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SUMMARY
Stacks of ambient noise correlations are routinely used to extract empirical Green’s functionss’
(EGFs) between station pairs. The time—frequency phase-weighted stack (tf-PWS) is a phys:3y
ically intuitive nonlinear denoising method that uses the phase coherence to improve EG@
convergence when the performance of conventional linear averaging methods is not suf cient.s:
The high computational cost of a continuous approach to the time—frequency transformatlorB
is currently a main limitation in ambient noise studies. We introduce the time-scale phase- g
weighted stack (ts-PWS) as an alternative extension of the phase-weighted stack that uses
complex frames of wavelets to build a time—frequency representation that is much more ef -5
cient and fast to compute and that preserve the performance and exibility of the tf-PWS. In 8
addition, we propose two strategies: the unbiased phase coherence and the two-stage ts-P\[_g_S
methods to further improve noise attenuation, quality of the extracted signals and convergence
speed. We demonstrate that these approaches enable to extract minor- and major-arc Rayleid
waves (up to the sixth Rayleigh wave train) from many years of data from the GEOSCOPE
global network. Finally we also show that fundamental spheroidal modes can be extractecE
from these EGF.

Key words: Seismic interferometry; Seismic noise; Surface waves and free oscillations;
Wavelet transform.
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Equipartition of wave elds is fundamental to extract the exact
Green’s function. Direct correlation of raw seismic records produces
The ubiquity of noise is making seismic ambient noise an excel- an undesired predominance of earthquakes and other large ampli-
lent complement to earthquakes in local to global tomography and tude signals over ambient-noise sources leading to low convergence
monitoring studies. Seismic noise analyses are important from early rate towards the EGF. To improve the EGF convergence, a single
studies (Gutenber958 until today (e.g. GSN low-noise model; inter-station correlation is replaced by many much shorter data se-
Bergeret al.2004), since it de nes the weakest signal an instrument quences treated in processing ows that may include 1-bitamplitude
can detect. Seismic imaging and monitoring using inter-station cor- normalization, spectral whitening, phase cross-correlation, adap-
relations became popular much later with works on the extraction tive Itering and array processing (Campillo & PaR2003 Bensen

1 INTRODUCTION
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of the empirical Green’s function (EGF; Campillo & Pa2003 et al. 2007 Baig et al. 2009 Schimmelet al. 2011). Ermertet al.
Shapiro & Campillo2004 Snieder2004 and the subsequent ap- (2016 use minimal pre-processing for the stack of correlograms in
plication to surface wave tomography (Shapétcal. 2005 Sabra order to obtain correlations that can be easily forward modelled in-

et al.2009, see, for example, Wapenagral. (2010 and Campillo stead of EGFs. Later, Fichtnetal. (2017 also consider any linear

& Roux (2015 for a review. The main signals currently used are and nonlinear processing.

from wave eld uctuations caused by scattered earthquake coda Inmostapplications, physically intuitive signal-processing meth-
(Sens-Scbinfelderet al. 2015 and ambient noise. The strongest ods developed with other applications in mind (e.g. beamforming
and most commonly used ambient noise (of natural origin) is clas- or phase-weighted stack, PWS) have proven useful for improving
si ed into (a) primary microseisms (periods of 10-20 s), generated EGF convergence and observing weak signals in otherwise too
by interactions of ocean gravity waves with the coast, (b) secondary noisy records. The search of more powerful methods is needed
microseisms (1-12 s), generated by wave—-wave interactions be-to tackle new imaging and monitoring challenges using current
tween ocean gravity waves, and (c) hum (30-250 s), generated bydata volumes and to satisfy the need of better time and space
interactions of infragravity waves with continental shelves (Ardhuin resolution. Monitoring fast temporal variations @bet al. 2005

