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A B S T R A C T 

We study the optical gri photometric variability of a sample of 190 quasars within the SDSS Stripe 82 region that have long- 
term photometric co v erage during ∼1998 −2020 with SDSS, PanSTARRS-1, the Dark Energy Surv e y, and dedicated follow-up 

monitoring with Blanco 4m/DECam. With on average ∼200 nightly epochs per quasar per filter band, we impro v e the parameter 
constraints from a Damped Random Walk (DRW) model fit to the light curves over previous studies with 10–15 yr baselines and 

� 100 epochs. We find that the average damping time-scale τDRW 

continues to rise with increased baseline, reaching a median 

value of ∼750 d ( g band) in the rest frame of these quasars using the 20-yr light curves. Some quasars may have gradual, long-term 

trends in their light curves, suggesting that either the DRW fit requires very long baselines to converge, or that the underlying 

variability is more complex than a single DRW process for these quasars. Using a subset of quasars with better-constrained τDRW 

(less than 20 per cent of the baseline), we confirm a weak wavelength dependence of τDRW 

∝ λ0.51 ± 0.20 . We further quantify 

optical variability of these quasars o v er days to decades time-scales using structure function (SF) and power spectrum density 

(PSD) analyses. The SF and PSD measurements qualitatively confirm the measured (hundreds of days) damping time-scales 
from the DRW fits. Ho we ver, the ensemble PSD is steeper than that of a DRW on time-scales less than ∼ a month for these 
luminous quasars, and this second break point correlates with the longer DRW damping time-scale. 

Key words: surv e ys – quasars: general – quasars: supermassive black holes. 
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 I N T RO D U C T I O N  

he optical photometric (continuum) variability of quasars encodes
ritical information about physical processes within the accretion
isc of a rapidly accreting supermassive black hole (SMBH) that
rimarily emits in the rest-frame UV through optical. There has
een significant progress in the past few decades in quantifying
he observed optical variability of quasars with increasing sample
izes and light-curve quality (e.g. Giveon et al. 1999 ; Hawkins 2002 ;
anden Berk et al. 2004 ; de Vries et al. 2005 ; Sesar et al. 2006 ; Bauer
t al. 2009 ; MacLeod et al. 2010 , 2012 ; Morganson et al. 2014 ; Sun
t al. 2014 ; Chen & Wang 2015 ; Kasliwal, Vogeley & Richards 2015 ;
imm et al. 2016 ; Caplar, Lilly & Trakhtenbrot 2017 ; Li et al. 2018 ;
 ́anchez-S ́aez et al. 2018 ; Smith et al. 2018 ; De Cicco et al. 2019 ;
aurenti et al. 2020 ; Luo, Shen & Yang 2020 ; Tachibana et al. 2020 ;
 E-mail: stone28@illinois.edu (ZS); shenyue@illinois.edu (YS) 

q  

(  
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Pub
in et al. 2020 ; Suberlak, Ivezi ́c & MacLeod 2021 ). Ho we ver, the
ature of optical variability of quasars is still poorly understood (e.g.
lrich, Maraschi & Urry 1997 ; P ado vani et al. 2017 ). 
Quasars are observed to vary stochastically over a broad range of

ime-scales and wavelengths. In the rest-frame UV-optical, quasar
ariability amplitude increases with time-scales and decreases with
avelength (e.g. Vanden Berk et al. 2004 ), and is observed to

nticorrelate with luminosity and the Eddington ratio of the quasar
e.g. Ai et al. 2010 ; Rumbaugh et al. 2018 ). On months to years
ime-scales, quasar optical variability typically saturates at the

10 –20 per cent level. Traditionally, the characterization of quasar
ariability has been carried out with the structure function (SF) or
ower spectrum density (PSD) measurements, which quantify the
 ariability le v el as a function of time-scale (or frequenc y). 
It has become increasingly popular in recent years to model

uasar light curves in the time domain with stochastic processes
e.g. Kelly, Bechtold & Siemiginowska 2009 ; Kozłowski et al. 2010 ;
elly et al. 2014 ). This approach addresses concerns of sampling
© 2022 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 

http://orcid.org/0000-0002-8501-3518
http://orcid.org/0000-0001-9947-6911
http://orcid.org/0000-0002-9932-1298
http://orcid.org/0000-0002-6893-3742
http://orcid.org/0000-0002-2562-8537
http://orcid.org/0000-0002-3602-3664
http://orcid.org/0000-0001-9947-6911
http://orcid.org/0000-0002-3130-0204
http://orcid.org/0000-0002-1295-1132
http://orcid.org/0000-0001-9632-0815
http://orcid.org/0000-0003-2071-9349
http://orcid.org/0000-0002-9369-4157
http://orcid.org/0000-0003-1731-0497
http://orcid.org/0000-0001-6163-1058
http://orcid.org/0000-0002-3321-1432
http://orcid.org/0000-0002-7047-9358
mailto:stone28@illinois.edu
mailto:shenyue@illinois.edu


Optical photometric variability of quasars 165 

Figure 1. The number of nightly coadded epochs observed for the 190 
quasars in our sample combining SDSS, PS1 and DES ( + DECam) data. The 
gri light curves have a median of [205, 209, 209] epochs for our quasars. 
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nd windo wing ef fects that come with time-series analyses in the
requency domain, which are particularly rele v ant for ground-based 
uasar light curves. The Damped Random Walk (DRW) model has 
merged as the simplest Gaussian random process model that can 
t the optical light curves of quasars reasonably well (e.g. Kelly 
t al. 2009 ; Kozłowski et al. 2010 ; MacLeod et al. 2010 ). Deviations
rom the DRW model have been reported (e.g. Mushotzky et al. 
011 ; Zu et al. 2013 ; Kasliwal et al. 2015 ; Guo et al. 2017 ),
lthough some of these claims are likely impacted by the limited 
uration of the light curve in the DRW fit (e.g. Kozłowski 2017 ).
ore complex stochastic process models, such as the continuous 

utore gressiv e mo ving-av erage (CARMA; Kelly et al. 2014 ) models,
an accommodate a broader range of PSD shapes, and impro v e the fits
rovided that the light-curve quality is sufficiently high. In general, 
he CARMA models do not have to be solutions to the stochastic
ifferential equation driven by a Gaussian process (i.e. a Wiener 
rocess). Ho we ver, for CARMA processes that are Gaussian, the 
odel parameters can be estimated using efficient implementations 

f Gaussian process re gression (e.g. F oreman-Macke y et al. 2017 ;
u & Richards 2022 ). In this work, we focus on CARMA processes

hat are Gaussian. 
In the DRW model, the PSD is described by a f −2 power law

t the high-frequency end, transitioning to a white noise at the 
ow-frequency end. The transition frequency f 0 corresponds to 
he damping time-scale τDRW 

as f 0 = 1/(2 πτDRW 

). The damping 
ime-scale thus describes a characteristic time-scale of the optical 
ariability. Earlier studies of quasar variability already hinted at such 
 characteristic variability time-scale and its possible dependence 
n the physical properties of quasars such as the black hole mass
e.g. Collier & Peterson 2001 ; Kelly et al. 2009 ), but the exact form
f the dependence is debated (e.g. MacLeod et al. 2010 ; Simm
t al. 2016 ). Recently, Burke et al. ( 2021 ) measured the damping
ime-scales using the DRW model for a sample of active galactic 
uclei (AGNs) with high-quality optical light curves over a large 
ynamic range in black hole mass. They found a strong positive 
orrelation between τDRW 

and black hole mass, which extends to the 
tellar mass regime with optical variability measured for nova-like 
ccreting white dwarfs (Scaringi et al. 2015 ). Compared with higher 
rder Gaussian process models, the DRW model contains a single 
haracteristic time-scale, making it easier to interpret the variability 
nd to connect variability to the underlying physical processes (e.g. 
un et al. 2020 ; Burke et al. 2021 ). 
Ho we ver, as Kozło wski ( 2017 ) pointed out, in order to constrain
he damping time-scale τDRW 

when fitting the light curve with a 
RW model, it is important that the duration of the light curve is

ubstantially longer than τDRW 

. For light curves shorter than a few
imes τDRW 

, the measured τDRW 

can be systematically biased low 

nd saturated around 20–40 per cent of the light-curve duration, with
le v ated scatter in the measurements. Many of the DRW fits to SDSS
tripe 82 quasars in MacLeod et al. ( 2010 ) do not pass this duration

est, and their reported τDRW 

values may be underestimated. Suberlak 
t al. ( 2021 ) extended the Stripe 82 light curves by another 5 yr
sing the PanSTARRS-1 (PS1) data (Chambers et al. 2016 ), which
lleviated this problem. But many of the updated τDRW 

measurements 
re still not short enough compared with the baseline. In addition,
he number of PS1 epochs is small compared with the SDSS data,
nd the DRW fits are likely still dominated by the SDSS light curves.

