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S U M M A R Y
Stacks of ambient noise correlations are routinely used to extract empirical Green’s functions
(EGFs) between station pairs. The time–frequency phase-weighted stack (tf-PWS) is a phys-
ically intuitive nonlinear denoising method that uses the phase coherence to improve EGF
convergence when the performance of conventional linear averaging methods is not suf�cient.
The high computational cost of a continuous approach to the time–frequency transformation
is currently a main limitation in ambient noise studies. We introduce the time-scale phase-
weighted stack (ts-PWS) as an alternative extension of the phase-weighted stack that uses
complex frames of wavelets to build a time–frequency representation that is much more ef�-
cient and fast to compute and that preserve the performance and �exibility of the tf-PWS. In
addition, we propose two strategies: the unbiased phase coherence and the two-stage ts-PWS
methods to further improve noise attenuation, quality of the extracted signals and convergence
speed. We demonstrate that these approaches enable to extract minor- and major-arc Rayleigh
waves (up to the sixth Rayleigh wave train) from many years of data from the GEOSCOPE
global network. Finally we also show that fundamental spheroidal modes can be extracted
from these EGF.

Key words: Seismic interferometry; Seismic noise; Surface waves and free oscillations;
Wavelet transform.

1 I N T RO D U C T I O N

The ubiquity of noise is making seismic ambient noise an excel-
lent complement to earthquakes in local to global tomography and
monitoring studies. Seismic noise analyses are important from early
studies (Gutenberg1958) until today (e.g. GSN low-noise model;
Bergeret al.2004), since it de�nes the weakest signal an instrument
can detect. Seismic imaging and monitoring using inter-station cor-
relations became popular much later with works on the extraction
of the empirical Green’s function (EGF; Campillo & Paul2003;
Shapiro & Campillo2004; Snieder2004) and the subsequent ap-
plication to surface wave tomography (Shapiroet al. 2005; Sabra
et al.2005), see, for example, Wapenaaret al.(2010) and Campillo
& Roux (2015) for a review. The main signals currently used are
from wave�eld �uctuations caused by scattered earthquake coda
(Sens-Scḧonfelderet al. 2015) and ambient noise. The strongest
and most commonly used ambient noise (of natural origin) is clas-
si�ed into (a) primary microseisms (periods of 10–20 s), generated
by interactions of ocean gravity waves with the coast, (b) secondary
microseisms (1–12 s), generated by wave–wave interactions be-
tween ocean gravity waves, and (c) hum (30–250 s), generated by
interactions of infragravity waves with continental shelves (Ardhuin
et al.2015).

Equipartition of wave�elds is fundamental to extract the exact
Green’s function. Direct correlation of raw seismic records produces
an undesired predominance of earthquakes and other large ampli-
tude signals over ambient-noise sources leading to low convergence
rate towards the EGF. To improve the EGF convergence, a single
inter-station correlation is replaced by many much shorter data se-
quences treated in processing �ows that may include 1-bit amplitude
normalization, spectral whitening, phase cross-correlation, adap-
tive �ltering and array processing (Campillo & Paul2003; Bensen
et al. 2007; Baig et al. 2009; Schimmelet al. 2011). Ermertet al.
(2016) use minimal pre-processing for the stack of correlograms in
order to obtain correlations that can be easily forward modelled in-
stead of EGFs. Later, Fichtneret al.(2017) also consider any linear
and nonlinear processing.

In most applications, physically intuitive signal-processing meth-
ods developed with other applications in mind (e.g. beamforming
or phase-weighted stack, PWS) have proven useful for improving
EGF convergence and observing weak signals in otherwise too
noisy records. The search of more powerful methods is needed
to tackle new imaging and monitoring challenges using current
data volumes and to satisfy the need of better time and space
resolution. Monitoring fast temporal variations (Grêt et al. 2005;
Brenguier et al. 2008; Hadziioannou et al. 2011; D’Hour
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et al.2016), demands short time windows to resolve corresponding
variations at a local scale promoting the use of much less data to
extract EGFs. Further, the extraction of body waves [e.g. at teleseis-
mic distances, see Gerstoftet al. (2008), Land̀eset al. (2010), Poli
et al.(2012), Boúeet al.(2013, 2014), Poliet al.(2015), Farraet al.
(2016) and Hanedet al. (2016), among others], which is possible
through stacking and/or beamforming methods, demands further
signal-to-noise ratio (SNR) improvements to be able to constrain
deep structure. In this context, stacking and denoising strategies in-
troduced by the seismology, exploration and signal-processing com-
munities become fundamental to boost the amount of high-quality
observations.

