an angular filtering of
volume noise using least-square truncated pseudo-inversion of a
steering matrix. This last study allowed to filter unwanted directive
sources from the cross-correlation, such as shipping-related signals
in underwater acoustics, but cannot be used automatically because
the filter has to be designed with respect to the source back-azimuth.

Our approach is inspired by Gallot et al. (2012) and Carrière
et al. (2014), and is directly based on pre-processing the covariance
matrix computed from array seismic data. This is an advantage
compared with Gallot et al. (2012), because it can be applied to a
pre-existing cross-correlation database. We propose to extend the
widely used spectral equalization process presented in Bensen et al.
(2007), which is applied to the frequency spectrum of individual
seismograms, to the equalization of the covariance matrix spectrum
(i.e. the ordered eigenvalues of the covariance matrix). Because the
entries of the covariance matrix have been measured at different
spatial locations, we interpret our approach as a spatial equal-

ization process. This method allows to correct for the wavefield
anisotropy in two ways: (1) the influence of strong directive sources
is substantially attenuated, and (2) the weakly excited modes are
reinforced, allowing to partially recover the conditions that ensure
a good-quality Green’s function retrieval. It presents the advantage
to be automatic, and does not require the knowledge of the source
back-azimuth, contrary to Carrière et al. (2014).

In the real data, uncorrelated noise may be present in the co-
variance matrix. It has been shown in many studies (Bienvenu &
Kopp 1980; Wax & Kailath 1985; Gerstoft et al. 2012; Seydoux
et al. 2016a) that the highest eigenvalues of the covariance matrix
are related to coherent information, whereas the weakest are re-
lated to the uncorrelated noise. Similarly to Gallot et al. (2012) and
Carrière et al. (2014), our technique requires to be performed on a
selected subspace of the covariance matrix, in order not to take into
account uncorrelated noise (such as self-sensor electronic noise) in
the equalization process, which could result in strong artefacts in the
cross-correlation functions. In the present paper, we show how the
appropriate truncation can be derived from the number of degrees
of freedom of the seismic wavefield from Walsh & Vekua (1969).

Finally, we present an eigenvector-based spatial filter useful to
distinguish between surface and body waves. This filter is to be
used together with the equalization of the eigenvalue spectrum. We
apply it in the case of the equalization of earthquake-related signals
when high-amplitude body-waves are present, and show that we can
remove them from the cross-correlation functions.

The paper is organized as follows: Section 2 presents the theoreti-
cal statements used to properly explain our approach. The equaliza-
tion of the covariance matrix spectrum is defined therein. Section 2
also presents the theoretical derivation of the eigenvalue cut-off
used in the equalization process, and with a more detailed deriva-
tion presented in Appendix A. Section 3 introduces the seismic array
used in both numerical and real experiments. The method is then
illustrated with a synthetic example in Section 4 where a source
embedded in idealistic isotropic noise is equalized. In Section 4,
we also investigate the effectiveness of our method with using 2-
D numerical experiments with heterogeneous velocity model. We
show that our technique allows to substantially reduce the impact
of a strong seismic source embedded in isotropic seismic noise in
the cross-correlations. In particular, we investigate the effectiveness
of our approach. To that end, we quantify the traveltime measure-
ment error remaining after having applied the method. Finally, we
apply the technique to the data recorded USArray during 2010 in
Section 5. We focused our analysis on 30 d of continuous data cen-
tred around the 2010 M8.8 Maule earthquake (e.g. Delouis et al.
2010), and show that the equalization of the covariance matrix
eigenspectrum strongly attenuates the effect of the earthquake in
the cross-correlations.

2 M E T H O D

2.1 Green’s function retrieval from ambient noise
cross-correlation and array covariance matrix

It is a well-established theory (Weaver & Lobkis 2001; Derode
et al. 2003; Wapenaar 2004; Gouédard et al. 2008) that the correla-
tion Ri j (τ ) of the ambient noise recorded at two sensors located at
positions ri and r j leads to

dRi j (τ )

dτ
= σ 2

4a

(
Gi j (−τ ) − Gi j (τ )

)
, (1)
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where τ is the correlation time, σ is the noise variance, and where
a is the attenuation of the medium. Here, Gij(τ ) is the time-domain
Green’s function between the two sensors, that is, the signal that
would be recorded at sensor j if an impulsive source were located
at sensor i.

The theorem presented in eq. (1) holds when the noise is gener-
ated by uncorrelated sources evenly distributed in the medium (e.g.
Wapenaar 2004). The statistical definition of the cross-correlation
between signals ui(t) and uj(t) recorded by two sensors i and j is
given by

Ri j (τ ) ≡ E
[
ui (t)u j (t − τ )

]
, (2)

where E denotes expected value. Often, eq. (2) is computed in the
frequency domain, Ri j (τ ) = F−1

[Ci j ( f )
]
, from the array covari-

ance matrix Ci j ( f ) defined as

Ci j ( f ) ≡ E
[
ui ( f )u∗

j ( f )
]
, (3)

where ui ( f ) = F[
ui (t)

]
is the Fourier transform of the seismogram

recorded in station i and ∗ represents complex conjugation. The
covariance matrix is a square N × N matrix, where N is the total
number of seismic sensors of a given seismic array.

2.2 Estimation of the array covariance matrix

The array covariance matrix is estimated from the array data vector
u( f, t) such as

u( f, t) = [u1( f, t), u2( f, t), . . . , uN ( f, t)]T , (4)

where ui(f, t) is the Fourier transform of the data time-segment
recorded by the station i of duration δt and starting at time t. We
then estimate the array covariance matrix from a finite number M
of time segments, that is, over a total duration δt(M − 1)/s, where
s is the overlapping ratio of each time-segments

C( f, t) = 1

M

M−1∑
m=0

u( f, t + mδt)u†( f, t + mδt) . (5)

The estimated array covariance matrix C differs from the theoret-
ical array covariance matrix C because it estimates the statistical
relationship between the entries of the array data vectors from a
finite number of windows. It converges towards C as the number of
subwindows M → ∞. We can therefore define a convergence cri-
terion to ensure the estimated covariance matrix to be close enough
to the theoretical covariance matrix. As a rule of thumb, many stud-
ies claim that having M number of estimating time-segments larger
than three times the number of array elements N might be sufficient
to properly estimate the array covariance matrix from real data (e.g.
Menon et al. 2012). In the present study, we consider the case when
the covariance matrix is estimated with M � N (i.e. M ≈ 10N), in
order to avoid any estimation problems.

2.3 Equalization of the covariance matrix eigenspectrum

The covariance matrix is a positive semi-definite Hermitian
matrix by definition. It can therefore always be diagonalized,
such as

C = ���† , (6)

where � = diag(λ1, λ2, . . . , λN ) is the diagonal matrix formed by
the non-negative eigenvalues λi and where � is the matrix formed
by the corresponding eigenvectors ψ i . We propose to construct

the covariance matrix Ĉ = ��̂�† from its eigenvectors with the
equalized eigenvalues �̂ defined with

�̂i i =
{

λi = 1 if i ≤ L

λi = 0 otherwise
, (7)

where L is the eigenvalue cut-off above which we consider the
eigenvectors to be noise-related only, similar to Gallot et al. (2012).
We derive theoretical expression for L in the next section.