et al.2015. Brenguier et al. 2008 Hadziioannou et al. 2011, D’Hour
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et al.2016, demands short time windows to resolve corresponding noise studies from regional to global scales (Batgal. 2009
variations at a local scale promoting the use of much less data toSchimmelet al. 2011, Kimman et al. 2012 Ren et al. 2013
extract EGFs. Further, the extraction of body waves [e.g. at teleseis-Yang 2014 Chaoet al. 2015 Chenget al. 2015 Diaset al. 2015
mic distances, see Gersteftal. (2008, Lanceset al. (2010, Poli Hanedet al. 2016 Jianget al. 2016 Pilia et al. 2016 Szanyi
etal.(2012, Bolwéetal.(2013 2014, Poliet al.(2015, Farraet al. et al. 201§ and has proved useful for the analysis of low-
(2016 and Haneckt al. (2016, among others], which is possible  frequency earthquakes (Thurbetr al. 2014 Matozaet al. 2015
through stacking and/or beamforming methods, demands furtherLyonset al.2016).
signal-to-noise ratio (SNR) improvements to be able to constrain  The high computational cost derived from a continuous ap-
deep structure. In this context, stacking and denoising strategies in-proach to the time—frequency transformation is currently a limi-
troduced by the seismology, exploration and signal-processing com-tation in main applications of noise correlations, tomography and
munities become fundamental to boost the amount of high-quality monitoring that often demand big data volumes. A solution to
observations. this problem is developing better implementations, for example,
Stacking (i.e. averaging) of a collection of traces (time series) is Zeng & Thurber 2016 use the graphic processing unit to accel-
a ubiquitous method to improve SNR by combining coherent sig- erate tf-PWS computation by a factor of 20 with respect to im-g
nals from many traces into a single trace, often at the expense ofplementations using the FFTw3 library (Frigo & Johns2005.
losing resolution. Seismic exploration has a long tradition introduc- For our research, we reduce the operation complexity (see Se
ing original stacking methods, see, for example, Rasi20d4 tion 3) by building more ef cient time—frequency representations
for an historical review on common-mid-point stacking. A key instead.
problem still facing many modern linear stacking methods is as-  This work is devoted to enhance the quality of stacked seisS
signing a weight to each trace in the stack (or locally to each mic data sequences, in particular from ambient noise correlations;
time sample) and rejecting the anomalous ones (due to, e.g. coherby improving SNR and EGF convergence. Then, having compus
ent noise). Common criteria employed to estimate these weightstational ef cient methods help us to do more with less resources§
involve measuring SNR (Neelamagt al. 2006 or correlation In Section 2, we analyse tf-PWS as a nonlinear denoising methog
(Liu et al. 2009 Sanchis & Hansse@011;, Denget al. 2016 to which is related to approaches that use thresholding functions. 13
a previously calculated reference trace. Nonlinear methods suchSection 3, we introduce the time-scale PWS (ts-PWS), a methog'
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as the median stack (Claerbout & Muli973 and the alpha- that obtains the same performance as tf-PWS with a much reduced
trimmed average (Bednar & Walt984 Rashed2008 help re- computational cost and memory footprint. Further, in Section 4, we3
jecting coherent noise. Other nonlinear stacking methods used inpropose and discuss two strategies: the unbiased ts-PWS and @e
seismology are thath root stack proposed by Muirheati968, two-stage ts-PWS to improve non-coherent noise attenuation, to res:

a norm-like function carrying the sign of the signals that empha- duce undesired attenuation of weak coherent signals, and to increage
sizes small-amplitude signals at the expense of waveform distortion convergence speed. In order to validate our method, we compare i
(Kanasewichet al. 1973, and the dual bootstrap stack proposed Section 5 linear stack with alternative methods based on the ts-P
by Korenaga 2013, a linear stack weighted by signal signi cance  using synthetic and eld data examples. In these examples, we as:
and coherence to improve the detection of weak amplitude signalssume a diffuse wave eld, for instance, due to a balance of sourc§
that also introduces waveform distortion, particularly around zero distribution. We extract minor- and major-arc Rayleigh waves usin o
crossings. many years of data, study and compare the quality of the extracted
Denoising methods improve the SNR of a single trace in exchange signals, and measure their convergence before and after denoisir%é].
of signal distortion. Likewise, they boost convergence in noise cor- Finally, we show that we can extract fundamental spheroidal mode%

relations by reducing the number of traces needed in the stackingfrom EGF. 2
to get a desired SNR. Generally applied after stacking, denoising 3
preserves the main components of the signal and attenuates the rest. L
Most methods apply thresholding functions controlled by the level 4
of noise to signal representations well adapted to the signal proper-2 UNDERSTANDING TF-PWS ©
ties in order to boost noise attenuation and promote the most ener-pyys s essentially the product of the linear stack multiplied by thé!Ug
getic signals (MallaR008), see, for example, Galiana-Meriebal. phase stack (Schimmel & Paulss#897. The t-PWS method S
(2003, Han & van der Baar019 and Mousavi & Langstor2016 improves SNR and reduces signal distortions compared to the

for some applications to seismic data. Alternatively, Schimmel & pywg by being more data adaptive through the attenuation of i
Paulssen997) propose the PWS to extract common coherent sig- coherent signal components in the time—frequency domain, bettey
nals, regardless of their amplitude, instead of the most energetic 5gapted to seismic signals than the time domain. The tf-PWS imples
signals. The PWS approach boosts the SNR of the linear stackedments the time—frequency expansion using the physically intuitiv%
trace and reduces waveform distortion compared to more aggres-g_transform (Stockwekt al. 1996 Schimmel & Gallar2005 be-

sive nonlinear stacking methods such asriifieroot stack and dual  ¢ayse it gives absolute phase information. Venteisal. (2008

bootstrap stack. The time-frequency PWS (tf-PWS), introduced by fyrther showed that the S-transform is a Morlet wavelet transform
Schimmel & Gallart 2007 as an extension of PWS to the time— up to a phase correction.