Stacking (i.e. averaging) of a collection of traces (time series) is
a ubiquitous method to improve SNR by combining coherent sig-
nals from many traces into a single trace, often at the expense of
losing resolution. Seismic exploration has a long tradition introduc-
ing original stacking methods, see, for example, Rashed (2014)
for an historical review on common-mid-point stacking. A key
problem still facing many modern linear stacking methods is as-
signing a weight to each trace in the stack (or locally to each
time sample) and rejecting the anomalous ones (due to, e.g. coher-
ent noise). Common criteria employed to estimate these weights
involve measuring SNR (Neelamaniet al. 2006) or correlation
(Liu et al. 2009; Sanchis & Hanssen2011; Denget al. 2016) to
a previously calculated reference trace. Nonlinear methods such
as the median stack (Claerbout & Muir1973) and the alpha-
trimmed average (Bednar & Watt1984; Rashed2008) help re-
jecting coherent noise. Other nonlinear stacking methods used in
seismology are thenth root stack proposed by Muirhead (1968),
a norm-like function carrying the sign of the signals that empha-
sizes small-amplitude signals at the expense of waveform distortion
(Kanasewichet al. 1973), and the dual bootstrap stack proposed
by Korenaga (2013), a linear stack weighted by signal signi�cance
and coherence to improve the detection of weak amplitude signals
that also introduces waveform distortion, particularly around zero
crossings.

Denoising methods improve the SNR of a single trace in exchange
of signal distortion. Likewise, they boost convergence in noise cor-
relations by reducing the number of traces needed in the stacking
to get a desired SNR. Generally applied after stacking, denoising
preserves the main components of the signal and attenuates the rest.
Most methods apply thresholding functions controlled by the level
of noise to signal representations well adapted to the signal proper-
ties in order to boost noise attenuation and promote the most ener-
getic signals (Mallat2008), see, for example, Galiana-Merinoet al.
(2003), Han & van der Baan (2015) and Mousavi & Langston (2016)
for some applications to seismic data. Alternatively, Schimmel &
Paulssen (1997) propose the PWS to extract common coherent sig-
nals, regardless of their amplitude, instead of the most energetic
signals. The PWS approach boosts the SNR of the linear stacked
trace and reduces waveform distortion compared to more aggres-
sive nonlinear stacking methods such as thenth root stack and dual
bootstrap stack. The time–frequency PWS (tf-PWS), introduced by
Schimmel & Gallart (2007) as an extension of PWS to the time–
frequency domain, further improves the extraction of weak coher-
ent signals and reduces signal distortion. First applied to clean
lower crust and Moho re�ections/refractions in wide-angle data
(Schimmel & Gallart 2007; Garcia Canoet al. 2014), to de-
tect coda phases, for example, from upper mantle discontinuities
(Schimmel & Gallart2007) or from long period data tf-PWS
(Ringler et al. 2016); it has been extensively used to extract em-
pirical inter-station Green’s functions (EGF) in seismic ambient-

noise studies from regional to global scales (Baiget al. 2009;
Schimmel et al. 2011; Kimman et al. 2012; Ren et al. 2013;
Yang2014; Chaoet al. 2015; Chenget al. 2015; Diaset al. 2015;
Hanedet al. 2016; Jiang et al. 2016; Pilia et al. 2016; Szanyi
et al. 2016) and has proved useful for the analysis of low-
frequency earthquakes (Thurberet al. 2014; Matozaet al. 2015;
Lyonset al.2016).

The high computational cost derived from a continuous ap-
proach to the time–frequency transformation is currently a limi-
tation in main applications of noise correlations, tomography and
monitoring that often demand big data volumes. A solution to
this problem is developing better implementations, for example,
Zeng & Thurber (2016) use the graphic processing unit to accel-
erate tf-PWS computation by a factor of 20 with respect to im-
plementations using the FFTw3 library (Frigo & Johnson2005).
For our research, we reduce the operation complexity (see Sec-
tion 3) by building more ef�cient time–frequency representations
instead.

This work is devoted to enhance the quality of stacked seis-
mic data sequences, in particular from ambient noise correlations,
by improving SNR and EGF convergence. Then, having compu-
tational ef�cient methods help us to do more with less resources.
In Section 2, we analyse tf-PWS as a nonlinear denoising method
which is related to approaches that use thresholding functions. In
Section 3, we introduce the time-scale PWS (ts-PWS), a method
that obtains the same performance as tf-PWS with a much reduced
computational cost and memory footprint. Further, in Section 4, we
propose and discuss two strategies: the unbiased ts-PWS and the
two-stage ts-PWS to improve non-coherent noise attenuation, to re-
duce undesired attenuation of weak coherent signals, and to increase
convergence speed. In order to validate our method, we compare in
Section 5 linear stack with alternative methods based on the ts-PWS
using synthetic and �eld data examples. In these examples, we as-
sume a diffuse wave�eld, for instance, due to a balance of source
distribution. We extract minor- and major-arc Rayleigh waves using
many years of data, study and compare the quality of the extracted
signals, and measure their convergence before and after denoising.
Finally, we show that we can extract fundamental spheroidal modes
from EGF.