2.4 Theoretical derivation of the eigenvalue cut-off

Obviously, the eigenvalue cut-off L of �̂ has to be chosen carefully.
Indeed, if it is chosen too small, the wavefield information is missed
and a too large cut-off will amplify the influence of electronic noise.
The optimal value depends on both the geometry of the seismic
wavefield that is considered (surface or volume) and on the physical
number of degrees of freedom of this wavefield, which is the number
of coefficients that are useful to fully describe the seismic wavefield
in an arbitrary basis of functions. This number of coefficients is
related to the slowness of the medium γ , to the analysing frequency
f and to the typical radius r̄ of the seismic array, which we define
as

r̄ = 2

N (N − 1)

N∑
i=1

N∑
j>i

ri j , (8)

where rij is the great-circle distance between sensors i and j.
A fully detailed derivation of the eigenvalue cut-off is presented in

Appendix A, where we use the cylindrical harmonic decomposition
for the 2-D case and the spherical harmonic decomposition in the 3-
D case. We then use the theoretical result presented in Moiola et al.
(2011) in order to count the number of functions that contribute to
a full description of the seismic wavefield. This first approach only
holds when the wavefield is oversampled by the seismic array (that is
when the interstation distance is smaller than half the wavelength).
When the wavefield becomes undersampled, we infer in Appendix A
that the eigenvalue cut-off should be saturated to N/2 in order to
maximize the quality of reconstruction of the covariance matrix.
This leads to the following eigenvalue cut-off for the 2-D and 3-D
cases:{

L2D( f ) = min
{
2
2π f γ r̄� + 1 , N/2

}
L3D( f ) = min

{
(
2π f γ r̄� + 1)2 , N/2

} (9)

As different type of waves may exist in an elastic medium, in-
volving different slownesses, we should treat each of these waves
separately, that is, we should focus on surface waves or body
waves only. Also, for different types of body waves, we should
consider only P or S waves. We finally observe that the eigen-
value cut-off depends on the slowness, which is supposed to be
an unknown quantity. A rough estimation of the average slow-
ness γ 0 is nevertheless sufficient to extend our approach to the
heterogeneous case.

3 U S T R A N S P O RTA B L E A R R AY
G E O M E T RY

The present study investigates the data continuously collected by
the vertical channel of the USArrray seismic stations during 2010.
In order to observe the isotropy of the seismic wavefield, we use the
conventional beamforming technique (e.g. Veen & Buckley 1988),
that estimates the coherence of the seismic wavefield with respect
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Figure 1. Seismic stations from the US Transportable Array used in this
study. The 34 seismic stations are shown with triangles on the global and on
the regional maps. The seismic array aperture is ∼350 km, and the typical
spacing between neighbouring seismic stations is about 55 km. The average
interstation spacing r̄ is represented with a vector, and the circle of radius r̄
is shown with black dashed line.

to the slowness and back-azimuth. The beamforming B( f, γ ) can
be expressed as the projection of the covariance matrix C( f ) onto
plane-wave beamformers b( f, γ ) = e−2iπ f γ ·r as following

B( f, γ ) = b†( f, γ )C( f )b( f, γ ), (10)

where f is the frequency, γ = γx ex + γyey is the 2-D apparent slow-
ness vector in the seismic array plane, and where r = xex + yey

is the seismic stations coordinate vector. The maxima of the beam
power amplitude |B( f, γ )|2 indicates the energy of the incoming
waves as a function of the slowness and the back-azimuth encoded
in γ .

The beamforming resolution (size of the main-lobe) is inversely
proportional to the array aperture (e.g. Veen & Buckley 1988;
Rost 2002). If the seismic array shape shows a larger extent in
a specific direction, then the slowness resolution is anisotropic.
This is particularly inconvenient when our goal is to observe the
isotropy of the seismic wavefield, which is to observe the en-
ergy of the seismic waves in the slowness space with respect to
the azimuth.

We therefore select a nearly square-shaped seismic array formed
by 34 seismic stations of the USArray, shown with inverted triangles
in Fig. 1. The typical interstation spacing is ∼50 km and the spatial
extent of the seismic array is about 500 km in both east–west and
north–south directions. The typical radius r̄ that corresponds to
the average interstation spacing of the selected seismic array is
161.2 km, and the corresponding circle is represented with dashed
line on Fig. 1.

4 N U M E R I C A L E X P E R I M E N T S

4.1 The homogeneous case

This preliminary test aims at illustrating the method in the simple
case where the medium is homogeneous with space-independent
slowness γ 0 = 0.25 s km−1, and where we set the frequency f0 to
0.02 Hz in order not to induce aliasing artefacts in the beamforming
output. The selected slowness is the typical Rayleigh wave slowness
within the Earth around this frequency.

First, we calculate the idealistic covariance matrix Cideal directly
from the theoretical expression of the 2-D isotropic seismic noise
(e.g. Cox 1974)

Ci j,ideal = J0(2π f0γ0|ri − r j |) , (11)

where ri and r j are the position vectors for stations i and j re-
spectively, so that |ri − r j | represents the interstation distance. The
eigenvalue spectrum of Cideal is presented in Fig. 2(a). We ob-
serve that the eigenvalues are decaying steadily, and vanish with
high eigenvalue indexes. This indicates that the number of de-
grees of freedom of the seismic wavefield L2D is smaller than
the number of sensors N. Indeed, in this particular case, one gets
L2D = 2
2π f0γ0r̄� + 1 = 13 (as illustrated in Fig. A1a), which is
in accordance with the obtained eigenvalue spectrum.

The corresponding beamforming obtained from Cideal is pre-
sented in Fig. 2(d). We see that the energy is located near the
slowness circle of radius γ 0 = 0.25 s km−1. This quasi-circular
shape reflects that the energy incomes from all azimuths with the
same energy. The slight differences in amplitude around azimuths
45◦ and 225◦ are due to the non-perfectly uniform shape of the
selected USArray stations.

We then calculate a second covariance matrix Csource, where we
embed a strong source in the aforementioned idealistic 2-D isotropic
noise. This second covariance matrix aims at illustrating the case
where the seismic data contain an earthquake-related signal, em-
bedded in background seismic noise. We set the amplitude of the
source as = 10 times higher than the one of the seismic noise. As-
suming that both the source and the seismic noise are statistically
independent, this second covariance matrix is obtained with

Csource = Cideal + a2
s ss† , (12)

where s is the source-related array data vector such as si =
e2π f0γ0(cos θxi +sin θyi ), and θ is the source back-azimuth. We use
θ = 135◦ in this first test. The eigenvalue spectrum of Csource is pre-
sented in Fig. 2(b), where we clearly observe the strong dominance
of the first eigenvalue, which is mainly related to the high-amplitude
source. The corresponding beam power in Fig. 2(e) exhibits a high-
amplitude spot located at azimuth 135◦ related to the source, and a
background circular-shaped pattern related to the idealistic noise.

We finally obtain the equalized covariance matrix Cequalized from
the truncated summation of the L2D = 13 firsts eigenvectors, with
the equalized eigenvalues as visible in Fig. 2(c).

We see in Fig. 2(f) that the amplitude of the source and the one of
the background noise have been equalized, and the circular shape
recovered. This simple test illustrates our equalization technique,
with considering expected covariance matrices of idealistic noise
and signal related to a strong far-field single source. One notices
that the resulting beamforming energy has been nearly uniformly
equalized close to the slowness circle corresponding to 0.25 s km−1

in Fig. 2(f), and that we do not observe anymore the slight asym-
metry due to the arrays shape in the idealistic case (Fig. 2d). This
indicates that small errors are induced with the equalization of
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1436 L. Seydoux, J. de Rosny and N.M. Shapiro

Figure 2. Spatial equalization of a synthetic source embedded in an idealistic 2-D isotropic seismic noise. The top panels show the covariance matrix
eigenvalues, sorted in decreasing order (i.e. the covariance matrix spectra). The corresponding beamforming is presented in each case at the bottom. They are
obtained from the covariance matrix in each case with eq. (10). We fixed the slowness s0 = 0.25 s km−1, and the period T = 50 s. (a,d) Idealistic 2-D seismic
noise obtained from eq. (11). (b,e) Idealistic 2-D noise plus a 10 times higher seismic source located at azimuth 135◦. (c,f) Case (b/e) where the covariance
matrix is reconstructed from its first 11 eigenvectors with the corresponding eigenvalues set to 1.

the covariance matrix spectrum. These errors are investigated in
terms of traveltimes measurements from the corresponding cross-
correlation in the following section that considers the heterogeneous
case.