frequency domain, further improves the extraction of weak coher-j 3 jinear stack, the main distinguishing feature between signal
ent signals and reduces signal distortion. First applied to clean ang noise is that the signal is coherent across the pre-stacked traces
lower crust and Moho re ections/refractions in wide-angle data \yhjle the noise is not. The actual physical sense of signal and noise
(Schimmel & Gallart2007 Garcia Canoet al. 2014, to de-  ¢changes depending on the application. Assumirig thek-th (e.g.

tect coda phases, for example, from upper mantle discontinuities gajly) correlation sequence between a pair of stations composed by

(S(_:himmel & Gallar_t2007) or from Ion_g period data t-PWS  on EGFEs, andw signals that do not contribute to the EGF:
(Ringler et al. 2016; it has been extensively used to extract em-

pirical inter-station Green’s functions (EGF) in seismic ambient- x [m] = s[m] + w [m] 1)
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wherem s the index of the coef cients in the time—frequency do- portional to period to account for the fast time variation of ballis-

main. Then, the estimation of the sigrsak, from the noisy mea- tic signals at all frequency bands. These applications also favour
surements using the linear stack is analytic signal transformations because they are more suitable to
process oscillatory signals (here seismic signals) than real transfor-

& [m] = i x [m] ) mation_s Which suffer frqm serious shift variance_ p_roblems, that is,
K small time shifts of the signal leads to strong variations of the trans-

formed coef cients around singularities (e.g. Selesmtél.2005.

WheLelfC;S the nurr|1_ber of datlz(a ﬁ_ehquen(_:es n t?ehstack_ and_ the fs'l;]mAnalytic signal representations enable new algorithms that exploit
symbol denotes a linear stack. The variance of the estimation of t emagnitude and phase information; in particular, to build weight

EGF reducgg in rrr:ean tas thelnfumber of 1nd§per:d§ntls:3%ulenc$s 'g(unctions using the phase coherency.
creases andinconerent signal, for example, due to1solated localize Traditionally, these time—frequency expansions use a set of band-

nollgse SOl(erce_s, average OdUt' datain th K i denoi pass Gaussian lters based on the assumption that time series are
_ Beyondusing more and more atalnt_ e stac » NONINear denois-yq jyad from a multidimensional normal distribution. These Iters
ing methods such as tf-PWS improve signal estimation in stacked are de ned as

sequences by de ning nonlinear attenuation functions that exploit
known signal properties to further attenuate noise. Ef cient nonlin- (, )=X() — (5)
ear estimators are conventionally done by applying simple attenu-
ation functions in transformed domains (here the time—frequency whereX () = X( )(1 + sign( )) is the analytic signal following
domain) where signal and noise are better separated. the Fourier transform conventiod( ) = X(t)e dt, signis

To improve the SNR of through denoising, regardless of the the signum function, is the central frequency of the lter, and
domain (e.g. time or time—frequency) used for data representation, the standard deviation of the Gaussian window. Observe that

we multiply the linear stacked trace by an attenuation function X ( , ) is only approximately analytic since band-pass Gaussian

that promotes the main components of the signal and attenuates thelters (the last term in eq. (5)) are strictly positive functions. The

rest, half-power bandwidth of these lters is proportional to their central

N N frequency =2 In2 [/ ,equivalently, they are of constaQt

§[m] = § [mic[m], ® quality factor (ratio of central frequency to bandwidth)

where§ is the estimation of the signal after denoising. In the

PWS methodg is the phase stack, an empirical noise attenuation Q= —= 2 In2 (6)

function that measures the instantaneous coherence of a signal. The o

phase stack, and their |nﬂ1lse responses have an equal number of cycles

N = In2/ . In seismology, this approach to the time—

1 X [m] 1 frequency expansion formalized by Dziewonsiti al. (1969 is

c [m]= K [x [m]] ~ X € ' “ known as the multiple lIter technique. Similarly, in the context of

the short-time Fourier transform, Gambardella71) proposes the
is a strictly positive function that is one if and only if all the data use of modulated windows of const&itinstead of constant length,
sequences at a coef cientm are equal in phase (full similarity)  for audio analysis giving a ‘form invariant under time scaling’, and
and close to zero if they are totally unrelated (full dissimilarity), Petersen & Boll {983 show how to sample this time—frequency
where the sharpness of the transition between these two extremesiomain ef ciently. Later on, the study of these ideas in physics,
is controlled byv. Observe that the phase stack is a sum of phasors engineering and pure and applied mathematics converged to the

and consequently neegsto be analytic to assess the phaseFor wavelet transform (e.g. Daubechi892.