2 U N D E R S TA N D I N G T F - P W S

PWS is essentially the product of the linear stack multiplied by the
phase stack (Schimmel & Paulssen1997). The tf-PWS method
improves SNR and reduces signal distortions compared to the
PWS by being more data adaptive through the attenuation of in-
coherent signal components in the time–frequency domain, better
adapted to seismic signals than the time domain. The tf-PWS imple-
ments the time–frequency expansion using the physically intuitive
S-transform (Stockwellet al.1996; Schimmel & Gallart2005) be-
cause it gives absolute phase information. Ventosaet al. (2008)
further showed that the S-transform is a Morlet wavelet transform
up to a phase correction.

In a linear stack, the main distinguishing feature between signal
and noise is that the signal is coherent across the pre-stacked traces
while the noise is not. The actual physical sense of signal and noise
changes depending on the application. Assumingxk is thek-th (e.g.
daily) correlation sequence between a pair of stations composed by
an EGF,s, andwk signals that do not contribute to the EGF:

xk[m] = s[m] + wk[m] (1)
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wherem is the index of the coef�cients in the time–frequency do-
main. Then, the estimation of the signals, s̃, from the noisy mea-
surementsxk using the linear stack is

s̃ls[m] =
1
K

K�

k= 1

xk[m] (2)

whereK is the number of data sequences in the stack and the sum
symbol denotes a linear stack. The variance of the estimation of the
EGF reduces in mean as the number of independent sequences in-
creases and incoherent signal, for example, due to isolated localized
noise sources, average out.

Beyond using more and more data in the stack, nonlinear denois-
ing methods such as tf-PWS improve signal estimation in stacked
sequences by de�ning nonlinear attenuation functions that exploit
known signal properties to further attenuate noise. Ef�cient nonlin-
ear estimators are conventionally done by applying simple attenu-
ation functions in transformed domains (here the time–frequency
domain) where signal and noise are better separated.

To improve the SNR of̃s through denoising, regardless of the
domain (e.g. time or time–frequency) used for data representation,
we multiply the linear stacked trace by an attenuation functionc
that promotes the main components of the signal and attenuates the
rest,

s̃d[m] = s̃ls[m]c[m], (3)

wheres̃d is the estimation of the signals after denoising. In the
PWS method,c is the phase stack, an empirical noise attenuation
function that measures the instantaneous coherence of a signal. The
phase stack,

cv
ps[m] =

�
�
�
�
�

1
K

K�

k= 1

xk[m]
|xk[m]|

�
�
�
�
�

v

=

�
�
�
�
�

1
K

K�

k= 1

ei � k[m]

�
�
�
�
�

v

, (4)

is a strictly positive function that is one if and only if all the data
sequencesx at a coef�cientm are equal in phase (full similarity)
and close to zero if they are totally unrelated (full dissimilarity),
where the sharpness of the transition between these two extremes
is controlled byv. Observe that the phase stack is a sum of phasors
and consequently needsxk to be analytic to assess the phase� k. For
example, in the time domain, coef�cientm is the time stept, and
x(t) = a(t)ei� (t) wherea is the envelope ofx and� the instantaneous
phase.

3 T I M E - S C A L E P H A S E - W E I G H E D
S TAC K

Improving the quality of extracted signals is one of the most de-
manding operations (in the computational sense) along the seismic
processing �ow. The computational cost of tf-PWS is mainly due
to the regular sampling of the continuous time–frequency domain
when using the S-transform. This leads to a very high redundancy
(i.e. ratio of number of coef�cients in the transformed domain to
number of coef�cients in the original domain) and, consequently, to
many coherence measures to be computed. In this section we present
more computational ef�cient time–frequency representations of the
tf-PWS through the wavelet transform.

3.1 Seeking for an efÞcient representation of the
timeÐfrequency domain

The most suitable time–frequency resolution is often non-uniform
and therefore Geophysical applications favour time resolutions pro-

portional to period to account for the fast time variation of ballis-
tic signals at all frequency bands. These applications also favour
analytic signal transformations because they are more suitable to
process oscillatory signals (here seismic signals) than real transfor-
mations which suffer from serious shift variance problems, that is,
small time shifts of the signal leads to strong variations of the trans-
formed coef�cients around singularities (e.g. Selesnicket al.2005).
Analytic signal representations enable new algorithms that exploit
magnitude and phase information; in particular, to build weight
functions using the phase coherency.