4.2 The heterogeneous case

4.2.1 Numerical setup

We perform a 2-D acoustical simulation which models Rayleigh
waves propagation only. We used 2-D finite-differences for solving
the 2-D wave equation.

The numerical setup of the simulation is presented in Fig. 3(a). In
order to use the geometry of the selected USArray seismic stations
presented in Fig. 1, we performed the simulation on a 2500 ×
2500 km2 grid. We chose a spatial grid step dx = 1.6 km, and a time
step dt = 0.065 s in order to decrease numerical dispersion. The
reflexions of the pressure waves on the borders of the numerical
domain are cancelled out using perfectly matched layers derived
from Liu (1997) and shown with darker zones in the borders of the
spatial domain in Fig. 3(a).

The velocity model is changing linearly in the x-direction from
2 to 6 km s−1. It is presented in colour scale in Fig. 3(a) rela-
tively to the average velocity v0 = 4 km s−1. The positions of the
N = 34 seismic stations are shown with blue triangles. In order to
simulate noise sources, we used a number of S = 200 seismic sources

deployed circularly around the seismic array (shown as red stars in
Fig. 3a). We consider this number of sources to ensure the sensor-to-
sensor cross-correlations computed from numerical noise sources
to have a correlation coefficient of more than 90 per cent with the
direct Green’s functions when assuming sufficient averaging and
equal source amplitude (see for instance Derode et al. 2003).

4.2.2 Protocol: numerical Green’s functions retrieval from
ambient noise cross-correlation

In order to estimate the numerical Green’s function Gab(t) of the
medium between two grid nodes a and b, we emit a pulse-like
signal r(t) at a location a and consider the record of this pulse at any
location b to consist in the Green’s function. The pulse-like signal
is chosen to be a Ricker wavelet (Ricker 1953):

r (t) = (
1 − (t − t0)2β2

)
e−(t−t0)2β2 ⇔ R( f ) = R0 f 2e− f 2/β2

(13)

where β is the frequency bandwidth, t0 is the time shift of the
wavelet, and R0 is a constant. Eq. (13) indicates that the both tem-
poral and frequency content of the pulse are second derivative of a
Gaussian function, which is a symmetric function with zero-mean
amplitude. Its half-height width is of 1/β in the temporal domain,
and of β in the frequency domain. We performed the analysis be-
tween 100 and 10 s of period (0.01 and 0.1 Hz), so we chose
β = 0.1 Hz. The temporal amplitude of the pulse is shown in
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Covariance matrix eigenspectrum equalization 1437

Figure 3. Numerical setup of the 2-D acoustic finite-differences simulation. (a) Locations of the seismic stations (blue triangles) and of the seismic sources (red
stars). The velocity model is represented in colour scale with the reference velocity v0 = 4 km s−1. (b) Ricker pulse r(t) used to obtain the source-to-receiver
numerical Green’s function between the sources and the receivers (see eq. 13) (c) Ricker pulse Fourier transform R( f ) of the pulse signal r(t) shown in (b).

Fig. 3(b) where t0 = 100 s, with its corresponding power spectrum
in Fig. 3(c). We see that with our choice of parameters, the pulse
spectrum is positive from 0.01 to 0.1 Hz, and its energy vanishes
beneath −150 dB at f > 0.2 Hz.

We estimate all numerical Green’s functions Gis(t) between each
sensor i = 1. . . N and sources s = 1. . . S. Because of the reciprocity
of the wave equation, we notice that Gis(t) = Gsi(t). Therefore, we
compute Gsi(t) with emitting the pulse from each seismic stations
and record the wavefield at the sources in order to save compu-
tational time. (This allows to perform only 34 simulations against
200 if the pulse were sent from the seismic sources.) The numerical
cross-correlation Rij(t) of the signals collected at sensors i and j can
be derived when the wavefield is generated by S seismic sources
with known source-to-receiver Green’s functions Gis(t) and when
the sources are emitting signals ns(t):

Ri j (t) = E

[∑
s,s′

(
Gis(t) ⊗ ns(t)

) ⊗ (
G js′ (−t) ⊗ ns′ (−t)

)]
, (14)

where ⊗ is the temporal convolution product. The isotropy of
the numerical seismic wavefield can be controlled by the ampli-
tude of the signals ns(t) emitted by each sensors as detailed in
the following.

4.2.3 Numerical Green’s functions retrieval from isotropic
ambient seismic noise

An isotropic seismic wavefield can be obtained if we impose the
seismic sources to emit uncorrelated noise ns(t) of equal variances
ν from one source to another such as

E
[
ns(t) ⊗ ns′ (−t)

] = ν2δss′ , (15)

where δss′ is the Kronecker delta, and if the sources are evenly
distributed on a surrounding curve around the seismic array, then
the expected value of eq. (14) reduces to (omitting the amplitude
normalization factor)

Ri j (t) =
S∑

s=1

Gis(t) ⊗ G js(−t) = −Gi j (t) + Gi j (−t) , (16)

indicating that we retrieved eq. (1). In order to save computational
time, we compute the cross-correlation functions directly from
eq. (16), implicitly assuming uncorrelated noise sources and suffi-
cient averaging.

The cross-correlations Rij(τ ) computed between all 34 ×
(34 − 1)/2 = 561 pairwise combinations of seismic stations are
presented in colour scale in Fig. 4(a) sorted with the interstation
spacing and against time. In order to automaticly look for phys-
ically possible arrival times in the next section, we masked the
correlation functions for arrival times with velocities higher than
6 km s−1 and smaller than 2 km s−1, which correspond to the ex-
treme values of the velocity model (indicated with dashed lines
in Fig. 4a).

In this first experiment, we impose the wavefield to be isotropic.
We applied a narrow bandpass-filter between 12.5 and 50 s (0.02–
0.08 Hz) to the cross-correlation functions in order to allow for
comparison of the results with beamforming analysis that is com-
puted at a single frequency. We observe the ‘V’ shape formed by
the cross-correlation functions, which is a typical expression of the
good azimuthal coverage of the seismic sources with equal ampli-
tudes because it induce symmetric interstation cross-correlations
functions.

We perform the plane-wave beamforming analysis of the co-
variance matrix obtained from the inverse Fourier transform of the
cross-correlation functions. The beam power obtained at T = 54.6 s
(which approximatively corresponds to the centre of the frequency
band used to filter the cross-correlations in Fig. 4a) is presented
in Fig. 4(d). We notice that the spectral maximum actually is 33 s.
However, we chose 54.6 s in order to mitigate aliasing artefacts
that contaminate the visibility of the results, without any loss of
generality. We observe the typical circular shape, also synonymous
with evenly distributed equal-amplitude seismic sources (i.e. it in-
dicates the energy incomes from all directions with the same ampli-
tude). Most of the beam power is nearby the average slowness circle
(0.25 s km−1).

Note that because we set the space-dependant velocity in the
medium with a constant volumic mass, the waves have different
amplitude with respect to the local velocity. This is naturally re-
sulting from the energy conservation principle. In order to avoid
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Figure 4. Numerical interstation cross-correlation functions (left) and corresponding plane-wave beamforming (right). The cross-correlation functions are
computed from eq. (14), and are bandpass-filtered between 12.5 and 50 s. The beamforming analysis is performed at T = 54.6 s. (a) Isotropic case, where the
seismic sources are evenly distributed with respect to the azimuth and have equal amplitude. The limits of the amplitude mask are indicated with black dashed
lines. (b) Anisotropic case, where all sources have the same amplitude except one located at azimuth 158◦ (corresponding to the Maule earthquake azimuth,
see Fig. 8). This case simulates a strong source embedded in ambient and isotropic seismic noise. (c) Cross-correlations obtained after equalization of the
covariance matrix illustrated in (b) with using eq. (9). (d–f) Beamforming analyses corresponding to cases (a)–(c), respectively.

any amplitude problems relative to the changing velocity in the
medium, we normalized the broad-band source-to-receivers Green’s
functions Gis(t) to their maximal amplitude before performing the
experiment.