example, in the time domain, coef ciem is the time steq, and The Gaussian band-pass Iters used in the multiple Iter tech-

X(t) = a(tte whereais the envelope ofand the instantaneous  nique, eq. (5), are equal up to a scaling factor inversely proportional

phase. to their central frequency. In Appendix A, we show how this scaling
relationship and the close to zero mean (typically 1) enable an

3 TIME-SCALE PHASE-WEIGHED ef cient implementation of multiple Iter technique using the con-

STACK tinuous Morlet wavelet transform, by de ning scale as /

. _ ) _ and the central frequency of the mother wavelet as = .
Improving the quality of extracted signals is one of the most de-  The continuous wavelet transform (CWT; Daubechi®92

manding operations (in the computational sense) along the seismicginhaet al. 2005 Mallat 2009 of a data sequenoeis given by its
processing ow. The computational cost of t-PWS is mainly due  jnner product with a wavelet collection

to the regular sampling of the continuous time—frequency domain
when using the S-transform. This leads to a very high redundancy x(, )= x - x(t) @, @
(i.e. ratio of number of coef cients in the transformed domain to
number of coef cients in the original domain) and, consequently, to
many coherence measures to be computed. In this section we prese
more computational ef cient time—frequency representations of the
tf-PWS through the wavelet transform.

)

here is delay orlag-time, is scale and (t) denotes the complex

conjugate of (t). The mother wavelet L (R) is a zero-mean
function that generates a set of functions, the wavelet collection
, through scaling and translating operations. Conventionally,

) ) ) this set of functions is normalized so that the transform is unitary,
3.1 Seeking for an efpcient representation of the

timebfrequency domain ®= ( tS ). (8)

The most suitable time—frequency resolution is often non-uniform  Wavelets can be real or analytic. Real wavelets are good for de-
and therefore Geophysical applications favour time resolutions pro- tecting sharp signal transitions and thus often used in, for example,

- SUND Aq 9gzee6€/0€/T/TTZ/30me/B/Wwoo dno-olwspeoe//:sdny woij pspeojumod
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image processing (Mall&008 Jacquesgt al.2011). Complex ana- reconstruction error is typically much lower than 1 per cent when
lytic wavelets are attractive for analysing oscillatory signals due to the dual frame is approximated by the forward frame and reduces
their ability to separate magnitude and phase and therefore usefulfast asv increases anld decreases. For example, in the case of the
for, for example, studying seismic signals or measuring instanta- exact Morlet wavelet, for the standard choice of= 2/[In2,
neous frequency (Selesniek al. 2005 Sinhaet al. 2005 Ventosa and withV = 4 andb = 1 (that double when doubles), the
etal.2012 Bayram2013. redundancy is approximatey/b = 4 and the normalized root-
Toimplementthe multiple Itertechnique, eq. (5), we use analytic mean-squared error is below 3.8110
wavelets. Pseudo-analytic wavelets can be built with modulated The use of a sampling strategy adapted to the actual resolution
windows. We use a modulated Gaussian window, has a major impact on operation complexity and memory footprint.
= e e ©) The redundancy of the tf-PWS is at_>out half the number of samples
' of each sequenc® = N/2 + 1, while the redundancy of the ts-
this mother wavelet is conventionally known as the Morlet wavelet PWS is typically 4 R 16 and independent ®f. ForR< 4 the

despite of not being exactly zero mean and hg@a /2 In2. frame bounds diverge abrupthp( B) and the wavelet collection
Zero mean is obtained in the exact Morlet wavelet with an additional stops being a frame. While frofR = 16 the reconstruction error o
term, (t) = e (e Se ) stil eq.(9)is agood ap- is extremely low and the ltering improvements are very minor. =
proximation for 1 due to its extremely small mean. For low Likewise, the operation complexity of the ts-PWS is proportionalg
values both Morlets are not pseudo-analytic anymore. to the number of samples and scal€{N§), and the tf-PWS, &
implemented using fast Fourier transformsQiEN log N). =
o
. o . 3
3.2 Discretization of the CWT: frames of continuous =
wavelets 3.3 Limits and alternatives to frames of Morlet wavelets B