Traditionally, these time–frequency expansions use a set of band-
pass Gaussian �lters based on the assumption that time series are
derived from a multidimensional normal distribution. These �lters
are de�ned as

Xa(�, � 0) = Xa(� )eŠ 1
2

�
� (� Š � 0)

� 0

� 2

(5)

whereXa(� ) = X(� )(1 + sign(� )) is the analytic signal following
the Fourier transform conventionX(� ) =

� �
Š� x(t)eŠi � t dt, sign is

the signum function,� 0 is the central frequency of the �lter, and
� the standard deviation of the Gaussian window. Observe that
Xa(� , � 0) is only approximately analytic since band-pass Gaussian
�lters (the last term in eq. (5)) are strictly positive functions. The
half-power bandwidth of these �lters is proportional to their central
frequency�� = 2

�
ln 2 � 0/� , equivalently, they are of constantQ

quality factor (ratio of central frequency to bandwidth)

Q =
� 0

��
=

�

2
�

ln 2
(6)

and their impulse responses have an equal number of cycles
Ncycles = �

�
ln 2/� . In seismology, this approach to the time–

frequency expansion formalized by Dziewonskiet al. (1969) is
known as the multiple �lter technique. Similarly, in the context of
the short-time Fourier transform, Gambardella (1971) proposes the
use of modulated windows of constantQ, instead of constant length,
for audio analysis giving a ‘form invariant under time scaling’, and
Petersen & Boll (1983) show how to sample this time–frequency
domain ef�ciently. Later on, the study of these ideas in physics,
engineering and pure and applied mathematics converged to the
wavelet transform (e.g. Daubechies1992).

The Gaussian band-pass �lters used in the multiple �lter tech-
nique, eq. (5), are equal up to a scaling factor inversely proportional
to their central frequency. In Appendix A, we show how this scaling
relationship and the close to zero mean (typically� � 1) enable an
ef�cient implementation of multiple �lter technique using the con-
tinuous Morlet wavelet transform, by de�ning scale as� = � /� 0

and the central frequency of the mother wavelet as� 0 = � 0� = � .
The continuous wavelet transform (CWT; Daubechies1992;

Sinhaet al.2005; Mallat 2008) of a data sequencex is given by its
inner product with a wavelet collection	 
 , � ,

x(
, � ) =
�
x, 	 
,�

�
=

	 �

Š�
x(t)	 
,� (t ) dt, (7)

where
 is delay or lag-time,� is scale and	 (t) denotes the complex
conjugate of	 (t). The mother wavelet	 � L2(R) is a zero-mean
function that generates a set of functions, the wavelet collection
	 
 , � , through scaling and translating operations. Conventionally,
this set of functions is normalized so that the transform is unitary,

	 
,� (t ) = � Š1/ 2	 (� Š1(t Š 
 )). (8)

Wavelets can be real or analytic. Real wavelets are good for de-
tecting sharp signal transitions and thus often used in, for example,
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image processing (Mallat2008; Jacqueset al.2011). Complex ana-
lytic wavelets are attractive for analysing oscillatory signals due to
their ability to separate magnitude and phase and therefore useful
for, for example, studying seismic signals or measuring instanta-
neous frequency (Selesnicket al.2005; Sinhaet al.2005; Ventosa
et al.2012; Bayram2013).

To implement the multiple �lter technique, eq. (5), we use analytic
wavelets. Pseudo-analytic wavelets can be built with modulated
windows. We use a modulated Gaussian window,

	 (t) = � Š1/ 4eŠt2/ 2ei � 0t , (9)

this mother wavelet is conventionally known as the Morlet wavelet
despite of not being exactly zero mean and has aQ = � 0/ 2

�
ln 2.

Zero mean is obtained in the exact Morlet wavelet with an additional
term,	 (t) = � Š1/ 4eŠt2/ 2(ei � 0t Š eŠ� 2

0 / 2); still, eq. (9) is a good ap-
proximation for� 0 � 1 due to its extremely small mean. For low
� 0 values both Morlets are not pseudo-analytic anymore.

3.2 Discretization of the CWT: frames of continuous
wavelets

We can severely reduce redundancy by using known signal proper-
ties to design bases or frames (i.e. overcomplete bases) (Kova�cevíc
& Chebira2007a,b) which capture ef�ciently the main features of
the signal. The frame coef�cientsxk

� of the data sequencexk are
computed by inner products with a frame� = { 	 m} 0 � m< M,

xk
� [m] =

�
xk, 	 m

�
=

�

n

xk[n]	 m[n]. (10)

The sequences{ 	 m} 0 � m < M constitute a frame if there are two real
numbersB � A > 0 such that

A 	 x	 2 �
�

m

|
 x, 	 m�| 2 � B 	 x	 2 (11)

for any possible sequencex, whereA andB are called the lower and
upper frame bounds. When eq. (11) is satis�ed, the signalxk can be
reconstructed from thexk

� coef�cients with the pseudo-inverse of
the frame� , implemented with a dual frame{
	 m}0� m< M,

xk[n] =
�

m

xk
� [m]
	 m[n]. (12)

If A = B the frame is called tight (satis�es the Parserval’s identity)
and the dual frame can be approximated by the ‘forward’ frame up
to a constant factor (Daubechies1992).