4.2.4 Numerical Green’s functions retrieval from anisotropic
seismic wavefield

We perform the same experiment than in the isotropic case, but we
rewrite eq. (15) as following

E
[
ns(t) ⊗ ns′ (−t)

] = νδss′ + ν0δss0 , (17)

where s0 is the index of the strong seismic source of amplitude
ν0 � ν. This new relationship correspond to a strong seismic source
of amplitude ν0 embedded in isotropic seismic noise of variance
ν. If the sources are evenly distributed, which is the case in the
present simulation, the source index s0 is simply related to a given
azimuth θ0.

We compute the interstation cross-correlation functions with a
source located at azimuth θ0 = 158◦ (corresponding to the one of
the 2010 M8.8 Maule earthquake observed from the USArray, see
Fig 8b), and with an amplitude ten times higher than the back-
ground isotropic noise (i.e. ν0 = 10ν). The results are presented in
Fig. 4(b), in colour scale, sorted with the interstation spacing and
with respect to time. We see that the ‘V’ shape related to the back-
ground isotropic noise is contaminated with many spurious waves
arrivals with smaller traveltimes. These spurious peaks are caused
by the strong source, and their traveltimes are shifted relatively to the
azimuth between the interstation axis and the direction-of-arrival of
the wave θ0.

The corresponding beamforming analysis is presented in
Fig. 4(e). We clearly observe the presence of the strong seismic
source because the energy is incoming from azimuth 158◦. The
isotropic seismic noise is still visible in the background, with the
typical circular shape with amplitude 10 times smaller than the main
spot.
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4.2.5 Numerical Green’s functions retrieval from the equalized
anisotropic seismic wavefield

We finally apply our equalization technique to this last covariance
matrix built up from isotropic noise plus a strong source. We per-
form the eigendecomposition at each frequency, and reconstruct
the covariance matrix from the 2-D frequency-dependent number
of equalized eigenvectors as described by eq. (9). We used γ 0 equal
to the average velocity in the medium 0.25 s km−1 in this approach.

The cross-correlations obtained from the equalized covariance
matrix are presented in Fig. 4(c), and the corresponding beam-
forming in Fig. 4(f). We observe that the symmetry of the cross-
correlation functions is strongly improved, suggesting that the effect
of the coherent source has been substantially attenuated. We notice
that the spatial equalization is less efficient for the cross-correlations
with large interstation spacing (above 400 km) because their inter-
spacing is large compared with the average one r̄ .

The corresponding beamforming shows a clear improvement in
comparison with the raw result shown in Fig. 4(e). The circu-
lar shape is greatly improved, indicating that we reinforced the
weak isotropic background noise. The presence of the seismic
source is still visible at the azimuth θ0 = 158◦, meaning that the
source effect has not been completely removed, in contrast with
the method presented in Carrière et al. (2013), but its energy has
been equalized.

4.2.6 Traveltime measurements

A legitimate question remains: does this equalization process allow
to recover the information relative to the velocity in the medium?
In order to address this question, we propose to compare the waves
traveltimes and to compute the inversion in order to have a look at
the recovered velocity model.

The arrival times are measured from the maximum of the enve-
lope of the cross-correlation functions, which can be obtained from
the Hilbert transform. Three selected cross-correlation functions are
presented in Fig. 5(a), corresponding to the three cases investigated
in Figs 4(a)–(c). The traveltime extraction is shown in Fig. 5(b). The
selected sensor pair is highlighted with black triangle in the inset of
Fig. 5.

The reference cross-correlation is obtained from the isotropic
wavefield configuration. We see that the amplitude is almost sym-
metric, and that two separate wavepackets have emerged from the
cross-correlation with symmetric traveltimes compared to the zero
time lag, with almost no energy far from the wavepackets. The enve-
lope maxima lead to the extraction of the waves traveltime between
the two considered sensors.

When a single source is dominating, we still observe two small
wavepackets that correspond to the isotropic case, plus an additional
strong-amplitude peak located near the zero time lag. This peak of
amplitude is related to the source amplitude and azimuth, and lead
to a biased traveltime estimation (abnormally close to 0).

The cross-correlation obtained from the equalized covariance ma-
trix is closer to the isotropic case. Although the noise is still present,
we can observe that the two wavepackets related to the isotropic
wavefield have been recovered, whereas the strong-amplitude peak
related to the coherent source has been attenuated. The traveltime
extracted from the related envelope in Fig. 5(b) is now closer to the
reference case, with a slight difference due to the imperfection of
the reconstruction.

We systematically investigate the errors in traveltime measure-
ments (Fig. 6) within two cases (1) when the wavefield is contami-

Figure 5. Numerical cross-correlation functions obtained at one station
pair. The selected station pair is highlighted with black triangles in the inset.
The amplitude mask used for this specific station pair is represented with
a grey line. (a) Cross-correlation functions. The black dashed line shows
cross-correlation obtained from an isotropic distribution of sources. The red
line shows the cross-correlation from a distribution with one dominating
source. The blue line shows the result of applying the equalization of the
covariance matrix spectrum to the anisotropic distribution of sources. (b)
Hilbert envelopes of the cross-correlation functions shown in (a). The trav-
eltimes estimated from the envelope maxima are represented with vertical
lines.

Figure 6. (a) Traveltimes measured from the cross-correlation functions
presented in Fig. 4(b), where a strong coherent source at azimuth 158◦ has
an amplitude 10 times higher than the ones compared with ‘reference’
traveltimes measured with an isotropic distribution of sources. (b) Travel-
times measured from the cross-correlation function presented in Fig. 4(d),
where the covariance matrix spectrum has been equalized. The average error
(eq. 18) in traveltime measurement is indicated in each case.

nated with the strong-amplitude source and (2) with the equalization
of the eigenvalues applied to (1). The traveltime measurements are
obtained from the time-lag corresponding to the maximum of the
envelope, with taking the absolute value in order to get positive trav-
eltimes. The reference traveltimes are obtained from the isotropic
cross-correlation functions.
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1440 L. Seydoux, J. de Rosny and N.M. Shapiro

Figure 7. Inversion of the traveltimes measured from the numerical cross-
correlation function presented in Figs 4(a)–(d). The input velocity model is
presented in (a) with respect to the average velocity of the medium v0 =
4 km s−1. The tomographic results are respectively obtained from (b) an
isotropic source configuration, (c) with a strong source illuminating at θ0 =
158◦ and (d) after the spatial equalization applied on (c).

The overall traveltime measurement error ε is obtained in both
cases from

ε = 100 × 1

Nc

Nc∑
n=1

|t tn − t tre f,n|
t tre f,n

(18)

where ttn is the traveltime of the nth cross-correlation function, ttref, n

is the reference traveltime for the nth reference cross-correlation,
and Nc = N(N − 1)/2 is the total number of cross-correlation
functions.

Fig. 6(a) shows that the strong source induces an overall error in
the traveltime estimation of 11.73 per cent, with under-estimated
traveltimes. This overall error reduces to 1.49 per cent after equal-
izing the covariance matrix spectrum in Fig. 6(b).

We present the results of the inversion of the traveltimes to re-
cover the velocity model in Fig. 7. The true velocity model is shown
in Fig. 7(a). Fig. 7(b) shows the velocity model obtained from the
isotropic noise, Fig. 7(c) corresponds to the isotropic case with an
additional strong seismic source and Fig. 7(d) is the case (c) where
we equalized the covariance matrix spectrum. The inversion is per-
formed using the traveltime measurements between all interstation
cross-correlation function, using the open-source Python package
Fatiando (Uieda et al. 2013). We performed the inversion with
a 2-D straight-ray model on a 131 × 131 grid, with a regulariza-

tion parameter of 50 km in order to smooth the bias in traveltime
measurements from the cross-correlation functions.