The main purpose of this work is to study optical continuum
ariability of a sample of quasars with a more extended 20-yr
aseline. This sample represents one of the best-quality light-curve 
ata sets to study quasar variability, with hundreds of epochs from
DSS, PS1 and the high-cadence/high-S/N monitoring from the 
ark Energy Surv e y, as well as our dedicated follow-up photometric
onitoring with DECam on the CTIO-4m Blanco telescope. We will 

mpro v e the DRW measurements using these extended light curves
nd quantify the general optical variability properties with SF and 
SD analyses. 
This paper is organized as follows. In Section 2 , we describe the

ample and the photometric light-curve data. In Section 3 , we present
ur variability measurements, with the technical details provided in 
ppendix A . We discuss the implications of our results in Section 4

nd conclude in Section 5 . Throughout this paper we adopt a flat
ambda cold dark matter ( � CDM) cosmology with cosmological 
arameters �M , 0 = 0.3 ( �� , 0 = 0.7) and H 0 = 70 km s −1 Mpc −1 .
y default all time-scales are in the rest-frame of the quasar unless
therwise specified; in cases where ambiguity may arise in the 
ontext, we use subscripts ‘ rest ’ and ‘ obs ’ to explicitly refer to rest-
rame and observed-frame time-scales. 

 DATA  

o study optical quasar variability with long-term light curves, we 
tilize quasars identified in the SDSS Stripe 82 region (S82), a nearly
00 deg 2 stripe along the celestial equator, imaged by SDSS from
1998 to 2007. S82 was repeatedly observed to find supernova, 

eing one of the most frequently observed areas in SDSS. Each
arget within S82 was repeatedly observed for an average of 60
pochs, albeit aperiodically and with large time gaps, as the observing 
indow spanned 2–3 months each year. SDSS photometry has five 
andpasses ( (ugriz) SDSS ) available for each quasar, allowing for the
tudy of variability as a function of wavelength. The SDSS light
urves in S82 provide an initial 10-yr baseline for quasar variability
tudies (e.g. MacLeod et al. 2010 ). To extend this baseline, we use
ata from PS1 (Chambers et al. 2016 ) spanning nearly 5 yr during
010–2014. PS1 imaged the sky in the (grizy) PS1 bandpasses with ∼2
pochs per year in its wide-area surv e y. The combined SDSS + PS1
ight curves for S82 quasars have a baseline of ∼15 yr, and were used
o study quasar variability in Suberlak et al. ( 2021 ) to impro v e the
RW fits. Ho we ver, there were only a handful of PS1 epochs, and

he DRW fits were potentially dominated by the SDSS data. 
To extend our baseline further, we use data from the DES

urv e y during 2013–2019, which imaged the sky in the (grizy) DES 

andpasses. In particular, among the repeatedly observed DES 

ransient Surv e y (Deep) Fields (Hartle y et al. 2022 ), there were two
MNRAS 514, 164–184 (2022) 
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Figure 2. The distribution of 190 SDSS S82 quasars in our sample in the 
bolometric luminosity versus redshift plane. The individual targets are colour- 
coded by their intrinsic rms variability in the g band ( σ 0, g ), calculated using 
a maximum-likelihood approach described in Shen et al. ( 2019 ). The grey 
contours behind the data points represent the distribution of L bol and z from 

∼100 000 SDSS DR7 quasars (Shen et al. 2011 ), which are on average 
brighter than SDSS quasars selected in the S82 region. 

Figure 3. Histograms of the photometric offsets used for each target in 
each surv e y. The top ro w represents of fsets from PS1 bands to SDSS bands, 
and the bottom row represents offsets from the combined PS1/SDSS bands 
to DES bands. The three columns represent the gri bands in corresponding 
order from left to right. The dashed lines represent 0.01 and 0.1 mag 
corrections for each band. 
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Figure 4. Example light curves from our quasar sample. These light curves 
are taken o v er a ∼20 yr baseline, across different surv e ys. To adjust the 
observed magnitudes in a common band, we apply empirical colour offsets 
and additional small ( ∼0.05 mag) offsets to merge the light curves. The data 
for all light curves are provided in the FITS table described in Table 1 . 
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n the S82 region (SN-S1 and SN-S2, centred at J2000 coordinates
2:51:16.8 + 00:00:00.0 and 02:44:46.7 − 00:59:18.2, respectively),
ach with 2.7 deg 2 area, with > 100 epochs in each band over 6
r. The light curves in different bands have similar cadences, but
re not necessarily simultaneous (i.e. on the same nights). After
ES completed its wide-field surv e y in 2019, we continued to
onitor these two S82 DES-deep fields with a dedicated long-term

rogramme (2019–2024) using the DECam imager on the CTIO-4m
elescope (NOAO programme 2019B-0219; PI: X. Liu) to extend the
aseline further in three bands ( (gri) DES ). 
In this work, we use the combined light-curve data from SDSS,

S1, DES, and DECam imaging for 190 spectroscopically confirmed
uasars in SDSS that are within the two DES-deep fields in S82
Figs 1 and 2 ). These quasars are all within the SDSS DR7 quasar
atalogue, with derived physical properties such as bolometric
NRAS 514, 164–184 (2022) 
uminosities and black hole masses from Shen et al. ( 2011 ). Our
ombined baseline is ∼20 yr, enabling a detailed quasar variability
tudy o v er decades-long time-scales. The inclusion of the DES and
ECam imaging is of critical importance: it not only extends the
aseline by another 6 yr to impro v e the constraints on the damping
ime-scale, but also provides a large number of high-S/N epochs to
ample days to years time-scales and to ensure the DRW fits are not
ominated by the SDSS epochs. 
All of these quasars have observations in the gri bands for all

urv e ys, so we focus on these three bands for multiwavelength
ariability. Although z-band data are also available across most of
hese surv e ys, the v ariability amplitude in this red band is lo wer and
ost contamination would be more significant, thus complicating
he quasar variability measurements. We model the light curves in
ach band separately, instead of fitting the multiband light curves
imultaneously as did in Hu & Tak ( 2020 ). The latter approach may be
seful to further constrain interband correlations of the light curves. 
We obtain public SDSS light-curve data for each of these quasars

rom the catalogue curated in MacLeod et al. ( 2012 ), which provides
ight curves for nearly 9000 SDSS S82 quasars in all five ugriz
andpasses. We obtain public PS1 photometry for each quasar using
he MAST data base ( ht tps://archive.st sci.edu/), querying for all gri
ands and excluding detections with low confidence. The proprietary
ES data and our dedicated DECam imaging data are processed
ith the same DES pipeline (Morganson et al. 2018 ). We use PSF
agnitudes from all these surv e ys for our quasars. 
The filter bandpasses differ slightly between SDSS, PS1, and DES,

nd we apply photometric offsets to obtain merged light curves
n a common bandpass for each quasar. Photometric offsets are
ypically constructed using colours of objects rather than magnitudes
hemselves, as these colours are less variable. We choose to use the
ean colour-based offsets described in Liu et al. ( 2016 ) to offset
S1 data into the corresponding SDSS bands, and then use the offsets

art/stac1259_f2.eps
art/stac1259_f3.eps
art/stac1259_f4.eps
https://archive.stsci.edu/
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Table 1. The format of the FITS table compiling the properties for our sample of 190 quasars in S82. 

a Column Name Format Unit Description 

DBID int64 Database ID for each quasar; same as in MacLeod et al. ( 2012 ) 
RA float64 deg Right ascension of the target 
DEC float64 deg Declination of the target 
Z float64 Redshift 
log M BH float64 log 10 (M �) log 10 of the black hole mass 
log M BH ERR float64 log 10 (M �) Error in log 10 of the black hole mass 
log LBOL float64 log 10 (erg s −1 ) log 10 of the bolometric luminosity 
log LBOL ERR float64 log 10 (erg s −1 ) Error in log 10 of the bolometric luminosity 
log TAU OBS x float64 log 10 (d) log 10 ( τDRW 

) in the observed frame 
log TAU OBS x ERR L float64 log 10 (d) Lower error of log 10 ( τDRW 