Frames of wavelets are good approximating CWT
(Daubechies1992). The frame elements are distributed across the
time–frequency domain according to their time and frequency
resolutions in order to contain redundancy. A common choice for
discretizing the wavelet collection	 
 , � , eq. (8), is� = 2s and

 = u2jb0, whereu is the time index at the scales and b0 the
sampling period at the scale 1, leading to a sampling period almost
proportional to scale on the time axis and to its inverse on the
frequency axis. The frame of wavelets is then

	 u,s[n] =
1

2s/ 2
	

�
nT Š u2� s b0

2s

�
, (13)

where T is the sampling period of the original time series and
� s is the lower integer part ofs. Scales are usually organized in
voicesv � [0, V Š 1] and octavesj � Z, s = j + v/ V, where
V � N is the number of voices; and they are downsampled by 2jb0

in order to keep roughly a constant number of samples per cycle
in all frequency bands. For moderate redundancies,R � 4, the

reconstruction error is typically much lower than 1 per cent when
the dual frame is approximated by the forward frame and reduces
fast asV increases andb0 decreases. For example, in the case of the
exact Morlet wavelet, for the standard choice of� 0 = �

�
2/ ln 2,

and with V = 4 andb0 = 1 (that double when� 0 doubles), the
redundancy is approximatelyV/ b0 = 4 and the normalized root-
mean-squared error is below 3.61× 10Š4.

The use of a sampling strategy adapted to the actual resolution
has a major impact on operation complexity and memory footprint.
The redundancy of the tf-PWS is about half the number of samples
of each sequence,R = N/ 2 + 1, while the redundancy of the ts-
PWS is typically 4� R � 16 and independent ofN. ForR < 4 the
frame bounds diverge abruptly (A � B) and the wavelet collection
stops being a frame. While fromR = 16 the reconstruction error
is extremely low and the �ltering improvements are very minor.
Likewise, the operation complexity of the ts-PWS is proportional
to the number of samples and scales,O(N S), and the tf-PWS,
implemented using fast Fourier transforms, isO(N2 log2 N).

3.3 Limits and alternatives to frames of Morlet wavelets

The analytic approximation made in the Morlet wavelets degrades
as� 0 (equivalently� in eq. (5)) reduces and the negative frequency
components becomes less and less negligible, which is problematic
in applications requiring high temporal resolution. The complex
Mexican hat wavelet (Addisonet al. 2002) is an alternative with
no negative frequency components and aQ =

�
3/ 2 � 1.2. Equiv-

alently to eq. (5), the band-pass �lters of this wavelet are de�ned
as

Xa(�, � 0) = Xa(� )
2� 2

� 2
0

eŠ
�

�
� 0

� 2

. (14)

A more �exible option is the Morse wavelet (Lilly & Olhede
2009, 2012), a family of analytic wavelets which permits the syn-
thesis of a wide variety of wavelets from low to highQ quality
factors.

Frames of continuous wavelets have a far lower redundancy than
direct continuous implementations, still this redundancy is moder-
ately high and the discretization leads to a non-perfect reconstruc-
tion. The discrete wavelet transform (DWT) is required to get the
lowest redundancy and perfect reconstruction, for example, Vetterli
& Kova�cevíc (1995). A certain degree of redundancy is necessary
to construct an analytic DWT because discrete complex wavelets
having a �nite support cannot form an orthonormal or biorthogo-
nal basis and be analytic or pseudo-analytic at the same time, for
example, Selesnicket al. (2005). For example, the dual-tree com-
plex wavelet transform (Kingsbury2001; Selesnicket al.2005) uses
wavelets with a lowQ, has a redundancy of 2, and an operation com-
plexity of O(N) which is lower than the fast Fourier transform. The
dual-tree rational-dilation complex wavelet transform (Bayram &
Selesnick2011) and rational-dilation �lter banks Bayram (2013) al-
low for a more �exible choice ofQ, redundancy and time–frequency
resolution. However, the �lters obtained have to be constructed in
the frequency domain to ful�l perfect reconstruction which increase
operation complexity.

4 I M P ROV I N G W E A K S I G NA L
D E T E C T I O N

Most coherence measures can be used as empirical noise attenuation
functions exploiting data from several realizations, being the main
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34 S. Ventosa, M. Schimmel and E. Stutzmann

Figure 1. Attenuation of a linear-stacked signals as function of the SNR
of the pre-stacked signal for (dashed lines) the phase stack withv = 2 and
(solid lines) the unbiased phase coherence.

difference between them the actual de�nition of similarity (e.g.
maximum coherence means amplitudes and waveforms being equal
or just the waveforms) and the class of signals considered (e.g. real
or analytic).

The phase stack is an instantaneous coherence estimator for ana-
lytic signals which gives more stable measurements than alternative
estimators for real signals due to the near shift invariance of magni-
tude and phase. Other coherence measures such as semblance and
geometrical-normalized cross-correlation (GNCC) allow both real
and analytic signals (Taneret al.1979). Note that the actual de�ni-
tion of similarity is not equal in these three estimators. The phase
stack and GNCC de�ne full similarity as equal waveforms (not am-
plitudes) and, for this reason, are said to be amplitude unbiased,
whereas semblance de�nes full similarity as equal amplitude and
waveforms and therefore it is amplitude biased.

