Volcano-Tectonic Interactions at Sabancaya Volcano, Peru: Eruptions, Magmatic Inflation, Moderate Earthquakes, and Fault Creep - Archive ouverte HAL Access content directly
Journal Articles Journal of Geophysical Research : Solid Earth Year : 2020

Volcano-Tectonic Interactions at Sabancaya Volcano, Peru: Eruptions, Magmatic Inflation, Moderate Earthquakes, and Fault Creep

, (1) , , , , , , , , , , ,
1
Patricia Macqueen
  • Function : Author
Kevin Reath
  • Function : Author
Matthew E. Pritchard
  • Function : Author
Marco Bagnardi
  • Function : Author
Pietro Milillo
  • Function : Author
Paul Lundgren
  • Function : Author
Orlando Macedo
  • Function : Author
Victor Aguilar
  • Function : Author
Mayra Ortega
  • Function : Author
Rosa Anccasi
  • Function : Author
Ivonne Alejandra Lazarte Zerpa
  • Function : Author
Rafael Miranda
  • Function : Author

Abstract

We present evidence of volcano-tectonic interactions at Sabancaya volcano that we relate to episodic magma injection and high regional fluid pore pressures. We present a surface deformation time series at Sabancaya including observations from ERS-1/2, Envisat, Sentinel-1, COSMO-SkyMed, and TerraSAR-X that spans June 1992 to February 2019. These data show deep-seated inflation northwest of Sabancaya from 1992-1997 and 2013-2019, as well as creep and rupture on multiple faults. Afterslip on the Mojopampa fault following a 2013 MW 5.9 earthquake is anomalously long lived, continuing for at least 6 years. The best fit fault plane for the afterslip is right-lateral motion on an EW striking fault at 1 km depth. We also model surface deformation from two 2017 earthquakes (MW 4.4 and MW 5.2) on unnamed faults, for which the best fit models are NW striking normal faults at 1-2 km depth. Our best fit model for a magmatic inflation source (13 km depth, volume change of 0.04 to 0.05 km3 yr-1) induces positive Coulomb static stress changes on these modeled fault planes. Comparing these deformation results with evidence from satellite thermal and degassing data, field observations, and seismic records, we interpret strong pre-eruptive seismicity at Sabancaya as a consequence of magmatic intrusions destabilizing tectonic faults critically stressed by regionally high fluid pressures. High fluid pressure likely also promotes fault creep driven by static stress transfer from the inflation source. We speculate that combining high pore fluid pressures with sufficiently large, offset magmatic inflation can promote strong earthquakes during volcanic unrest.
Fichier principal
Vignette du fichier
JGR Solid Earth - 2020 - MacQueen - Volcano%u2010Tectonic Interactions at Sabancaya Volcano Peru Eruptions Magmatic Inflation-1.pdf (16.04 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

insu-03748809 , version 1 (10-08-2022)

Licence

Copyright

Identifiers

Cite

Patricia Macqueen, Francisco Delgado, Kevin Reath, Matthew E. Pritchard, Marco Bagnardi, et al.. Volcano-Tectonic Interactions at Sabancaya Volcano, Peru: Eruptions, Magmatic Inflation, Moderate Earthquakes, and Fault Creep. Journal of Geophysical Research : Solid Earth, 2020, 125, ⟨10.1029/2019JB019281⟩. ⟨insu-03748809⟩
56 View
3 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More