The velocity model obtained in case of isotropic noise (Fig. 7a)
is the best estimation since it is obtained from a best-case scenario.
There are no path coverage outside the box between x, y ∈ [1100,
1400] which explains why the inversion leads underestimated ve-
locities on the border of the grid. As expected, the case where a
strong source is located in θ0 = 158◦ lead to strong bias in the
traveltime measurements, which induce strong anomalies in the ve-
locity inversion. The colour scale is saturated between -10 per cent
and +10 per cent relatively to the average velocity v0 = 4 km s−1.
Finally, the equalization of the covariance matrix spectrum strongly
improves the velocity model exactness.

5 A P P L I C AT I O N T O T H E DATA
C O L L E C T E D B Y T H E U S A R R AY:
E Q UA L I Z AT I O N O F T H E 2 0 1 0 , M 8 . 8
M AU L E E A RT H Q UA K E

5.1 Standard cross-correlation in presence of earthquakes

We present in Fig. 8 the magnitudes of the M ≥ 5 earthquakes
that occurred worldwide between January 1 and April 1 of 2010
obtained from the U.S. Geological Survey search earthquake

catalog. We narrowed the focus on two 30 d long time-segments
of data indicated with coloured boxes in Fig. 8(a). The yellow box
contains no earthquakes with magnitude higher than 6.3, with epi-
centre locations shown as yellow dots in the azimuthal world map
in Fig. 8(b). The red window is centred around the M8.8 Maule,
Chile megathrust earthquake (e.g. Delouis et al. 2010).

The covariance matrix C( f ) is estimated from the USArray data
using eq. (5). The duration δt of the sub-windows is 960 s, and
we used a number of M = 20 half-overlapping subwindows (i.e.
the covariance matrix is obtained within �t = 9600 s long time-
segments of data). Before computation, we pre-process the data over
each 9600 s long windows with temporal and spectral smoothing
techniques described in Bensen et al. (2007). We then stack it over
24 hr in order to obtain daily estimates Cd ( f ). The effective number
of sub-windows is then Meff ≈ 2 × 20 × 24 × 3600/9600 = 360, the
covariance matrix is thus robustly estimated on each day because
Meff � N, where N is the number of seismic stations (e.g. Menon
et al. 2012).

In order to investigate the wavefield isotropy of the two time-
segments of data presented in Fig. 8, we stack the daily covari-
ance matrices obtained in each period of time. The planewave
beamforming analysis is then performed onto the stacked covari-
ance matrices using eq. (10). We show in Fig. 9 the beamform-
ing obtained within the yellow window (Fig. 9a) and red window
(Fig. 9b).

The wavefield shown in Fig. 9(a) is mostly composed of Rayleigh
waves (because most of the energy is located near the 0.25 s km−1

slowness circle) arriving from many different directions, represent-
ing a distribution of seismic sources suitable for noise-based to-
mography.

Fig. 9(b) is obtained from the time-segment when the Maule M8.8
earthquake occurred. Even if the covariance matrix is stacked over
30 d including 15 d before the earthquake nucleation, and even with
the additional spectral and temporal pre-processings, we observe a
strong dominance of Rayleigh waves generated by this earthquake
and its aftershocks (the waves are incoming with an apparent slow-
ness of 0.25 s km−1 and with about 160◦ of azimuth). We also
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Figure 8. (a) Magnitude and date of M ≥ 5 earthquakes that occurred in 2010, obtained from the U.S. Geological Survey database
(http://earthquake.usgs.gov/earthquakes/search/). The coloured boxes indicate two time segments (30 d long each) over which we analysed
the wavefield isotropy. The yellow box if free from earthquakes with magnitudes higher than 6.3. The red box contains the Maule M8.8 megathrust earthquake
which corresponding epicentre location is shown with red star in (b). (b) Azimuthal global map centred on the USArray barycentre (black triangle). We indicate
the direction of arrival of Rayleigh waves incoming from the Maule earthquake.

Figure 9. Beamforming computed over the two windows of data shown in
Fig. 8. The data were pre-processed with temporal and spectral equaliza-
tions. The beamforming output is averaged between 40 and 50 s of period.
(a) Yellow window, where no earthquake of magnitude higher than 6.3 oc-
curred (b) Red window, which contains the signal related to the M8.8 Maule
earthquake.

observe the presence of body waves with apparent slownesses close
to 0.

These results were obtained from the covariance matrix estimated
from the data pre-processed with the classical temporal and spectral
equalizations. We see that, in agreement with the results obtained in
Seydoux et al. (2016b), the equalization process does not allow to
fully isotropize the seismic wavefield and the presence of spatially
localized coherent sources (Fig. 9b) remains clearly encoded in the
covariance matrix.

The specific case of the Maule earthquake is herein further in-
vestigated because it represents a problematic case for accurate
measurements of traveltimes from cross-correlations. In order to
show the influence of the earthquake-related highly coherent sig-
nals on the cross-correlations, we compute the cross-correlation
functions between all pairs of selected stations from the inverse
Fourier transform of the covariance matrix, and present them in
Fig. 10(a) in colour scale as a function of time and sorted with
respect to the interstation spacing. The cross-correlation func-
tions are bandpass-filtered between 12.5 and 50 s. The maximal

interstation spacing is about 525 km, and the correlation time is
shown between −200 and 200 s. Also, the corresponding beam-
forming is presented in Fig. 10(d), averaged between 40 and 50 s
of period.

We can see several features in this first result. First, we observe
in the background the typical ‘V’ shape formed by the Rayleigh
waves due to the ambient seismic noise. The same observation
can be done from the corresponding beamforming, with the low-
amplitude circular shape at slowness 0.25 s km−1 in Fig. 10(d). This
is an important observation because it allows to consider the seismic
wavefield to be generated by seismic sources with a quasi-total
azimuthal coverage, with different amplitudes, which is a required
condition to apply our method. A second important feature is the
strong peak present in many cross-correlations near the zero time-
lag. This peak can be both related to (1) the spurious arrivals due
to the Rayleigh waves incoming from the Maule earthquake at the
pairs of stations which axis is orthogonal to the earthquake azimuth,
and (2) to the body waves that income from the earthquake, also
responsible for the low-energy peak visible in the beamforming, at
apparent slownesses close to 0.

From these observations, we understand that the traveltimes
measurements cannot be automatically evaluated from the cross-
correlation functions because a lot of them will lead biased travel-
times, similarly than in Fig. 6(a).

5.2 Equalization of the M8.8 Maule earthquake

We equalize the eigenvectors of daily covariance matrix (eq. 7), and
we then stack the filtered covariance matrices, allowing to increase
the performances of the method. Even if the Rayleigh waves are
known to be dispersive within the Earth, we use a constant slowness
γ 0 = 0.25 s km−1 (observed on the beamforming at T ∈ [40, 50] s of
period) in order to define the eigenvalue cut-off L(f) from eq. (9). A
more precise result should be obtained with considering the typical
Rayleigh waves slowness with respect to the frequency (disper-
sive approach). As we want to retrieve the traveltimes of Rayleigh
waves, we approximate the problem with a 2-D situation, and choose
L(f) = L2D(f) (eq. 9, Fig. A1b).
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Figure 10. Spatial equalization of the 2010 M8.8 Maule earthquake. Cross-correlation functions obtained between all the 34 seismic station, with respect to
the interstation distance. The cross-correlations are bandpass-filtered between 25 and 100 s. (a) Cross-correlation obtained with the temporal and the spectral
normalization technique proposed by Bensen et al. (2007). (b) Same as (a) obtained from the equalized covariance matrix. (c) Same as (b) with the additional
eigenvector selection. The eigenvectors with energy inside the 0.15 km s−1 slowness circle are systematically rejected. (d–f) Beamforming analyses of cases
(a)–(c), respectively, averaged between 41 and 51.2 s of period.

The interstation cross-correlations obtained from the equalized
covariance matrix is presented in Fig. 10(b), and the corresponding
beamforming is shown in Fig. 10(e). We clearly observe that the
equalization process has increased the energy of Rayleigh waves
recovered from the background noise. The strong spot of energy
related to the Maule earthquake Rayleigh wave is still visible in the
beamforming. However, its amplitude have been quasi-equalized to
waves coming from other directions. This is in accordance with the
numerical result presented in Section 4 (Fig. 4c).