) in the observed frame 
log TAU OBS x ERR U float64 log 10 (d) Upper error of log 10 ( τDRW 

) in the observed frame 
log TAU REST x float64 log 10 (d) log 10 ( τDRW 

) in the rest frame 
log TAU REST x ERR L float64 log 10 (d) Lower error of log 10 ( τDRW 

) in the rest frame 
log TAU REST x ERR U float64 log 10 (d) Upper error of log 10 ( τDRW 

) in the rest frame 
log SIGMA x float64 log 10 (mag) log 10 ( σ DRW 

) 
log SIGMA x ERR L float64 log 10 (mag) Lower error of log 10 ( σ DRW 

) 
log SIGMA x ERR U float64 log 10 (mag) Upper error of log 10 ( σ DRW 

) 
log JITTER x float64 log 10 (mag) log 10 ( σ n ) 
log JITTER x ERR L float64 log 10 (mag) Lower error of log 10 ( σ n ) 
log JITTER x ERR U float64 log 10 (mag) Upper error of log 10 ( σ n ) 
SIG0 x float64 mag Intrinsic RMS variability 
SIG0 x ERR float64 mag Error in intrinsic RMS variability 
LAMBDA REST x float64 Å Rest-frame wavelength the target was observed in 
b SURVEY x str5 Imaging surv e y used for the observation 
b MJD x float64 d MJD of the observation 
b MAG x float64 mag PSF magnitude of the observation 
b MAG ERR x float64 mag Error in the observation 
c OFFSET x float64 mag Manual offset applied to the PS1 magnitudes 
DT REST x float64 d Rest-frame time lags used to construct the structure function 
SF x float64 mag Structure function measurements 
SF x ERR L float64 mag Lower error in the structure function 
SF x ERR U float64 mag Upper error in the structure function 
CARMA P x int64 CARMA model p parameter 
CARMA Q x int64 CARMA model q parameter 
REST FREQ x float64 d −1 Rest-frame frequency 
CARMA PSD x float64 (mag) 2 (d) Median PSD constructed from the CARMA model 
CARMA PSD x ERR L float64 (mag) 2 (d) Lower error in the CARMA PSD 

CARMA PSD x ERR U float64 (mag) 2 (d) Upper error in the CARMA PSD 

d CARMA AR0 x float64 0th CARMA autore gressiv e parameter ( α0 ) 
d CARMA AR1 x float64 1st CARMA autore gressiv e parameter ( α1 ) 
d CARMA AR2 x float64 2nd CARMA autore gressiv e parameter ( α2 ) 
d CARMA AR3 x float64 3rd CARMA autore gressiv e parameter ( α3 ) 
d CARMA AR4 x float64 4th CARMA autore gressiv e parameter ( α4 ) 
d CARMA AR5 x float64 5th CARMA autore gressiv e parameter ( α5 ) 
d CARMA AR6 x float64 6th CARMA autore gressiv e parameter ( α6 ) 
d CARMA AR7 x float64 7th CARMA autore gressiv e parameter ( α7 ) 
d CARMA MA0 x float64 0th CARMA mo ving-av erage parameter ( β0 ) 
d CARMA MA1 x float64 1st CARMA mo ving-av erage parameter ( β1 ) 
d CARMA MA2 x float64 2nd CARMA mo ving-av erage parameter ( β2 ) 
d CARMA MA3 x float64 3rd CARMA mo ving-av erage parameter ( β3 ) 
d CARMA MA4 x float64 4th CARMA mo ving-av erage parameter ( β4 ) 
d CARMA MA5 x float64 5th CARMA mo ving-av erage parameter ( β5 ) 
d CARMA MA6 x float64 6th CARMA mo ving-av erage parameter ( β6 ) 

Notes. a Each column labeled with ‘x’ is three columns, with ‘x’ representing the value obtained from data in the g , r , or i bands. 
b FITS tables require that each entry in a column of data have the same length. Ho we ver, each object has a different amount 
of epochs, making their data arrays unequal. To circumvent this, we have made the arrays corresponding to properties of the 
observations of the object (SURVEY, MJD, MAG, MAG ERR) the same length. This length is the number of observations for 
the object with the maximum number of observations in the sample. For arrays with a length less than this maximum length, we 
fill the arrays with NaNs or empty strings until they reach this length. 
c This manual offset is used to bring the PS1 and DES magnitudes into agreement in the o v erlapping re gion. Offsets were only 
applied to r -band and i -band light curves, so the ‘x’ here corresponds to r and i only. 
d All of the entries for the CARMA parameters are given as three-entry arrays, consisting of the 1 σ errors (absolute values) 
and median value of the parameter. This array is formatted as [lower error, value, upper error]. If the CARMA model fit to the 
light-curve data is not a high enough order to have a certain parameter, it will have an array filled with zeros. For example, if the 
CARMA p parameter is 3, all CARMA autore gressiv e parameters greater than 3 will be [0, 0, 0] in the FITS table. 
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Figure 5. An example of fitting the g -band light curve with the DRW model using the fast Gaussian process solver Celerite (discussed further in A2 ). The 
top panel displays the raw light curve of the object, and the predicted light curve from the DRW model using the best-fitting, maximum likelihood parameters. 
The orange line represents the median value of the prediction, while the shaded orange region represents the area between the 1 σ uncertainty in the prediction. 
The plot on the lower-left displays the probability distributions of the DRW parameters fit for by Celerite , with σDRW 

representing the standard deviation 
of long-term variability, τDRW 

here representing the observed-frame characteristic time-scale, and σ n representing a noise term (also called jitter). The shaded 
regions in the probability distributions correspond to where τDRW, obs is greater than 20 per cent of the baseline. The lower right plot shows the observed-frame 
PSD of the light curve from both the raw data and drawing from the posterior distribution of the Celerite fit. The model PSD is shown in orange (with a 
band spanning the 1 σ uncertainties), the Lomb–Scargle periodogram (Lomb 1976 ; Scargle 1982 ) is shown in blue, and the binned Lomb–Scargle periodogram 

is shown in black. The binned Lomb–Scargle periodogram was also fit to a broken power law (shown as a red line), whose break frequency (and corresponding 
1 σ errors) are shown with the red arrow and bar. The regions shaded red in the PSD plot correspond to regions of frequency space not sampled by the light curve 
(i.e. larger than the minimum cadence) as well as regions with time-scales longer than 20 per cent of the baseline (i.e. t > t baseline /5). The difference between the 
Lomb–Scargle periodogram and the model PSD is caused by the difficulties of measuring the PSD accurately using the Fourier method and irregularly sampled 
light curves, contributions from flux uncertainties in the periodogram measurement, as well as potential deviations from a DRW model. 
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escribed in Drlica-Wagner et al. ( 2018 ) to offset both SDSS and PS1
agnitudes into the corresponding DES bandpasses. Fig. 3 shows

hat most of the corrections between surv e ys lie under 0.1 mag for
ach band. PS1 r,i magnitudes are sufficiently similar to SDSS r,i
agnitudes so that no correction is needed, but we opt to do so for a

imilar processing of all bands. All other bandpasses for each surv e y
ave small offsets, with only a handful of objects with offsets up to
.3 mag. Therefore, the use of these mean colour photometric offsets
s justified for our sample. 

After correcting for the zero-point offset in the same bandpass,
e find that the r - and i -band light curves still display a small offset
NRAS 514, 164–184 (2022) 
etween the o v erlapping PS1 and DES epochs for some quasars. This
dditional offset is likely due to the usage of PSF magnitudes, ex-
ended host galaxy emission, seeing variations between PS1 and DES
bservations, as well as any residual systematics between surveys.
e therefore apply an additional correction ( ∼0.05 mag) to manually

ring the o v erlapping PS1 and DES epochs into agreement. We have
ested w/ and w/o this minor magnitude offset between PS1 and DES
nd found that this detail has no effect on our variability analyses. 

We show a few representativ e e xamples of the merged light
urves from SDSS + PS1 + DES + DECam in Fig. 4 . We summarize
he basic properties of our quasar sample in a FITS table along

art/stac1259_f5.eps


Optical photometric variability of quasars 169 

Figure 6. Contour plots showing the distribution of SF ∞ 

and τDRW 

fitted from our quasar light-curve sample. There are three contours for each band, 
representing data fitted from light curves using only SDSS, SDSS and PS1, and all of the data. The contours for each data set enclose [33, 66, 100] per cent of 
the distribution, respectively. 