The instantaneous coherence estimation of the phase stack is bi-
ased in the sense that it gives positive coherence values for full
dissimilarity signals, whereas instantaneous GNCC coherence es-
timation is unbiased since coherence can become negative. Fig.1
illustrates the impact of the coherence bias by showing the ampli-
tude attenuation of the phase stack, eq. (4), as function of the SNR
of full coherent signals contaminated by white Gaussian noise for
the standard choice ofv = 2. The signal attenuation is small for
SNRs of the pre-stack higher than 1, and it increases on average to a
maximum value ofK for pure incoherent noise, see Appendix B for
the demonstration. In practice, this saturation of attenuation leads
to lower than expected SNR increments for low SNR signals, but it
guarantees a positive coherence.

We can improve weak signal detection by (i) promoting sequences
with high SNR in a weighted phase stack, (ii) improving their SNR
before tf/ts-PWS through two-stage stack, and (iii) correcting the
coherence bias of the phase stack to increase noise attenuation with
the unbiased phase coherence estimator. More speci�cally:

(i) Weighted phase stack: Introducing weights in the phase stack
helps to promote top-quality data sequences and to reject the anoma-
lous ones. Modern linear stacking methods used in exploration can
be adapted to estimate these weights, considering that the phase
stack is a linear sum of phasors.

(ii) Two-stage stack: The phase stack attenuates low SNR signals
much more than the stronger ones. For this reason, we obtain better
results if we phase stack a few sequences with high SNR than if
we stack many of much lower SNR, even when their linear stacks
are identical. Consequently, if the number of sequences available is
high, it seems reasonable to arrange them in few groups and apply

linear stacking to each group to generate sequences with reduced
signal variability (higher SNR) in a �rst stage, and then apply the
phase stack in a second stage. In this manner, coherence is increased
before tf/ts-PWS and therefore signals are less downweighted. Note
that in ambient noise data the coherence can be increase before tf/ts-
PWS using longer data windows in the cross-correlations. However,
this reduces the adaptability to real data with gaps and the applica-
bility of other processing steps, such as normalizations and weights
to promote or reject sequences according their quality. For example,
Jianget al. (2016) linearly stack daily correlation in 10 d periods
before using tf/ts-PWS to improve SNR of short-period ambient
noise data.

(iii) Unbiased phase coherence: Noise attenuation can be im-
proved by using unbiased coherence measures, such as GNCC co-
herence, or by correcting the bias of the phase stack. In Appendix B,
we show that an unbiased phase coherence estimator,cupc can be
constructed using the phase stack withv = 2,

c2
upc =

Kc2
ps Š 1

K Š 1
. (15)

In Fig. 1, we show that, in mean, the attenuation of the unbiased
phase coherence (solid lines) is much higher than the attenuation of
the phase stack (dashed lines) when the SNR of the data sequences
is very low and that both are similar when the SNR is higher than
one. The akin PWS, constructed usingcupc rather thancps, is now
called ‘unbiased’ tf/ts-PWS.

In the next sections, we construct the two-stage ts-PWS using the
linear stack in the �rst stage and the unbiased ts-PWS in the second.

5 E X A M P L E S

In the following we use synthetic and real data sets to evaluate the
performance of the linear stack, ts-PWS and two-stage ts-PWS. As
measure of performance we use the similarity which we de�ne as
the cross-correlation coef�cient CC between the original signals
and the estimated signals̃,

CC =
|
 s, s̃�|
	 s	 	 s̃	

, (16)

where 
s, s̃� is the inner product and	 s	 the norm. The corre-
sponding mis�t is de�ned as 1Š CC. Since time and frequency
resolutions are often main constraints in distinct applications, theQ
quality factor (de�ned in eq. 6) helps determining the best adapted
wavelets. Generally, highQ wavelets are suitable for studies using
surface waves due to their dispersion with frequency, while lowQ
wavelets are better adapted for analysing body waves due to their
short duration.

5.1 Synthetic data example: high Q wavelets

The test data, Fig.2(a), consist of a chirp function,

x(t) =


sin(2� fst)
0

if t0 � t � t1
otherwise

, (17)

windowed with a 20 per cent raised cosine taper, wherefs =
f0 + ( f1/ f0)

(tŠt0)/ (t1Št0) with f0 = 0.005 Hz,f1 = 0.03 Hz,t0 = 100 s
andt1 = 1001 s, Fig.2(b), embedded in white Gaussian noise of
variance equal to 1 and sampled at 1 sample sŠ1. Fig.2(c) shows the
convergence to the unperturbed chirp signal using three methods
(black) linear stack, (blue) tf/ts-PWS, and (red) two-stage ts-PWS.
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Time-scale PWS and beyond35

Figure 2. Extracted signal from 200 data sequences that contain a windowed chirp signal perturbed by white Gaussian noise using (black) linear stack, (blue)
tf/ts-PWS (Q = 5) and (red) two-stage ts-PWS, �rst using the linear stack to produce 10 sequences and second using the unbiased ts-PWS. (a) Waveform of the
test data and (b) of the chirp signal. (c) Mis�t to the unperturbed chirp signal. (d) Extracted signals and (e) their differences (extracted minus original signal).