/

We can severely reduce redundancy by using known signal proper-The analytic approximation made in the Morlet wavelets degrade§
ties to design bases or frames (i.e. overcomplete bases)d&ava a5 (equivalently in eq. (5)) reduces and the negative frequency
& Chebira2007ab) which capture ef ciently the main features of  components becomes less and less negligible, which is problematic

the signal. The frame coef cients of the data sequence are in applications requiring high temporal resolution. The complex2

computed by inner products with a frame= { } ; Mexican hat wavelet (Addisoet al. 2002 is an alternative with
_ _ —_— no negative frequency componentsar@a 3/2 1.2.Equiv- S

X [mj = x, - xnlIn]. (10) alently to eq. (5), the band-pass Iters of this wavelet are de neds,

as

The sequencds } constitute a frame if there are two real 9

numbersB A> 0 such that X(, )=X()—e ~ . (14)

A X | x, | B x (11)

A more exible option is the Morse wavelet (Lilly & Olhede
2009 2012, a family of analytic wavelets which permits the syn-
thesis of a wide variety of wavelets from low to high quality
factors. @
Frames of continuous wavelets have a far lower redundancy th@
direct continuous implementations, still this redundancy is moderq
x [n] = x [m]  [n]. (12) ately high and the discretization leads to a non-perfect reconstrué
tion. The discrete wavelet transform (DWT) is required to get the”
lowest redundancy and perfect reconstruction, for example, Vetterg
& Kovacevic (1995. A certain degree of redundancy is necessaryo
to construct an analytic DWT because discrete complex wavelet%
having a nite support cannot form an orthonormal or biorthogo- S
nal basis and be analytic or pseudo-analytic at the same time, fot
example, Selesnickt al. (2005. For example, the dual-tree com- ;2
plex wavelet transform (KingsbuB001, Selesnicletal.2009 uses  §
wavelets with a low), has a redundancy of 2, and an operation com-%
plexity of O(N) which is lower than the fast Fourier transform. The 3
dual-tree rational-dilation complex wavelet transform (Bayram &R
Selesnick011) and rational-dilation Iter banks Bayran2013 al-
low foramore exible choice of), redundancy and time—frequency
resolution. However, the lters obtained have to be constructed in
[n] = 1 nTSu2 b (13) the frequency domain to ful | perfect reconstruction which increase
2 2 ! operation complexity.

where T is the sampling period of the original time series and
s is the lower integer part of. Scales are usually organized in
voicesv [0,V S 1] and octaves Z,s= j+ v/V, where

V  Nis the number of voices; and they are downsampled by 2
in order to keep roughly a constant number of samples per cycle Most coherence measures can be used as empirical noise attenuation
in all frequency bands. For moderate redundandres, 4, the functions exploiting data from several realizations, being the main

for any possible sequengewhereA andB are called the lower and
upper frame bounds. When eq. (11) is satis ed, the signe&an be
reconstructed from thg coef cients with the pseudo-inverse of
the frame , implemented with a dual frame } ,

€CEEBE/OE/T/TTZ/3101e/!

If A= Bthe frame is called tight (satis es the Parserval’s identity)
and the dual frame can be approximated by the ‘forward’ frame up
to a constant factor (Daubechi&892.

Frames of wavelets are good approximating CWT
(Daubechied9929. The frame elements are distributed across the
time—frequency domain according to their time and frequency
resolutions in order to contain redundancy. A common choice for
discretizing the wavelet collection , eq. (8),is = 2 and

= u2b, whereu is the time index at the scakandb the
sampling period at the scale 1, leading to a sampling period almost
proportional to scale on the time axis and to its inverse on the
frequency axis. The frame of wavelets is then