Figure 7. Comparisons between τDRW, obs measurements from DRW fits with different baselines. The upper panels compare the τDRW, obs fitted from only 
using SDSS data (a ∼10 yr baseline) to the τDRW, obs fitted from the entire 20 yr data set for the three bands. The lower panels compare the τDRW, obs fitted 
using data from SDSS and PS1 (a ∼15 yr baseline) to those fitted using the full light curves. The red-shaded area indicates where τDRW, obs is greater than the 
light-curve baseline on each respective axis. The red line running through the data shows the unity relation. 
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ith the best-fitting DRW parameters, where we compile additional 
roperties of these quasars from the catalogue in Shen et al. ( 2011 ).
he columns of this FITS table are described in Table 1 . We
lso provide all light-curve data in the FITS table described in 
able 1 . 

 RESULTS  

.1 DRW fits 

We follow the standard practice in the literature to fit a DRW
odel to the quasar light curve (e.g. Kelly et al. 2009 ; Kozłowski

t al. 2010 ; MacLeod et al. 2010 ; Burke et al. 2021 ; Suberlak
t al. 2021 ). The details of the DRW modelling are provided in
ppendix A2 . The best-fitting DRW parameters are compiled in the
ITS catalogue described in Table 1 . An example DRW fit is shown in
ig. 5 . 
In Fig. 6 , we show the distribution of our sample in the τDRW 

ersus SF 

2 
∞ 

≡ 2 σ 2 
DRW 

plane, where σ DRW 

is the long-term variability 
mplitude in the DRW model (see Appendix A2 ). With the SDSS-
nly baselines, we reproduce the results in MacLeod et al. ( 2010 ),
ith a median value for τDRW, rest of ∼540 d in the r band. Using
DSS + PS1-only baselines, ho we ver, we obtain a median v alue for
DRW, rest of ∼680 d in the r band, while Suberlak et al. ( 2021 )
uoted a value of ∼550 d. We attribute this discrepancy to the
ethod of choosing the best-fitting value from the DRW fit (discussed 

urther in Appendix A5 ). By extending the baseline further with the
ES + DECam data, the values of τDRW 

and SF ∞ 

continue to rise.
MNRAS 514, 164–184 (2022) 
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Figure 8. Wavelength dependences of both τDRW 

and SF ∞ 

. The left-hand panels are for a subset of 27 quasars for which all measured τDRW, obs values are less 
than 20 per cent of the final baseline. The right-hand panels are for the full sample of 190 quasars. The contours in blue, red, and orange represent the results 
from g , r , and i light curv es, respectiv ely, shifted to the corresponding rest-frame wavelengths of each individual quasar. The contours for each band represent 
30 and 70 per cent of the data. The best-fitting linear regression model and 1 σ uncertainties using the method described in Kelly ( 2007 ) are shown in the black 
line and shaded area, with the best-fitting slopes marked in each panel. 

Table 2. The format of the FITS table compiling ensemble SF and PSD measurements from subsets of our full quasar 
sample. 

a Column name Format Unit Description 

b Subsample str9 Description of the ensemble 
DBIDs x float64 Data base IDs of the objects included in the ensemble 
DT REST x float64 d Rest-frame time lags used to construct the structure 

function 
SF x float64 mag Ensemble structure function measurements 
SF x ERR float64 mag Error in structure function measurements 
REST FREQ x float64 d −1 Rest-frame frequency 
CARMA PSD x float64 (mag) 2 (d) Ensemble of the median PSDs of the optimal CARMA 

models for each object 
CARMA PSD x ERR L float64 (mag) 2 (d) Lower error in the ensemble PSD 

CARMA PSD x ERR U 

float64 (mag) 2 (d) Upper error in the ensemble PSD 

a Similar to Table 1 , all columns with names containing an ‘x’ are three separate columns, where x is replaced with gri , 
corresponding to values in each of the three bands. 
b There are four different types of ensembles described in this table in general: the total sample, the samples split by 
τDRW, rest , and the samples split in a grid by bolometric luminosity and redshift. The total subsample is labelled ‘Total’, 
the three samples split by τDRW, rest are labeled ‘Tau { i } ’ (where i = 1, 2, 3), and the five samples split by luminosity and 
redshift are labelled ‘Lz grid { ij } ’ (where i , j = 1, 2, 3 represents their placement on the grid). 
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he median values of τDRW, rest and SF ∞ 

for S82 quasars with our
nal baselines are ∼750 d and 0 . 25 mag in g band. 
Fig. 7 compares the τDRW, obs values measured with different base-

ines. Similar to the results shown in Fig. 6 , the best-fitting τDRW, obs 

ontinues to increase as the baseline increases. With longer baselines
nd more epochs, the constraints on τDRW 

are somewhat tighter, as
emonstrated by the lower scatter of points with the SDSS + PS1
nd SDSS + PS1 + DES + DECam data than with the SDSS-only data
n Fig. 7 . Ho we ver, the formal measurement uncertainties on τDRW 

re only reduced by ∼ 10 per cent on average from the SDSS-only
easurements to the SDSS + PS1 + DES + DECam measurements. It

s possible that the formal measurement uncertainties underestimated
he true uncertainties on τDRW 

in these studies. 
Kozłowski ( 2017 ) emphasized the importance of the length of the

ight curve in constraining the DRW damping time-scale. The best-
NRAS 514, 164–184 (2022) 
tting τDRW 

could be significantly underestimated if the light curve
s not long enough, as independently confirmed in other studies with
imulated light curves (e.g. Burke et al. 2021 ; Suberlak et al. 2021 ).
he fact that the average τDRW 

continues to rise as the baseline
ncreases indicates that even the 20-yr baseline is probably not long
nough to well constrain τDRW 

in some S82 quasars. On the other
and, the increasing τDRW 

as the baseline increases may be due
o gradual, long-term trends in the quasar light curve (see further
iscussion in Appendix A2 ), or it is possible that these quasar light
urves are more complex than a simple DRW process with only one
haracteristic time-scale. 

Nevertheless, simulations with mock light curves have shown that
he systematic bias in τDRW 

is not significant, albeit with ele v ated
catter, when the measured τDRW 

is less than 20 per cent of the
aseline (e.g. Kozłowski 2017 ; Burke et al. 2021 ; Suberlak et al.

art/stac1259_f8.eps
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Figure 9. Ensemble structure functions for different ensembles of the 190 quasars in our sample, grouped by their fitted τDRW, rest . The objects are grouped 
such that there are an equal number of quasars in each ensemble, resulting in uneven bin widths in τDRW, rest . The ensemble structure function for the full sample 
is o v erlayed in red, while the structure functions for the individual subsamples are plotted in black. The predicted structure functions using the fitted SF ∞ 

and 
τDRW 

are plotted in grey. To obtain this DRW prediction, we sample 500 predicted DRW structure functions from each target in the ensemble, drawn from a 
Gaussian distribution using its best-fitting DRW parameters and their uncertainties. We then combine the samples for all targets and use the median value in 
each � t bin (shown as the grey line) as the DRW-predicted structure function, and the 16th and 84th in each � t bin (coloured in a grey band around the median) 
to construct the errors in the DRW prediction. 
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021 ). F or e xample, around the 20 per cent baseline mark, the bias
n the median of the measured τDRW 

is only ∼0.12 −0.15 dex from
he simulations in the abo v e studies, which is much smaller than the
catter of individual τDRW 

measurements. Indeed, when we compare 
ur best-fitting DRW model to the ensemble SF and PSD measure- 
ents in Sections 3.2 and 3.3 , we find that these DRW fits and the

ssociated damping time-scales are qualitatively correct on average. 
Ne xt, we inv estigate the wav elength dependence of τDRW 

using
ur measurements. To reduce the impact of poorly constrained τDRW 

 alues from insuf ficient baselines, we only use a subset of 27 quasars
ith measured τDRW 

less than 20 per cent of the baseline, for
hich we consider the constraint on the damping time-scale is more 

eliable. Using a more stringent cut on the baseline criterion would 
e unnecessary, and would greatly reduce our sample statistics. Fig. 8 
left) displays the wavelength dependences of τDRW 

and SF ∞ 

. We 
nd a weak wavelength dependence of τDRW 

∝ λ0.51 ± 0.20 , which is 
lightly steeper than (but formally consistent within 2 σ ) the one 
eported in MacLeod et al. ( 2010 ) based on the much shorter SDSS-
nly light curves τDRW 

∝ λ0.17 . On the other hand, we reco v er a
eak anticorrelation between SF ∞ 

and wa velength, b ut our dynamic 
ange in wavelength is more limited than that in MacLeod et al.
 2012 ), given that we only use data in gri bands. These constraints
n wavelength dependences are weak given the small number of 
uasars that pass the baseline criterion. If we use the full sample of
90 quasars instead, we find slightly different, but fully consistent 
esults (the right-hand panel of Fig. 8 ). 