Finally, Figs2(d) and (e) show the extracted signals and their differ-
ences, respectively. The two-stage stack �rst arranges the original
data sequences into 10 groups to linearly stack the sequences of
each group, and then applies the unbiased ts-PWS. With 10 groups
we seek a balance between increasing SNR before the ts-PWS and
reducing the variance of the coherence estimation.

The main parameters to choose for the time–frequency transfor-
mation are theQ quality factor and the frequency band of interest.
We opt for a Morlet wavelet with a relatively highQ of 5 (� 0

�= 8.33
or about 2.2 cycles) considering the long signal duration and its high
number of cycles. For extracting much shorter waveforms, such as
body waves, a lower value is recommended to increase time resolu-
tion. The centre frequencies of the wavelet collection are� 0/� . We
opt for using 8 octaves starting at the scale� = 4, which is more
than enough to cover the frequencies of interest. Using a narrower
frequency range would have further removed noise. We discretize
the wavelet collection from the standard choice of� 0

�= 5.34, and
with V = 4 andb0 = 1 by scaling theV andb0 parameters in propor-
tion to� 0. ThenV is rounded to the closer integer value andb0 to the
largest power of two lower thanb0, leading toV = 6 andb0 = 1 and
a redundancy ofR � 6. The mis�t (1 Š CC) of the ts-PWS using
these parameters is 2.9× 10Š3 and the mis�t of the tf-PWS using
an equivalent con�guration is 4.3× 10Š3. This minor difference is
mainly due to the different discretization used. Further increasing
V or b0 leads to very minor reduction of the mis�t (Supporting
Information Fig. S1).

Because tf-PWS and ts-PWS give identical waveforms, in the
following we only show results for the ts-PWS which we call tf/ts-
PWS. In the mis�t (1Š CC) results, Fig.2(c), we see that the tf/ts-
PWS reduces mis�t much faster than linear stacking by removing

noise across all frequency bands. Further, the linear stack needs
more than 100 sequences to give results with the mis�t that ts-
PWS obtains using 10 sequences. For higher number of sequences,
we observe that the tf/ts-PWS mis�t starts saturating at about 20
sequences (and results no longer improve) while the linear stack
keeps improving. When comparing the differences, Fig.2(d), of the
linear stack and the tf/ts-PWS, we can conclude that this saturation
is due to the signal attenuation produced by the reduction of the
phase coherency (the attenuation function used in the ts-PWS) on
signals with low SNR, as predicted in Fig.1.

We avoid the mis�t saturation by introducing a two-stage stack-
ing approach. The linear-stack stage delivers a few sequences with
a much higher SNR than the original data sequences that are then
stacked in the second stage using the unbiased ts-PWS. A moderate
number of sequences (10 in this example) is suf�cient to estimate
coherence satisfactorily in practice. In exchange, we obtain a higher
SNR that has a major impact on the mis�t reduction (equivalently,
decrement on waveform distortion) which now improves linearly
with the number of sequences in parallel to the linear stack. The un-
biased phase coherence helps to further improve mis�t in the single-
stage ts-PWS (number of sequences lower than 10) and the
two-stage ts-PWS as a result of the higher noise attenuation pre-
dicted in Fig.1.

An implication of this result is that a faster convergence to
a robust signal can be achieved through the introduced mod-
i�cations. The fast convergence of the ts-PWS and the two-
stage ts-PWS proposed here should be useful for, for exam-
ple, seismic monitoring as it allows us to use much shorter
data windows leading to higher temporal resolution, key in these
applications.
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36 S. Ventosa, M. Schimmel and E. Stutzmann

Figure 3. Convergence to the EGF of stacked ambient noise correlations (1 d long GNCC) of two pairs of GEOSCOPE stations with (black) linear stack, (blue)
tf/ts-PWS and (red) two-stage ts-PWS (formed by a linear stack generating 10 sequences followed by the unbiased ts-PWS). Velocity waveforms extracted
using (a,b) all the data available (from about 2006 until 2016) and (c,d) up to 500 d. All these �gures use the same amplitude normalization, except ts-PWS
results that are multiplied by 7. Convergence (e,f) to the waveforms shown in (a) and (b), respectively.