4 IMPROVING WEAK SIGNAL
DETECTION
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linear stacking to each group to generate sequences with reduced
signal variability (higher SNR) in a rst stage, and then apply the

before tf/ts-PWS and therefore signals are less downweighted. Note

S that in ambient noise data the coherence can be increase before tf/ts-
}‘E PWS using longer data windows in the cross-correlations. However,
5 this reduces the adaptability to real data with gaps and the applica-
b5 bility of other processing steps, such as normalizations and weights
—T e — t(_) promote or rejec_t sequences acc_ording thei_r qL{aIity. For ex.ample,
o 100 traces || Jianget al. (2016 linearly stack daily correlation in 10 d periods
i ——1000 traces| before using tf/ts-PWS to improve SNR of short-period ambient
- - " noise data.
10 10 10 (iii) Unbiased phase coherencioise attenuation can be im-
SNR of the prestack - .
proved by using unbiased coherence measures, such as GNCC co-
herence, or by correcting the bias of the phase stack. In Appendix B,
we show that an unbiased phase coherence estintatogan be
constructed using the phase stack with 2,
difference between them the actual de nition of similarity (e.g. Ke S1
maximum coherence means amplitudes and waveforms being equaf = K31 (15)
or just the waveforms) and the class of signals considered (e.g. real ) ) )
or analytic). In Fig. 1, we show that, in mean, the attenuation of the unbiased

Fehase coherence (solid lines) is much higher than the attenuation of

The phase stack is an instantaneous coherence estimator for an .
lytic signals which gives more stable measurements than alternativelh® Phase stack (dashed lines) when the SNR of the data sequences

estimators for real signals due to the near shift invariance of magni- IS Very low and that both are similar when the SNR is higher than
tude and phase. Other coherence measures such as semblance aA¢: T‘he akin PWS' constructed using rather tharc , is now
geometrical-normalized cross-correlation (GNCC) allow both real Called ‘unbiased’ tf/ts-PWS.

and analytic signals (Tanet al. 1979. Note that the actual de ni- In the next sections, we construct the two-stage ts-PWS using the

tion of similarity is not equal in these three estimators. The phase |inear stackin the rst stage and the unbiased ts-PWS in the second.
stack and GNCC de ne full similarity as equal waveforms (not am-

plitudes) and, for this reason, are said to be amplitude unbiased,
whereas semblance de nes full sir_nilarity_ as equal amplitude and 5 EXAMPLES
waveforms and therefore it is amplitude biased.

The instantaneous coherence estimation of the phase stack is biln the following we use synthetic and real data sets to evaluate the
ased in the sense that it gives positive coherence values for full performance of the linear stack, ts-PWS and two-stage ts-PWS. As
dissimilarity signals, whereas instantaneous GNCC coherence es-measure of performance we use the similarity which we de ne as
timation is unbiased since coherence can become negativel Fig. the cross-correlation coef cient CC between the original signal
illustrates the impact of the coherence bias by showing the ampli- and the estimated sign&|
tude attenuation of the phase stack, eq. (4), as function of the SNR |'s 3]
of full coherent signals contaminated by white Gaussian noise for CC = s &5 (16)
the standard choice of = 2. The signal attenuation is small for
SNRs of the pre-stack higher than 1, and itincreases on average to avhere s, § is the inner product ands the norm. The corre-
maximum value oK for pure incoherent noise, see Appendix B for sponding mis t is de ned as 1S CC. Since time and frequency
the demonstration. In practice, this saturation of attenuation leadsresolutions are often main constraints in distinct applicationgQthe
to lower than expected SNR increments for low SNR signals, but it quality factor (de ned in eq. 6) helps determining the best adapted
guarantees a positive coherence. wavelets. Generally, high) wavelets are suitable for studies using

We canimprove weak signal detection by (i) promoting sequences surface waves due to their dispersion with frequency, whileQow
with high SNR in a weighted phase stack, (ii) improving their SNR Wwavelets are better adapted for analysing body waves due to their
before tf/ts-PWS through two-stage stack, and (iii) correcting the short duration.
coherence bias of the phase stack to increase noise attenuation with
the unbiased phase coherence estimator. More speci cally:

) . ) . ) 5.1 Synthetic data example: high Q wavelets
(i) Weighted phase stacktroducing weights in the phase stack

helps to promote top-quality data sequences and to reject the anomaT he test data, Fig(a), consist of a chirp function,
lous ones. Modern linear stacking methods used in exploration can : ;
. . T _ sin2 ft) ift t t

be adapted to estimate these weights, considering that the phas&(t) = -

A 0 otherwise
stack is a linear sum of phasors.

(i) Two-stage stackrhe phase stack attenuates low SNR signals windowed with a 20 per cent raised cosine taper, whéere

much more than the stronger ones. For this reason, we obtain betterf + (f /f) withf = 0.005Hzf = 0.03Hzt = 100s
results if we phase stack a few sequences with high SNR than if andt = 1001 s, Fig.2(b), embedded in white Gaussian noise of
we stack many of much lower SNR, even when their linear stacks variance equal to 1 and sampled at 1 sampielEg. 2(c) shows the
are identical. Consequently, if the number of sequences available isconvergence to the unperturbed chirp signal using three methods
high, it seems reasonable to arrange them in few groups and apply(black) linear stack, (blue) tf/ts-PWS, and (red) two-stage ts-PWS.