.2 Structure function analysis 

he structure function measures the magnitude difference for pairs 
f epochs separated at different time-scales, and is a simple and 
seful empirical tool to characterize the variability of quasars (e.g. 
ollier & Peterson 2001 ; Kozłowski 2016b ). Unlike the DRW model,

he SF measurements are model-independent, and provide empirical 
onstraints on variability amplitude as a function of time-scales. 
o we ver, unlike the DRW and higher order CARMA modelling, the
F approach does not rigorously deal with the flux uncertainties of
ach epoch, and unequal flux uncertainties for long-term pairs from 
ifferent surv e ys may complicate the SF calculation. We therefore
nly use these SF measurements to provide a qualitative comparison 
ith the more rigorous DRW and CARMA PSD fits. 
For the SF analysis and the PSD analysis in Section 3.3 , we will

ocus the discussion on the results using g -band data as we did not
nd significantly new information based on the r - and i -band data.
o we ver, all the indi vidual and ensemble SF and PSD measurements

or the three bands are compiled in Tables 1 and 2 . 
We measure the SF for individual quasars in our sample as well as

or the ensemble a verage. We ha ve followed Kozłowski ( 2016b ) to
alculate the SF after subtracting photometric uncertainties (e.g. from 

ux uncertainties and additional systematics from host galaxy light 
nd seeing variations) using close pairs separated by less than ∼10 d
n rest frame. Figs 9 and 10 display the ensemble SF for different
ubsamples, where the full sample is divided into subsamples with 
pproximately the same number of objects in each division (either 
y τDRW 

or by L bol / z). 
Fig. 9 compares the ensemble SF with the median DRW model for

ubsets of quasars binned by the measured τDRW 

. The SF does show
 flattening roughly around the location of τDRW 

measured from the 
RW fits, indicating the presence of such a damping time-scale on

he order of hundreds of days. 
We also reco v er the well-kno wn dependences of v ariability am-

litude on wavelength and luminosity of quasars using ensemble SF 

easurements (data required to generate these plots are provided in 
able 2 ). 

.3 Power spectrum density analysis 

e measure the optical variability PSD using our sample and light-
urve data set. Because our light curves are irregularly sampled 
ith large seasonal gaps, it is challenging to directly measure the
SD using the Fourier method, which suffers from aliasing and 
ower leakage from windowing effects. Instead, we take advantage 
f the recent development of fitting Gaussian random process models 
o time-series data and reco v ering the PSD (Kelly et al. 2014 ).
uch an alternative approach is more robust in measuring the PSD
ith sparsely and irregularly sampled light-curve data (e.g. Kelly 
MNRAS 514, 164–184 (2022) 
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Figure 10. Ensemble g -band structure functions for different subsets of the full sample, grouped by their bolometric luminosity and redshift. Similar to Fig. 9 , 
we group these objects such that there is nearly an equal amount of objects in each bin. The quasars with the highest luminosities are spread o v er a large redshift 
range, which is split into three redshift bins to retain an equal number of quasars in each bin. This process was followed for the second and third luminosity bins, 
leaving only one redshift bin for the lowest luminosity bin. As a result, the redshift ranges are different for different luminosity bins. Each subsample contains 
∼30 objects. The redshift ranges are listed abo v e each subsample, and the L bol ranges are shown on the leftmost axis, being [45.09,45.71], [45.71,46.18], 
and [46.18, 47.04]. Each subsample in a gi ven ro w has the same range of L bol . We have subtracted an ‘SF floor’ seen in time lags below ∼10 d, to remo v e 
contamination from PSF variations and host-galaxy flux (discussed further in Appendix A1 ). The ensemble SF for the full sample and the DRW-prediction for 
each subsample are also shown for reference. We constructed the ensemble DRW-predicted structure functions in the same manner as those presented in Fig. 9 . 
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t al. 2014 ; Simm et al. 2016 ), and properly deals with uneven
easurement uncertainties in the light curve. 
Specifically, we use the CARMA pack developed by Kelly et al.

 2014 ) to find the best-fitting CARMA(p,q) model to the light curve
nd derive the PSD, where (p,q) are the numbers of autoregression
AR) and mo ving av erage (MA) terms, respectiv ely. The technical
etails of CARMA fits are described in Appendix A3 . We show
n example of PSD analysis in Fig. 11 , and all the individual and
nsemble PSDs are provided in the FITS catalogues described in
ables 1 and 2 . 
NRAS 514, 164–184 (2022) 
We show the distributions of the best-fitting values of p and q
n Fig. 12 . There is a tendency of clustering near p ≈ 4 and q ≈
 −2, which may indicate the general similarity of quasar variability
SDs. Ho we ver, we found that a forced CARMA(2,1) model fit
roduces very similar PSDs to the ones from the best-fitting higher
rder CARMA models. Indeed, the preference based on the model
election criterion described in Appendix A3 is not obvious among
he higher order CARMA models; but the preference of a higher
rder CARMA model o v er the DRW model is often significant (e.g.
elly et al. 2014 ). In particular, the CARMA(2,1) model is also

art/stac1259_f10.eps
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Figure 11. An example of CARMA model-fit PSDs for our quasar sample. 
The CARMA-predicted PSD (discussed further in A3 ) is shown in blue, 
where the median from the posterior is the solid line and the shaded region 
encloses the 1 σ uncertainty range. The median noise le vel deri ved from 

the ra w light-curv e data (2 ×median( � t ) ×median( σ 2 
y )) is shown as the red 

horizontal line. The grey dashed line indicates a ∝ f −2 PSD. A DRW-fit PSD 

for the same example light curve is shown as a black line for comparison, 
with the 1 σ uncertainty range shaded in grey. The CARMA-predicted PSDs 
for individual targets are compiled in the FITS catalogue described in Table 1 . 
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nown as the damped harmonic oscillator (DHO) model, which is 
rgued to be a superior statistical description for quasar variability 
han the simpler DRW model (e.g. Kasliwal, Vogeley & Richards 
017 ; Moreno et al. 2019 ; Yu et al. 2022 ). 
Fig. 13 displays all CARMA PSDs for our sample in the rest-

rame of the quasar (only showing the best-fitting model), colour- 
oded by different properties. While these individual PSDs o v erlap 
igure 12. The distribution of best-fitting CARMA ( p , q ) parameters when fitting 
tationary processes). The best-fitting order for the CARMA model for a given qua
he AIC (Akaike Information Criterion, Akaike 1973 ) is a statistic measuring an e
ertain set of data, which can be corrected for a finite sample size to give the AIC
igher incidence. There is a tendency of clustering of quasars around ( p , q ) ≈ (4, 2
onsiderably given their measurement uncertainties, there are trends 
f the PSD amplitude and shape with luminosity and black hole
ass of the quasar. In addition, the CARMA PSD tends to flatten

ut sooner at the low-frequency end for light curves with shorter
DRW 

, suggesting that the DRW fits are reasonable in constraining 
he long-term damping time-scale. 

Fig. 14 shows the ensemble CARMA PSD for the full sample in the
hree bands. The ensemble PSDs are tightly constrained o v er days to
ecade time-scales, and show a clear wavelength dependence. Figs 15 
nd 16 display the ensemble PSDs for the same subsets of quasars
sed in our SF analysis. When divided by the best-fitting τDRW 

, the
nsemble PSD agrees with the average DRW model in the subsample
easonably well, suggesting the DRW model provides a reasonable 
escription of the underlying PSD. Ho we ver, the more flexible
ARMA model reveals a sharper decline in the variability power 
elow time-scales of a few weeks than the f −2 power-law, consistent
ith earlier findings with other light-curve samples (e.g. Mushotzky 

t al. 2011 ; Zu et al. 2013 ). In Appendix A5 , we demonstrate that this
SD steepening at the highest frequencies is not due to the usage of a
ore flexible CARMA model or selection effects of our data, using

imulated light curves. Similar to the SF analysis, the ensemble PSD
hows dependences with wavelength and luminosity of the quasar, 
s shown in Figs 14 and 16 . 