We also see in Fig. 10(e) a linear feature oriented along the
direction corresponding to the Maule earthquake and filling the
whole range of slownesses within the Rayleigh wave circle. Because
the beamforming only gives access to an apparent slowness, this
pattern most likely represents the body waves generated by the
Maule earthquake. These body waves have been equalized by our
method, because of its inability to distinguish between 2-D and 3-D
wavefields. Indeed, we choose the eigenvalue L(f) = L2D(f), but as
mentioned in Section 2, L3D > L2D(f). We therefore see that from its
fundamental definition (see eqs 9) the equalization of the covariance
matrix spectrum can reinforce body waves if they are present in the

wavefield, and if they are spanned by eigenvectors ψ i with index
i < L2D( f ).

5.3 Eigenvector-based body wave removal

In order to remove the influence of the unwanted body waves ob-
served in Fig. 10(d), we propose to select surface waves from the
covariance matrix eigenvectors before performing the eigenspec-
trum equalization. The selection can be done with the beamforming
analysis, applied to the covariance matrix eigenvectors ψn , with
rejecting those that contain energy inside an arbitrary slowness
threshold γ thr. The beamforming Bn applied to the nth eigenvector
where n = 1. . . N is the eigenvector index is given by

Bn = b†ψnψ
†
nb , (19)

where b is the beamformer defined in Section 2. The beamforming
analyses of the first 27 eigenvectors of the array covariance matrix
computed from the Maule earthquake (Fig. 10c) are presented in
Fig. 11. Each eigenvector show a specific beam pattern, and some
of them clearly contain body waves (for instance, eigenvectors #4,
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Figure 11. Selection of the covariance matrix eigenvectors that are related to Rayleigh waves. Each plot shows the beamforming performed on one eigenvector
of the covariance matrix computed from the M8.8 Maule earthquake. The full-rank beamforming is presented in the top-left plot. In each case, the number
corresponds to the eigenvector index. The dashed circle corresponds to the slowness circle of rejection γ thr and the rejected eigenvectors are indicated with
red labels.

8, 14, 15, and 22), while the other ones does not. Therefore, we
design a rejection criterion upon which the eigenvectors that contain
energy inside an arbitrary circle are not taken into account in the
equalization procedure.

In the present case, we rejected all the eigenvectors that contain
energy inside the slowness circle γ thr = 0.15 s km−1. To that end
we compare the maximal value of the beamforming outside and
inside the slowness circle. If the maximal value inside the slowness
circle is greater than 85 per cent of the outside maximal value, we
rejected the corresponding eigenvector. The rejected eigenvectors
are visible with a red label in Fig. 11. This selection is performed
at each frequency.

We perform the equalization of the covariance matrix with the ad-
ditional eigenvector selection, and present the corresponding cross-
correlation functions and beamforming in Figs 10(c) and (f) respec-
tively. We observe that the beamforming pattern related to the body
waves that were incoming from the Maule earthquake have been
removed. The corresponding peaks visible near the zero time-lag in
the cross-correlations have been attenuated as well.

In order to better understand the effects of this equalization pro-
cess, we present two particular cases in Fig. 12, where the stations
pairs have been selected to be parallel and orthogonal to the earth-
quake azimuth.

The standard cross-correlations aligned with the earthquake az-
imuth are presented in Fig. 12(a). As expected, the Rayleigh waves
incoming from the earthquake do not induce spurious arrivals
in the cross-correlations because they contribute to the construc-

tion of coherent wave fronts that propagate along the path be-
tween the two stations. Nevertheless, the amplitude of the cross-
correlation functions are asymmetrical because most of the energy
incomes from one side of the system. The same result after hav-
ing applied the spatial equalization and eigenvector selection (in
Fig. 12b) shows up to strongly improve the symmetry of these
cross-correlations.

The station pairs which axis is orthogonal to the earthquake az-
imuth without equalization show cross-correlation functions with
strong peak near the zero time-lag in Fig. 12(c). This can be sim-
ply explained geometrically: the teleseismic waves impinging on
the stations from the earthquake arrive at the same moment to
both stations of this orientation. This strong peak is almost com-
pletely cancelled from cross-correlation function obtained after the
equalization and surface wave selection of the covariance matrix
(Fig. 12d). We see that the symmetry of the cross-correlation func-
tions is not as good as in the oriented case. However it is now
suitable for automatic traveltime measurements.

6 D I S C U S S I O N

Many studies have highlighted the existing analogy between the
spatial cross-correlation of a wavefield generated by uncorrelated
seismic sources and the time-reversal operation (see for instance
Derode et al. 2003; Larose 2004; Campillo 2006). Within this anal-
ogy, the sources used to perform the time-reversal operation are the
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Figure 12. Comparison between the standard cross-correlations (a, c) and the cross-correlations obtained after equalizing the covariance matrices and selecting
the eigenvectors (b, d). The selected station pairs are parallel (a, c) and orhogonal (c, d) to the earthquake azimuth, with a tolerance angle of 10◦, as indicated
in the inset in (a) and (b).

analogue of the noise seismic sources of the present study. Indeed,
the cross-correlation function between a reference station and all
other available stations can be seen as a sequence of (1) recording
at the sources a pulse emitted by the reference station, (2) emitting
the time-reversed records of the wavefield at each source, leading
to (3) a focusing of the waves onto the reference station, followed
by (4) a diverging wavefield from the reference station.

If the sources are homogeneously distributed in a surrounding
path enclosing the seismic array, then the focused wavefield ob-
tained in step (3) corresponds to the initial pulse emitted by the
reference station in step (1) and, consequently, steps (3) and (4) are
symmetrical with respect to time-reversion.

When the sources are not homogeneously distributed in the
medium, this necessarily leads to asymmetrical cross-correlation
functions because the converging (3) and diverging (4) wavefields
are not anymore symmetrical with respect to time. In that case, the
focusing of the wavefield is degraded, leading to spurious zones
where the wavefield focuses outside the reference station location.
Consequently, cross-correlation (or similarly time-reversal opera-
tion) cannot be directly used to infer the properties of the medium
when the sources are not homogeneously deployed around the stud-
ied zone.

In such ill-conditioned context, Tanter et al. (2000) and Aubry
et al. (2001) have proposed to improve the focusing of ultrasonic
beams in heterogeneous media with replacing the time-reversal op-
eration by an inverse-filter technique that imposes the wavefield to
be 1 at the precise location of the reference station and 0 elsewhere.
This approach, that can be applied when the sources are under con-
trol, leads to selecting proper eigenvectors of the matrix formed by
the signals received at the time-reversal sources. Indeed, only a por-
tion of these eigenvectors contain information about the propagating
waves (forming the signal subspace), whereas the other ones are re-
lated to uncorrelated noise (i.e. the noise subspace) which is likely

to produce strong artefacts in this ill-conditioned time-reversal op-
eration. By selecting only the signal-related eigenvectors, Tanter
et al. (2000) and Aubry et al. (2001) have shown that the focus-
ing is improved and the converging and diverging wavefield are
symmetrized. This operation can therefore be interpreted as a pro-
jection of the recorded wavefield onto the signal subspace (Prada &
Thomas 2003). This signal subspace is useful in many applications
such as high-resolution beamforming techniques (Wax et al. 1984;
Goldstein & Archuleta 1987).

The application of the inverse filter to a passive case (i.e. where
the sources are not under control) has been first done in Gallot et al.
(2012) with seismic data. Instead of applying the eigenvalue decom-
position onto the matrix formed by the signals received at the sources
(consequently unknown), the authors assume the ambient seismic
wavefield to be generated by a great number of overlapping Green’s
functions which are likely to be captured in several arbitrary-defined
windows of data. The authors apply the singular-value decomposi-
tion directly onto the matrix formed by the signals received at the
seismic stations (data matrix). Despite showing similar results with
our technique, their method involves to keep the whole N × M data
matrix where the number of time segments M is often large, and
to perform the singular-value decomposition on it, inducing time-
and memory-consuming computation. Neither can this technique
be applied to pre-existing cross-correlation databases.