: @n

phase stack in a second stage. In this manner, coherence is increased
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Finally, Figs2(d) and (e) show the extracted signals and their differ- noise across all frequency bands. Further, the linear stack neegi
ences, respectively. The two-stage stack rst arranges the original more than 100 sequences to give results with the mist that tst,
data sequences into 10 groups to linearly stack the sequences oPWS obtains using 10 sequences. For higher number of sequenc@
each group, and then applies the unbiased ts-PWS. With 10 groupswve observe that the tf/ts-PWS mis t starts saturating at about 2@
we seek a balance between increasing SNR before the ts-PWS andequences (and results no longer improve) while the linear stack
reducing the variance of the coherence estimation. keeps improving. When comparing the differences, #d), ofthe &
The main parameters to choose for the time—frequency transfor- linear stack and the tf/its-PWS, we can conclude that this saturatiod
mation are th&Q quality factor and the frequency band of interest. is due to the signal attenuation produced by the reduction of th
We opt for a Morlet wavelet with a relatively highof5( = 8.33 phase coherency (the attenuation function used in the ts-PWS) on
or about 2.2 cycles) considering the long signal duration and its high signals with low SNR, as predicted in Fiy.
number of cycles. For extracting much shorter waveforms, such as We avoid the mis t saturation by introducing a two-stage stack- O
body waves, a lower value is recommended to increase time resolu-ing approach. The linear-stack stage delivers a few sequences wﬂ}n
tion. The centre frequencies of the wavelet collection afe . We a much higher SNR than the original data sequences that are then
opt for using 8 octaves starting at the scale 4, which is more stacked in the second stage using the unbiased ts-PWS. A moder%te
than enough to cover the frequencies of interest. Using a narrowernumber of sequences (10 in this example) is suf cient to estimate-
frequency range would have further removed noise. We discretize coherence satisfactorily in practice. In exchange, we obtain a high%
the wavelet collection from the standard choice o& 5.34, and SNR that has a major impact on the mis t reduction (equivalently,?
withV= 4 andb = 1by scalingthé&/andb parametersinpropor-  decrement on waveform distortion) which now improves Iinearly§
tionto .ThenVisrounded to the closer integer value dndo the with the number of sequences in parallel to the linear stack. The un®
largest power of two lower tham , leading tovV = 6 andb = 1 and biased phase coherence helps to furtherimprove mis tin the single-
aredundancy oR 6. The mist (1S CC) of the ts-PWS using stage ts-PWS (number of sequences lower than 10) and the
these parameters is 2910 and the mis t of the tf-PWS using two-stage ts-PWS as a result of the higher noise attenuation pre-
an equivalent con guration is 4.8 10 . This minor difference is dicted in Fig.1.
mainly due to the different discretization used. Further increasing  An implication of this result is that a faster convergence to
V or b leads to very minor reduction of the mist (Supporting a robust signal can be achieved through the introduced mod-
Information Fig. S1). i cations. The fast convergence of the ts-PWS and the two-
Because tf-PWS and ts-PWS give identical waveforms, in the stage ts-PWS proposed here should be useful for, for exam-
following we only show results for the ts-PWS which we call tf/ts- ple, seismic monitoring as it allows us to use much shorter
PWS. In the mis t (1S CC) results, Fig2(c), we see that the tf/ts-  data windows leading to higher temporal resolution, key in these
PWS reduces mis t much faster than linear stacking by removing applications.
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5.2 Field data example: extracting surface waves See Medeiroset al. (2015 for some guidance on the choice
and normal modes from ambient noise of the window length and the number of correlations that en-

sures cross-terms cancelling. In the pre-processing we remove
the mean and trends, correct for the instrument response to pro-
duce ground velocity, apply a band-pass lter from 4 to 32 mHz,
decimate to a sampling period of 4 s, reject seismograms having
energies much higher than the average from the same time pe-
riod (higher than 15 times the median of their standard deviations),
and clip large-amplitude signals (higher than four times the stan-
dard deviation of the seismogram). Then, we compute GNCC of
1 d long velocity seismograms, reject correlations having energies
much higher than average, and stack remaining correlations us-
ing linear stacking, ts-PWS and two-stage ts-PWS. The two-stage
ts-PWS consists of a rst stage formed by several linear stacks,
which generate 10 correlation sequences having a SNR much higher
than the original correlations, followed by the unbiased ts-PWS.