 DI SCUSSI ON  

.1 The wavelength dependence of τDRW 

e find that the DRW damping time-scale only weakly depends 
n wavelength, consistent with earlier studies with shorter light 
urv es. This weak wav elength dependence of the damping time-
cale is difficult to interpret: if τDRW 

tracks the local time-scale of
he accretion disc, e.g. the thermal time-scale, then we expect a
tronger wavelength dependence of this time-scale because the local 
hermal time-scale scales with the emitting wavelength as τ∝ λ2 in the
tandard α-disc model (Shakura & Sunyaev 1973 ). One possibility, 
s suggested by Burke et al. ( 2021 ), is that the observed UV/optical
 ariability is dri ven by processes in the inner (UV-emitting) part of
he accretion disc, which rapidly propagates outwards at the Alfv ́en
MNRAS 514, 164–184 (2022) 

our quasar light curves to a generalized CARMA model (requiring q < p for 
sar light curve was chosen as the fit with the minimum value for the AICc. 
stimate of information loss due to assuming a particular model generates a 

c (Hurvich & Tsai 1989 ) (discussed further in A3 ). Darker colours indicate 
). 
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Figure 13. Rest-frame CARMA model PSDs ( g band) of all quasars 
in our parent sample, colour-coded by different attributes of the target: 
log 10 ( τDRW, rest ), log 10 ( L bol ), and log 10 ( M BH ). In each panel, the black 
horizontal line represents the median noise level of the individual light curves, 
and the dashed grey line represents a ∝ f −2 PSD. There are some general 
trends visible, e.g. lower PSD amplitudes for higher luminosity quasars, and 
faster flattening of the PSD at the low-frequency end for quasars with shorter 
damping time-scales in the DRW fits. 
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Figure 14. Rest-frame ensemble PSDs for the full sample in gri bands. Each 
quasar light curve was fit using CARMA pack , a code designed to fit time- 
series data to CARMA models using the method described in Kelly et al. 
( 2014 ), with optimized ( p , q ) parameters for the CARMA model. For each 
PSD, the darker line shows the median value from the ensemble, and the 
light-shaded area (nearly negligible at f > 10 −3 d −1 ) indicates the nominal 
uncertainty of the ensemble PSD. 
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peed, during which the characteristic variability time-scale is more
r less preserv ed. Alternativ ely, the observ ed damping time-scale
ay be the thermal time-scale averaged over different radii, leading

o a shallower wavelength dependence (e.g. Sun et al. 2020 ). Further
evelopment of these theoretical ideas, combined with dedicated
NRAS 514, 164–184 (2022) 
lobal radiation MHD simulations (e.g. Jiang et al. 2019 ) will shed
ight on the nature of this long-term characteristic variability damping
ime-scale. 

.2 Validity of the DRW prescription 

verall, we find that the DRW model, even though an empirical
rescription, describes the stochastic optical quasar light curves
easonably well o v er rest-frame time-scales from a few months to
 few years. The qualitative agreement between the DRW model
nd SF/PSD measurements suggests that the long-term characteristic
ariability time-scale captured by the DRW model is reliable on
verage. Indeed, Burke et al. ( 2021 ) tested DRW fits to non-DRW
ight curves with a characteristic long-term turno v er time-scale in
he PSD and found that the best-fitting τDRW 

correctly reco v ers this
ime-scale. 

Ho we ver, the length of the light curve will affect the constraints
n τDRW 

in a DRW fit (Kozłowski 2017 ). With our 20-yr baseline,
e find that the median τDRW, rest for S82 quasars is ∼ 750 d in the
 band, longer than the median g -band τDRW, rest of 450 and 470 d
f we use the shorter SDSS-only or SDSS + PS1 light curv es. F or
omparison, MacLeod et al. ( 2010 ) and Suberlak et al. ( 2021 ) report
 median r -band τDRW, rest of 570 d using SDSS-only light curv es. F or
 band and using the SDSS-only light curves, we measure a median
DRW, rest of ∼540 d, consistent with these earlier studies. Details in

he adopted ‘best-fitting’ DRW parameters and the Markov chain
onte Carlo (MCMC) convergence criterion in the fitting do not

eem to impact our results much (see Section A4 ). It is unclear if
his is because some quasars have much longer intrinsic τDRW 

than
hat can be realistically constrained by our current light curves,
r because the light curve cannot be described by a single DRW
rocess. F or e xample, if the quasar light curve contains a long-term
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Figure 15. Ensemble CARMA PSDs for subsamples divided by their best-fitting τDRW 

from Section 3.1 . The first three panels show these ensemble PSDs 
corresponding to each subsample, whose τDRW 

ranges are shown abo v e each panel. The DRW-predicted ensemble PSDs are shown in the purple-shaded area for 
each ensemble. The ensemble DRW-predicted PSDs are constructed in the same manner as the ensemble DRW-predicted structure functions, shown in Fig. 9 . 
The rightmost panel shows the PSDs of all three ensembles superimposed on the ensemble PSD for the full sample (shown in black). The two grey dashed lines 
in each panel correspond to f −2 and f −4 power laws. 
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radual trend in addition to a DRW process, the best-fitting τDRW 

will 
ncrease as the baseline increases (Appendix A2 ). It is possible that
he accretion state of the quasar is gradually changing o v er multiyear
ime-scales (e.g. Caplar et al. 2020 ), leading to long-term trends in
he light curve and biasing the DRW fit that assumes stationarity. 
ontinued monitoring of these quasars in our dedicated DECam 

rogramme will address this question with even more extended light 
urves. 

On time-scales shorter than ∼ a month, ho we ver, the slope of
he PSD is noticeably steeper than −2. In Appendix A5 , we use
imulated DRW light curves matched to the observed cadences and 
/N of our sample to test if a more flexible CARMA fit would lead

o an artificially steeper high-frequency-end slope. We find that the 
esulting CARMA PSD has a high-frequency-end slope of −2, which 
onfirms that the steeper PSD slope observed in our sample is real.

hile the exact asymptotic slope of the PSD is likely impacted by the
ARMA model restrictions, the locations of the slope transitions are 

argely determined by the data. There is evidence (e.g. Fig. 15 ) that
his short time-scale cut-off of power is positively correlated with the 
ong-term damping time-scale. To further illustrate this point, we fit a 
oubly-broken power-law model to the three ensemble PSDs divided 
y the measured τDRW, rest in Fig. 15 : P ∝ 1/[1 + ( f / f 0 ) 2 + ( f / f 1 ) 4 ]. This
SD model fits the three ensemble PSDs reasonably well o v er years

o days time-scales, as shown in Fig. 17 . The two break time-scales,
0 = 1/(2 π f 0 ) and τ 1 = 1/(2 π f 1 ), indeed vary in concordance in the

hree ensembles. 
While our sample is small and the dynamic range in black hole
ass or quasar luminosity is limited, there is also some tentative 

vidence that this high-frequency-end break occurs at shorter time- 
cales for lower-luminosity (and less massive) quasars (Fig. 16 ). This
oint is further illustrated in Fig. 18 , where we compare the ensemble
SDs for subsamples divided by black hole mass. If we assume 
oth break time-scales with black hole mass as M 

0 . 5 
BH (Burke et al.

021 ), we expect much shorter high-frequency break time-scales 
n low-redshift Seyferts ( M BH ∼ 10 7 M �) than in SDSS quasars
 M BH ∼ 10 9 M �). This may explain the much shorter (a few days)
ut-off time-scales found for low-redshift, low-luminosity AGNs that 
re two orders of magnitude less massive than SDSS quasars (e.g. 
ushotzky et al. 2011 ). 
a  
The physical origin of the suppression of v ariability po wer on
ime-scales shorter than ∼1 month is unclear. It could be due to the
ntrinsic shape of the variability PSD, e.g. resulting from the break in
he driving variability PSD and/or damping processes in the accretion 
isc (e.g. Sun et al. 2020 ). An alternative explanation, as pointed out
y, e.g., Tachibana et al. ( 2020 ) is due to an averaging effect. Even
f the flux of the accretion disc varies coherently, emission from
ifferent parts of the disc or from more spatially e xtended re gions
e.g. an extended diffuse continuum emission region or the broad- 
ine region) will arrive at different times. The observed variable flux
s then the convolution of the intrinsic variability pattern with the
ransfer function describing the time delays from different locations. 
achibana et al. ( 2020 ) showed that, with a likely transfer function
orm (a semi-circle with a characteristic time-scale of a month), 
he short-time variability power will be reduced due to averaging, 
roducing a PSD slope close to −4 beyond this characteristic 
requency. In general, such transfer functions would reduce the high- 
requency power, leading to a steeper high-frequency end slope in the
bserved PSD. In both the intrinsic PSD scenario and the ‘smearing’
cenario, it is possible that the characteristic time-scale of this second
igh-frequency-end break, which reflects some characteristic size of 
he emission region, depends on the physical properties of the quasar,
uch as the black hole mass (Sun et al. 2020 ; Tachibana et al. 2020 ),
n a similar way as the long-term damping time-scale τDRW 

. 