The method presented in our study is equivalent to the passive-
inverse filter proposed in Gallot et al. (2012). In our case, we di-
rectly select the signal-related eigenvectors from the N × N array
covariance matrix, inducing a non-negligible gain in computation
compared to Gallot et al. (2012), and making the method applica-
ble to pre-existing cross-correlation databases. The equalization of
the covariance matrix eigenspectrum therefore follows the idea of
improving the focusing of the cross-correlated wavefield, and acts
at every station of the seismic array simultaneously.
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The equalization of the covariance matrix eigenspectrum can
also be seen as the extension of the spectral equalization process
(Bensen et al. 2007)—which operates on the Fourier spectrum of
the individual seismic traces—to the spatial domain. Indeed, each
row of the covariance matrix represents the correlated wavefield
amplitude as a function of space. If we consider an infinite ar-
ray with regularly spaced elements, the covariance matrix becomes
block-Toeplitz (Gerstoft et al. 2012), meaning that each row of
the covariance matrix is a shifted version of the preceding one. In
that case, the eigenvalues of the covariance matrix are given by the
Fourier transform of one single row, which can be interpreted as a
spatial Fourier transform of the correlated wavefield.

We also presented a theoretical derivation of the eigenvalue
threshold (Section 2.4, eq. 9 and Appendix A). Our result is similar
to the one obtained in Carrière et al. (2013) for a volume noise ge-
ometry, where the authors considered a planar array with regularly
spaced sensors. In the present study, we additionally derived the
eigenvalue cut-off as a function of the frequency for a surface noise
geometry. Another theoretical derivation of the eigenvalue cut-off
was also derived from the random matrix theory in Menon et al.
(2012) under regularly spaced linear array assumption, where the
number of eigenvalues related to the seismic noise is obtained from
an asymptotic density of probability.

Finally, our method can also be compared with the one presented
in Menon et al. (2012), which is designed to reduce the influ-
ence of highly coherent sources in ocean acoustics such as passing
ships. These authors developed an approach using the random ma-
trix theory to infer the ship-related eigenvalues, and rejected the
eigenvalues according to a sequence of hypothesis testing. The az-
imuthal zones where the ships are located therefore suffer from a
lack of energy after filtering, involving the needs of records of the
wavefield before and after the ship passes. Our method presents the
advantage to keep the energy related to anomalously strong sources,
and just reduces their respective contributions by equalizing them
with respect to average background sources.

7 C O N C LU S I O N S

We have developed an approach useful to enhance Green’s function
recovering from ambient seismic noise in presence of strong seis-
mic sources. Our approach is inspired by the passive inverse filter
presented in Tanter et al. (2001), Aubry et al. (2001) and Gallot
et al. (2012) and by the spatial filter presented in Carrière et al.
(2014), and can be seen as an extent of the spectral equalization
usually applied to individual seismograms (Bensen et al. 2007) to
the spatial domain. Theoretical expression for the eigenvalue cut-off
which is involved in our method as well as in Carrière et al. (2014)
is derived, in both 2-D and 3-D noise configurations. We automat-
ically define the eigenvalue threshold of our method as a function
of the frequency from this theoretical derivation, without any prior
knowledge on the spatial distribution of the noise seismic sources.
The technique herein developed has the advantage to be directly
performed onto the array covariance matrix, and therefore, it can
be applied onto pre-existing cross-correlation databases. Finally, we
propose an eigenvector-based spatial-filter to be combined with the
inverse-filter, which consider the selection of the covariance matrix
eigenvectors in order to remove unwanted seismic waves such as
body waves.

We performed a numerical simulation with using the geometry of
the USArray in order to investigate the performance of our method.
We simulated the effect of a strong source embedded in isotropic

ambient noise, where the source has an amplitude 10 times higher
than the background noise. Strong bias in the traveltime measure-
ments with an average error of 11.73 per cent are observed on the
standard cross-correlation computed from this highly anisotropic
wavefield configuration. The equalization of the covariance ma-
trix spectrum applied to this last case shows to be a powerful tool
to attenuate the effect of the strong source. The source amplitude
is strongly attenuated while the background isotropic noise is re-
inforced, leading to significantly better traveltime measurements,
with overall errors of about 1.5 per cent.

Also, we see that our method requires the knowledge of the
medium slowness. Even if the medium is inhomogeneous, we herein
considered the average slowness. This is likely to produce artefacts
in the filtered cross-correlations, because the reconstruction from
too many Bessel functions implies undesired high-frequency fluc-
tuations. A good improvement of this approach would be obtained
with using a frequency-dependent slowness model, in order to im-
prove the accuracy of the cut-off. Also, the definition of the average
radius r̄ is important. We here decided to take the average intersta-
tion spacing of all possible station couples (eq. 8). This is likely to
mainly improve the cross-correlation symmetry for the station pairs
with interstation spacing close to r̄ , whereas the ones with large
interstation spacing could be partially degraded.

We have shown that the cross-correlation functions obtained
from the data pre-processed with temporal and spectral equaliza-
tion (Bensen et al. 2007) still suffers from the presence of strong
earthquakes with both spurious coherent arrivals and asymmetry
of the causal and anti-causal parts. We equalized the covariance
matrices eigenspectra of 30 d of data recorded by the USArray,
centred around the date of the 2010 M8.8 Maule earthquake. This
shown up to strongly reduce both spurious coherent arrivals and the
asymmetry of the cross-correlation.

We also proposed a beamforming-based selection of eigenvectors
in order to cancel out body waves. Using beamforming analysis on
eigenvectors, we reject the eigenvectors that contain strong energy
with slownesses corresponding to body waves. This eigenvector
selection, combined together with the equalization of the covariance
matrix spectrum strongly improve the cross-correlation symmetry
and reduces the spurious arrivals caused by strong earthquakes.

We believe this approach is strongly attractive because it allows
to perform the cross-correlation analysis even when the wavefield
does not present the required conditions that ensure the Green’s
function retrieval. The covariance matrix eigenspectrum equaliza-
tion method presented in our paper helps to extend the applicability
of the methods based on correlations of ambient seismic noise to
cases with strongly heterogeneous distribution of seismic sources.
It might be of particular interest when applied to monitoring seismi-
cally active regions, where earthquakes and seismic tremors might
act as strong and seismic sources whose influence can be strongly
diminished after applying the covariance matrix based equalization.
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A P P E N D I X A : T H E O R E T I C A L
D E R I VAT I O N O F T H E E I G E N VA LU E
C U T - O F F

A1 Eigenvalue cut-off with infinitely dense seismic array

Let us consider the frequency-domain homogeneous wave equation
(Helmholtz equation) given by (∇2 + k2)u = 0, where ∇2 is the
Laplace operator and k = 2π fγ is the wavenumber that depends on
the frequency f and the slowness γ . In our case, the seismic wavefield
is sampled on a typical surface 
 covered by the seismic array. Note
that we implicitly assume the seismic array to be infinitely dense, the
artefacts related to the sampling quality being detailed in the next
section. It can be shown (Walsh & Vekua 1969) with considering
simple geometry for 
, that only a few Bessel functions contribute
to an adequate description of the seismic wavefield. Indeed, we
can locally approximate the wavefield ui(f) at any point ri with
cylindrical coordinates (ri, θ i) of the medium in the 2-D case (i.e. that
considers surface waves) with the following truncated summation

ui ( f ) ≈
L∑

�=−L

α� J�(2π f γ ri )e
ı�θi , (A1)

where α� is the �-order coefficient of the wavefield decomposition
and J�(x) is the �-order Bessel function of the first kind. A similar
approximation is obtained in the 3-D case (i.e. volume noise where
a point ri is described with spherical coordinates (ri, θ i, φi)) with