We extract minor- and major-arc Rayleigh waves from inter-station
correlations using three different stacking strategies. For further
information on the analysis of dispersion of Rayleigh waves see
Levshin & Ritzwoller 001); Herrmann & Ammon2002; Schim-

mel et al. (2017 among others and, for example, Haneidal.
(2016 for a recent study deriving a global upper-mantle tomo-
graphic model and Zhaet al. (2017 building phase velocity
maps across the USA. Fi@ shows the velocity EGF extracted
from the vertical component (LHZ) of two pairs of broadband
seismic stations from the GEOSCOPE network from the year
2006 to 2016 and convergences to the nal waveforms. In Bigs
and 6, we present the waveforms extracted from twenty station
pairs using 500 d of data and more than 2000 d, respectively.

- SUND Aq 9gzee6€/0€/T/TTZ/30me/B/Wwoo dno-olwspeoe//:sdny woij pspeojumod

220z 1snbny QT uo Jasn O1SI



Time-scale PWS and beyond 37

ECH. OOZ CAN.00Z (2261 days, dist = 149.16 deg) INU.00Z TAM.00Z (2579 days, dist = 105.91 deg)
R4 R1 R4
Linear Stack Linear Stack (x4)

W\/\/\/\/\z MW (x7) tf/ts—PWS (x350)

AN\

1j2 1t3 1j4 4t8 4t9 5 5t1 0.é35 0j9 0.235 1 1.2)5 5 5t1 5j2 5j3 5i4
(a) Time (hours) Time (hours) (b) Time (hours) Time (hours)

ot L o Il EEETE I S RN AL HEES e
10 100 1000 10 100 1000 10 100 1000 10 100 1000
(e) Number of days Number of days f) Number of days Number of days

3

Assigning an optimal weight to each inter-station correlation in the of seismic stations, such as the oceans, or earthquakes. I18(B)gs
stack could potentially improve results. This strategy is hindered in and (b), we detect with the linear stack the rst four Rayleigh waveso
this example due to the very low SNR of the correlations and is also quite clearly, partially due to the strict rejection of anomalous data
out of the scope of this paper. Therefore, for the sake of simplicity, before and after computing the correlations. We observe that wi@
we weight the correlations uniformly. the linear stack, the level of noise is still signi cant even when using®
We use a power of = 2 for the ts-PWS and the unbiased ts-PWS. all the data available (about 11 years). With the ts-PWS, the level o%
For the time—frequency representation, we use the continuous Mor-noise reduces dramatically, but also the amplitude of the signals a§
let wavelet transform with the standard choice of 2/ In2, a result of their low SNR. In contrast, the two-stage ts-PWS reducas
equivalentlyQ = 3.20, discretized using a frame withba = 1 the level of noise with a much lower signal attenuation allowing to;>
and 4 voices along 3 octaves, corresponding to a collection of 12 observe up to R5 and R6, because (1) the linear stacks performéd
band-pass Iters with central frequencies from 4 to about 27 mHz. in the rst stage provide correlations with higher SNR to the unbi- 2
Memory requirements reduce compared to the equivalent con gu- ased ts-PWS, and therefore reduce signal attenuation severely, aléd
ration of the tf-PWS due to the lower redundanRy: V/Ib = 4 (2) the unbiased ts-PWS helps to further attenuate non-cohereht
versus 4126 (half the number of lags in F8), and the possibility noise. R3 to R6 wave trains are harder to observe when we limit
of analysing only the frequency bands of interest. Similarly, ts-PWS the dataset to 500 d, Fig%c) and (d). All these signals are better
is much faster to compute than tf-PWS. The ts-PWS results shown observed using the two-stage ts-PWS, despite of the little signal
in Fig. 6(b) take about 70 s to compute with a common desktop, attenuation.
and the results of the two-stage ts-PWS, H(g), 18 s, mainly Figs 3(e) and (f) show the convergence to the EGF using as a
consumed in input/output operations. reference signal the waveforms extracted by each method using the
The rst minor-arc Rayleigh (R1) wave is the main signal used entire data set (Fig3a and b). We see that the ts-PWS and the two-
in ambient-noise studies from global to local tomography. InEig.  stage ts-PWS converge faster than the linear stack, the linear stack
we show up to the third major-arc Rayleigh (R6) wave train. These needs about 1000 d to get the similarity that the two-stage ts-PWS
observations are important for global tomography studies to im- gets in about 250 d due to the lower non-coherent noise attenuation.
prove coverage in regions otherwise poorly sampled due to the lack As we have seen in the synthetic data example, Kig, the mis t
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