 C O N C L U S I O N S  

iven the simplicity of the DRW model and its reasonable success
o fit quasar light curves, it has become increasingly popular to
se the DRW prescription to describe stochastic quasar variability. 
o we ver, the v alidity of the DRW prescription has to be tested with
igh-quality light-curve data that are well sampled, have sufficient 
aselines and adequate S/N. Some recent light-curve samples already 
ave sufficient quality to reveal evidence for deviations from the 
RW prescription either for individual objects or for large quasar 

amples (e.g. Mushotzky et al. 2011 ; Zu et al. 2013 ; Kasliwal et al.
015 ; Caplar et al. 2017 ; Yu et al. 2022 ). 
In this work, we have measured the optical continuum variability of 

 sample of 190 quasars from the SDSS Stripe 82 region. Our quasar
MNRAS 514, 164–184 (2022) 
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M

Figure 16. Similar to Fig. 9 , we group the full sample by L bol and redshift and create ensemble PSDs. For each panel, the ensemble PSD is shown in blue, 
the ensemble PSD for the whole sample is shown in black, and the two grey dashed lines indicate a f −2 PSD and a f −4 PSD. The range of redshifts of each 
subsample is labelled abo v e each panel, and the range of bolometric luminosities is indicated on the axis on the left. Subsamples in the same row have the same 
luminosity range (this is not true for the same column with slightly different redshift ranges). The artificial turno v er of power at the lowest frequencies is caused 
by the limited number of objects ( ∼10) with the proper temporal co v erage. 
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ample has been photometrically monitored in the SDSS, PS1, DES
urv e ys, as well as our continued monitoring with DECam. The light
urves of our sample span a baseline of ∼20 yr with ∼200 epochs in
ach of the gri bands. We fit these light curves with the DRW model,
nd measured the structure function and power spectrum density
sing the CARMA models. The main findings from our work are the
ollowing: 

(i) The best-fitting DRW parameters ( τDRW 

and SF ∞ 

) continue
o rise with our light-curve data, compared with earlier studies with
horter (e.g. 10-yr and 15-yr) baselines from SDSS-only (MacLeod
t al. 2010 ) and SDSS + PS1 (Suberlak et al. 2021 ). The average rest-
NRAS 514, 164–184 (2022) 
rame τDRW 

∼ 750 d in g band for S82 quasars with our 20-yr light
urves. 

(ii) While the τDRW 

measurements for many S82 quasars are
till not well constrained with the 20-yr light curv es, we believ e
hat the bias from insufficient baselines is reduced compared with
arlier studies based on shorter baselines, if the underlying variability
rocess is indeed a single DRW. Ho we ver, we caution that realistic
uasar light curves may be more complicated than a single DRW
rocess, e.g. multiple variability processes with different character-
stic time-scales and/or non-stationary variability processes could be
t work. In such cases, the results from a single DRW fit will depend
n the baseline. More extended light curves are required to test this
ossibility. 
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Figure 17. The ensemble PSD in the three subsamples divided by the best-fitting τDRW, rest (the black line), and a doubly-broken power-law fit (red line) with 
two break frequencies f 0 and f 1 . The small measurement uncertainties in the ensemble PSD are shown in the grey-shaded region (nearly invisible), representing 
the standard deviation in the PSD for each quasar, divided by the square root of the number of PSD data points in each frequency bin (i.e. σ/ 

√ 

N ). The 
corresponding break time-scales τ = 1/(2 π f ) are marked in each panel. Both break time-scales vary in concordance. 

Figure 18. Ensemble PSDs for subsamples divided by the median virial 
black hole mass in the parent sample. While the dynamic range in black hole 
mass is limited in our sample, there is some evidence that the short-term break 
time-scale is longer for the high-mass subsample. The mass dependence for 
the long-term (DRW) break time-scale is less obvious, which would require 
a larger dynamic range in black hole mass (e.g. Burke et al. 2021 ). 
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(iii) Using a subset of 27 quasars for which we have relatively 
etter constrained τDRW 

in the g , r , and i bands, we confirm a weak
avelength dependence of τDRW 

∝ λ0.51 ± 0.20 ( τDRW 

∝ λ0.34 ± 0.10 for 
he full sample). This wavelength dependence is slightly stronger than 
revious results τDRW 

∝ λ0.17 based on 10-yr light curves (MacLeod 
t al. 2010 ), although these results are formally consistent within 2 σ .

(iv) We also measured the optical SF and PSD of our quasar 
ample. The baseline and sampling of our light curves enabled 
eliable constraints of the ensemble PSD o v er days to decades
ime-scales. Comparisons between the ensemble SF and PSD with 
redictions from the best-fitting DRW models suggest that the 
RW prescription provides a reasonably good description of the 
ariability properties of quasars o v er months to years time-scales. 
ut the average PSD slope on time-scales shorter than ∼ a month
s noticeably steeper than the DRW model, consistent with earlier 
ndings (e.g. Mushotzky et al. 2011 ; Zu et al. 2013 ). There is tentative
vidence that this high-frequency cut-off time-scale correlates with 
he low-frequency damping time-scale τDRW 

; hence, both time-scales 
ay have similar dependences on physical properties of the quasar 

e.g. Burke et al. 2021 ). 

We continue to monitor our quasar sample during 2020–2024 
s part of our ongoing effort to photometrically monitor deep ex-
ragalactic fields with ample multiwavelength and time-domain data. 

ith another ∼5 yr extension of the baseline and seamlessly merging
ith light curves from the Vera C. Rubin Observatory Le gac y Surv e y
f Space and Time (Ivezi ́c et al. 2019 ), this quasar sample will
ecome a prime sample to study quasar optical continuum variability. 
uch studies will further test the applicability of the DRW model and

he stationarity of the stochastic variability process, as well as provide 
nsights on the physical origin of quasar variability. 
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e provide all light-curve data and time-series measurements in two
nline FITS tables located at https://zenodo.org/r ecor d/5842449#.Yi
Og-jMJPY . The format of these FITS tables is described in Tables 1
nd 2 . 
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PPEN D IX  A :  L I G H T- C U RV E  ANALYSIS  

1 Structure function 

ne of the more traditional ways of modelling the variability of
uasars is through structure function analysis. This method describes 
he change in magnitude as a function of time lag � t between
wo observations. Since the SF calculation is model independent, it 
rovides an empirical view of quasar variability with no underlying 
ssumptions. The most basic way to define the structure function is
he root-mean-square magnitude difference for a given grid of time 
ags. 

Ho we ver, without accounting for the flux measurement uncer- 
ainties, structure function measurements at small � t will level 
ff to a certain ‘SF floor’. Therefore, using the method described
y Kozłowski ( 2017 ), we subtract the measurement errors of both
bservations in the pair in quadrature: 

F ( �t) = 

√ 

1 

N �t 

∑ 

i<j 

(
( y i − y j ) 2 − σ 2 

i − σ 2 
j 

)
, (A1) 

here σ i and σ j are the measurement errors in observations y i and 
 j , respectively. 