5.2 Field data example: extracting surface waves
and normal modes from ambient noise

We extract minor- and major-arc Rayleigh waves from inter-station
correlations using three different stacking strategies. For further
information on the analysis of dispersion of Rayleigh waves see
Levshin & Ritzwoller (2001); Herrmann & Ammon (2002); Schim-
mel et al. (2017) among others and, for example, Hanedet al.
(2016) for a recent study deriving a global upper-mantle tomo-
graphic model and Zhaoet al. (2017) building phase velocity
maps across the USA. Fig.3 shows the velocity EGF extracted
from the vertical component (LHZ) of two pairs of broadband
seismic stations from the GEOSCOPE network from the year
2006 to 2016 and convergences to the �nal waveforms. In Figs5
and 6, we present the waveforms extracted from twenty station
pairs using 500 d of data and more than 2000 d, respectively.

See Medeiroset al. (2015) for some guidance on the choice
of the window length and the number of correlations that en-
sures cross-terms cancelling. In the pre-processing we remove
the mean and trends, correct for the instrument response to pro-
duce ground velocity, apply a band-pass �lter from 4 to 32 mHz,
decimate to a sampling period of 4 s, reject seismograms having
energies much higher than the average from the same time pe-
riod (higher than 15 times the median of their standard deviations),
and clip large-amplitude signals (higher than four times the stan-
dard deviation of the seismogram). Then, we compute GNCC of
1 d long velocity seismograms, reject correlations having energies
much higher than average, and stack remaining correlations us-
ing linear stacking, ts-PWS and two-stage ts-PWS. The two-stage
ts-PWS consists of a �rst stage formed by several linear stacks,
which generate 10 correlation sequences having a SNR much higher
than the original correlations, followed by the unbiased ts-PWS.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/211/1/30/3933236 by C

N
R

S
 - IS

T
O

 user on 10 A
ugust 2022



Time-scale PWS and beyond37

Figure 4. (a,b) First and fourth Rayleigh wave trains extracted using all the data available shown in Fig.3 with (black) linear stack, (blue) tf/ts-PWS and
(red) two-stage ts-PWS. (c,d) Evolution of SNR with the number of correlations stacked. (e,f) Convergence to the waveforms extracted shown in (a) and(b),
respectively.

Assigning an optimal weight to each inter-station correlation in the
stack could potentially improve results. This strategy is hindered in
this example due to the very low SNR of the correlations and is also
out of the scope of this paper. Therefore, for the sake of simplicity,
we weight the correlations uniformly.

We use a power ofv = 2 for the ts-PWS and the unbiased ts-PWS.
For the time–frequency representation, we use the continuous Mor-
let wavelet transform with the standard choice of� 0 = �

�
2/ ln 2,

equivalentlyQ �= 3.20, discretized using a frame with ab0 = 1
and 4 voices along 3 octaves, corresponding to a collection of 12
band-pass �lters with central frequencies from 4 to about 27 mHz.
Memory requirements reduce compared to the equivalent con�gu-
ration of the tf-PWS due to the lower redundancy,R = V/ b0 = 4
versus 4126 (half the number of lags in Fig.3), and the possibility
of analysing only the frequency bands of interest. Similarly, ts-PWS
is much faster to compute than tf-PWS. The ts-PWS results shown
in Fig. 6(b) take about 70 s to compute with a common desktop,
and the results of the two-stage ts-PWS, Fig.6(c), 18 s, mainly
consumed in input/output operations.

The �rst minor-arc Rayleigh (R1) wave is the main signal used
in ambient-noise studies from global to local tomography. In Fig.3,
we show up to the third major-arc Rayleigh (R6) wave train. These
observations are important for global tomography studies to im-
prove coverage in regions otherwise poorly sampled due to the lack

of seismic stations, such as the oceans, or earthquakes. In Figs3(a)
and (b), we detect with the linear stack the �rst four Rayleigh waves
quite clearly, partially due to the strict rejection of anomalous data
before and after computing the correlations. We observe that with
the linear stack, the level of noise is still signi�cant even when using
all the data available (about 11 years). With the ts-PWS, the level of
noise reduces dramatically, but also the amplitude of the signals as
a result of their low SNR. In contrast, the two-stage ts-PWS reduces
the level of noise with a much lower signal attenuation allowing to
observe up to R5 and R6, because (1) the linear stacks performed
in the �rst stage provide correlations with higher SNR to the unbi-
ased ts-PWS, and therefore reduce signal attenuation severely, and
(2) the unbiased ts-PWS helps to further attenuate non-coherent
noise. R3 to R6 wave trains are harder to observe when we limit
the dataset to 500 d, Figs3(c) and (d). All these signals are better
observed using the two-stage ts-PWS, despite of the little signal
attenuation.

Figs 3(e) and (f) show the convergence to the EGF using as a
reference signal the waveforms extracted by each method using the
entire data set (Figs3a and b). We see that the ts-PWS and the two-
stage ts-PWS converge faster than the linear stack, the linear stack
needs about 1000 d to get the similarity that the two-stage ts-PWS
gets in about 250 d due to the lower non-coherent noise attenuation.
As we have seen in the synthetic data example, Fig.2(c), the mis�t
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