ui ( f ) ≈
L∑
�=0

�∑
m=−�

α�m j�(2π f γ ri )Y�m(θi , φi ) , (A2)

where α�m is the �m-order coefficient of the wavefield decomposi-
tion, j�(x) is the �-order spherical Bessel function of the first kind,
and Y�m(θ , φ) is the spherical harmonic function. The value of the
truncation index L is explicitly obtained in Moiola et al. (2011)
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Figure A1. Degrees of freedom of the seismic wavefield illustrated with the Fourier–Bessel decomposition (2-D). (a) Bessel functions (in colour scale) of
the first kind J�(k0r), where the wavenumber k0 = 2π f0γ 0 is obtained with the frequency f0 = 0.02 Hz and the slowness γ 0 = 0.25 s km−1. The truncation
index L is shown with the black solid line. The vertical dashed line indicates the typical radius r̄ of the USArray geometry investigated in Sections 3–5. The
horizontal dashed lines show the upper (lower) limit above (below) which the Bessel functions do not contribute to the wavefield reconstruction. The number
of contributing functions L2D defines the number of degrees of freedom with respect to the given k0 wavenumber. (b) Frequency dependance of the truncation
index L2D with taking the typical radius r̄ . The dashed lines indicate the case presented in (a). The truncation index is the total number of sensors of the
considered seismic array (34 in our case, see the horizontal dotted line) when the frequency is higher than 0.01 Hz.

and is related to the frequency f, the slowness γ of the medium and
the typical radius r̄ of the domain 
 as

L = 
kr̄� = 
2π f γ r̄� (A3)

where 
x� is the next integer greater than x and r̄ is the average
interstation distance defined in eq. (8).

We see from eqs. (A1) and (A2) that the number of degrees of
freedom L of the wavefield differs in the 2-D and 3-D cases and are
given by{

L2D = 2L + 1

L3D = (L + 1)2
. (A4)

We note that the number of degrees of freedom of a volumic wave-
field L3D is greater than the one of a surface noise L2D. As L is
frequency-dependent, the truncation index can be explicitly written
with respect to the frequency{

L2D( f ) = 2
2π f γ r̄� + 1

L3D( f ) = (
2π f γ r̄� + 1)2.
(A5)

The number of degrees of freedom can be understood more
intuitively from the following: if the wavefield is recorded on a
limited space region 
, the Bessel functions of rank � > L do
not contribute to the description of the seismic wavefield because
J�(kr) ≈ 0 when r < r̄ . The corresponding coefficients α� will
therefore be close to 0.

This is illustrated in Fig. A1(a), where the Bessel functions of
order −20 < � < 20 are shown in colour scale as a function of the
radial order � in vertical axis, with respect to the typical radius r
of the domain 
. In the present case, the we set f = 0.02 Hz and
γ = 0.25 s km−1, and we vary the typical radius r from 0 to 500 km
in order to observe the behaviour of the truncation index L as a
function of the spatial extent of the seismic array (in black solid
line). We clearly see that L delimits the region where the Bessels
functions start to be nonzero anymore.

The number of degrees of freedom L2D then corresponds to
the number of Bessel functions to take into account at the given

frequency, slowness and typical radius. We can examine the partic-
ular case of the USArray geometry presented in Section 3, which
has a typical radius r̄ = 162.1 km. We see that in This case, L = 6
as f0 = 0.02 Hz and γ = 0.25 s km−1. Using eq. (A4), this leads to
L2D = 13.

We can also observe the variation of L2D with respect to the
frequency in Fig. A1(b) while γ = 0.25 s km−1 and with the typical
radius r̄ = 161.2 km of the USArray. We observe that the degrees of
freedom of the ambient wavefield is increasing with the increasing
frequency, which is an observed behaviour in Gerstoft et al. (2012),
Menon et al. (2012) and Seydoux et al. (2016a). We also note
that L2D saturates to N at frequencies higher than 0.1 Hz, because
the number of array elements is limiting the number of degrees of
freedom that we can investigate.

A2 Eigenvalue cut-off with discrete seismic array

The theoretical rank L introduced in eq. (A5) tends to infinity with
respect to the increasing frequency. This is a natural consequence of
the underlying assumption of infinitely dense seismic array, which
leads to infinitely large covariance matrix. A discrete seismic array
with finite number N of seismic stations leads to finite-sized N × N
covariance matrix that can be obviously equalized at maximum
with an eigenvalue cut-off L = N. Yet, taking L = N induces �̂ = I,
leading to the following equalized covariance matrix:

Ĉ = ��̂�† = ��† . (A6)

The fundamental property of the eigenvalue decomposition implies
that ��† = I because � is a normal matrix. Saturating L to N
therefore induces the equalized covariance matrix to be equal to
the identity matrix and, as a consequence, to miss out any relevant
information spanned by the off-diagonal terms.

In this high-rank regime, we can then wonder if any optimal
eigenvalue cut-off can be found. In order to infer it, we inves-
tigate the reconstruction quality of the idealist covariance ma-
trix from the equalized anisotropic covariance matrix for various
eigenvalue cut-offs L and with respect to the frequency f. We use
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Figure A2. Analysis of the maximal eigenthreshold. (a) Similarity coef-
ficient (in colour scale) between the off-diagonal terms of the ideal co-
variance matrix Cideal( f ) and the equalized anisotropic covariance matrix
Cequalized(L , f ) for various eigenvalue thresholds L2D. The theoretical eigen-
threshold derived from eq. (A9) is indicated in dashed line, and the points
for which the maximal coefficient value is obtained are indicated with black
solid line. (b) Similarity coefficient for the maximal values extracted in (a).

the synthetic test presented in Section 4.2 where we consider the
theoretical expression of the isotropic covariance matrix Cideal( f )
in a homogeneous medium (eq. 11), and the anisotropic covariance
matrix Csource( f ) which consist in the isotropic seismic noise plus
a planewave with large amplitude (eq. 12). We then equalize the
anisotropic covariance matrix at each frequencies with all eigen-
value cut-offs L, namely Cequalized(L , f ).

As a reconstruction quality measurement, we define the similar-
ity coefficient s(L, f) between the equalized anisotropic covariance
matrix and the isotropic covariance matrix such as

s(L , f ) =

∣∣∣∑i �= j C ideal
i j ( f )C∗ equalized

i j (L , f )
∣∣∣(∑

i �= j |C ideal
i j ( f )|2 · ∑

i �= j |Cequalized
i j (L , f )|2

)1/2
. (A7)

Note that we focused onto the off-diagonal terms because they are

related to the propagating wavefield, which are of main interested
for tomography.

We perform the synthetic test with a slowness γ 0 = 0.25 s km−1,
and we vary the eigenvalue threshold L from 0 and N = 34 for the
frequencies between 0.001 Hz to 1 Hz. The source has an amplitude
10 times higher than the backround noise. The similarity coefficient
s(L, f) is presented in colour scale in Fig. A2(a).

First, we observe that the theoretical eigenthreshold derived from
Appendix A1 (shown in black solid line) correlates well with the
maximal correlation coefficient (black circles), contributing to sup-
port our theory at low frequencies. The similarity then reaches a
plateau at high frequencies, close to N/2. As an indicator, the max-
imal reachable quality of reconstruction obtained at each maxima
shown in Fig. A2(a) is indicated as a function of the frequency in
Fig. A2(b).

From these observations, we can finally reformulate eq. (A5) for
the 2-D case so that:

L2D( f ) = min {2
2π f γ r̄� + 1, N/2} , (A8)

and similarly,

L3D( f ) = min
{
2(
2π f γ r̄� + 1)2, N/2

}
. (A9)

We consider the frequency-dependent L as the eigenvalue cut-off
in our method. The use of L2D or L3D depends on the desired analysis
that aims at being performed on the seismic records. We also notice
that L is expressed with the slowness of the medium, which is not
precisely known. A rough estimation of the average slowness γ 0 is
nevertheless sufficient to extend our approach to the heterogeneous
case.
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