The structure function is related to the autocorrelation function 
ACF) of the light curve. Assuming that the variability of the source
s stationary, we can use the covariance of two signals to compute
he structure function: 

F ( �t) = 

√ 

2 σ 2 
s (1 − ACF ( �t)) , (A2) 

here σ s is the variability amplitude intrinsic to the source. Taking 
he limit as � t → ∞ , we obtain 

F ( �t) = SF ∞ 

√ 

1 − ACF ( �t) , (A3) 

here SF 

2 
∞ 

≡ 2 σ 2 
s is the value of the structure function as � t →

 . Assuming the variability is stationary (meaning the mean value
f the light curve does not change), the difference between signals
t large time lags will approach a constant value proportional to the
ntrinsic variability amplitude (white noise). The structure function 
ill also flatten to white noise at very short time lags, where the

hange in magnitude is on the order of the measurement uncertainty.
We utilize equation ( A1 ) to make all of our structure function
easurements, where time lags are shifted to the rest-frame of the

uasar. We also make ensemble structure function measurements for 
arious subsamples of our 190 quasar data set. To derive ensemble
tructure functions from individual objects, we bin the structure 
unctions of each individual object into the same � t grid. We then
ake the median of each bin to be the ensemble measurement for
hat time lag, and use the uncertainty on the median (the standard
eviation of the samples in each bin, divided by 

√ 

N the number of
amples in the bin) to represent the uncertainty in that measurement.
e create these ensemble structure functions for the total sample, 

hree subsamples grouped by their fitted τDRW 

, and six subsamples 
rouped by their bolometric luminosity and redshift. 
For g -band measurements, through visual inspection, we observed 

hat the structure function began to rise near time lags of 10 d.
o we ver, when measuring these ensemble structure functions, we 
oticed that they started to flatten at time lags less than days to
eeks in the quasar rest frame. This pro v ed to be more pre v alent for

tructure functions in the r and i bands, where the structure function
ould be almost constant until � t rest ∼5–10 d and then jump. We

ttribute this flattening to PSF seeing variations on short time-scales, 
easurement uncertainties, as well as host galaxy contamination. To 
inimize the effect of this flattening, we perform linear regression (in

og-space) on this floor using the method of Kelly ( 2007 ) and subtract
he best-fitting line from the full ensemble structure function. This 
oor stopped at different time lags for each band, [5, 20, 40] d for gri
easurements respectively, which we use to set the linear regression 

ange. 
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Figure A1. Reco v ered damping time-scales for simulated non-stationary 
DRW light curves with input τDRW 

= 100 d plus a linear trend of 0.0365 mag 
yr −1 at varying baselines. 
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For each ensemble structure function, excluding for the total
ample, we also o v erlay the DRW model prediction for comparison.
he DRW-predicted structure functions are also ensembles, using

he predicted τDRW 

and σ DRW 

and equation ( A6 ). These ensemble
RW-predicted structure functions are obtained in a similar manner

o the ensemble structure functions themselves: we create structure
unctions for each target in the ensemble using the best-fitting DRW
arameters, then we bin the structure functions on to a common
 t grid. We then take the median of each bin to get an ensemble
RW-predicted structure function. 

2 The DRW model 

he DRW model, also known as the Ornstein-Uhlenbleck process,
s a statistical model used to describe the stochastic variability
rom the accretion disc emission of quasars. This Gaussian process
s the simplest model of a family of Gaussian processes known
s continuous autore gressiv e mo ving-av erage (CARMA) models.
eneral CARMA models, discussed in Section A3 , specify that the
utput of the model is linear in the current and past terms in the time-
eries. This is seen in the DRW model (a CARMA(1,0) model), as
t has a term that pushes large deviations from the mean of the time-
eries back towards the mean. It is useful to model light curves with
he DRW model as it has parameters that can potentially connect to
hysical parameters of the quasar, and it can be modelled directly in
he time domain instead of the frequency domain. Quasar variability
tudies in the frequency domain are subject to windowing effects, as
arge gaps in the data can lead to power leakage and aliases. Using
 DRW model (or any CARMA model) can mediate these adverse
ffects. 

All Gaussian processes require a covariance matrix (also known
s a kernel), go v erning the relationship between two points in a time
eries. In the case of a DRW process, the covariance matrix is 

( t nm 

) = σ 2 
DRW 

exp ( −t nm 

/τDRW 

) , (A4) 

here t nm = | t n − t m | and t n , t m are times within the time series.
is the long-term standard deviation of variability, and τ defines a

haracteristic time-scale where the PSD of this process breaks. We
an relate this model to the structure function and the PSD in the
ollowing way: 

F 

2 ( �t) = 2 σ 2 
DRW 

(
1 − e −| �t | /τDRW 

)
, (A5) 

 ( f ) = 

4 σ 2 
DRW 

τDRW 

1 + (2 πf τDRW 

) 2 
, (A6) 

here P ( f ) is the PSD as a function of frequency f . By comparing
quations ( A5 ) and ( A1 ), we have SF 

2 
∞ 

= 2 σ 2 
DRW 

and ACF ( � t ) =
xp ( − | � t | / τDRW 

). This PSD follows white noise at low frequencies
 ∝ f 0 ), and transitions to a f −2 PSD at higher frequencies below the
haracteristic time-scale τDRW 

. 
In this study, we model our quasar light curves using the fast

aussian process solver Celerite (Foreman-Mackey et al. 2017 ),
hich uses Gaussian process regression to fit the time series to a

pecified kernel. Given a number of terms in the kernel, and a method
o maximize, Celerite can fit a time series to derive the best-fitting
arameters to said kernel. In our case, we utilize a DRW kernel
specified in equation A4 ), as well as a term to characterize the effect
f a white noise floor from unknown systematic flux errors ( σ n ), also
alled jitter. We use uniform priors on all parameters within the input
elerite kernel (in log-space), and allow Celerite to minimize

he log-likelihood in parameter-space to obtain a set of parameters to
NRAS 514, 164–184 (2022) 
t the light curve. We then use the MCMC sampler emcee (Foreman-
ackey et al. 2013 ) implemented in Python to draw from the joint

osterior probability distribution output from Celerite . The final
arameters compiled in the FITS table described in Table 1 are
he median samples from these MCMC samples. The upper and
ower errors for these parameters are obtained from the 16 th and 84 th 

ercentiles of the samples. One example Celerite fit is shown in
ig. 5 . 
Ho we ver, there are potentially additional features in the light curve

hat can skew the results of the DRW fit. Here, we investigate the
ffects of a long-term trend in the light curve on the recovery of
DRW, obs using Celerite and simulated data. We input simulated
RW light curves with input τDRW, obs = 100 d, but add a long-

erm linear trend ( non-stationarity ) to the light curve, in this case
f 1 × 10 −4 mag per day. We generate mock light curves using
his hybrid model with different baselines, and use Celerite to
xtract a τDRW, obs from the simulated light curve. The results (shown
n Fig. A1 ), show that as the baseline of the non-stationary light
urve increases, the extracted τDRW, obs increases as well. In this test,
he input τDRW, obs is 100 d, and is reasonably reco v ered for short
aselines (less than ∼10 yr). Ho we ver, as the baseline increases, the
inear long-term trend starts to skew the reco v ery of τDRW, obs towards
onger and longer damping time-scales. 

3 PSD analysis with CARMA models 

hile many studies have shown that the DRW model can describe
uasar light-curve variability to a reasonable degree, we understand
hat it is not the only model available. It has been shown that stochasic
rocesses generated from non-DRW models can be modelled with
RW (Kozłowski 2016a ), albeit with biased DRW parameters.
herefore, to get a true sense of the PSD of quasar light curves and the
tochastic processes occurring within their accretion discs, we utilize
he more general CARMA model to obtain PSD measurements.

hereas DRW-modelled PSDs are restricted to having a white noise
t low frequencies and a f −2 PSD at higher frequencies (with a
haracteristic break time-scale in between them), CARMA-predicted
SDs are not restricted to such a shape. 
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Figur e A2. Conver gence of fitted DRW parameters for an example quasar 
light curve, using a CARMA(1,0) model in CARMA pack , as a function of 
the number of samples generated by the MCMC sampler. In this study, we opt 
to use N samp = 60, 000, well within the range where both of these parameters 
cease to vary significantly. 
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The PSD of a CARMA model is described in the following 
anner: 

 ( f ) = σ 2 
| ∑ q 

j= 0 βj (2 πif ) j | 2 
| ∑ p 

k= 0 αk (2 πif ) k | 2 , (A7) 

here σ 2 is the variance of the modelled white noise process, αj are 
he autore gressiv e parameters of the model, and βk are the moving-
verage parameters of the model. The order of the CARMA model 
s defined by the p and q parameters, which define the number of
utore gressiv e and mo ving-av erage components, respectiv ely. The 
equirement that CARMA processes are stationary also requires that 
 < p . By convention, we set β0 = 1 and αp = 1. When setting p =
 and q = 0, we reco v er the DRW PSD, as well as the covariance
atrix, where τDRW 

= 1/ α0 and σDRW 

= σ
√ 

τDRW 

/ 2. 
While we have used Celerite to fit the quasar light curves to the

RW model, we now opt to utilize the widely used CARMA pack
ode (Kelly et al. 2014 ) to fit our light curves to a generalized
ARMA(p,q) model. While the covariance matrix for the DRW 

odel is somewhat simple, it becomes increasingly complex as the 
rder of the CARMA model is increased, and therefore increasingly 
ore complex to implement into Celerite . The generality of 

he kernel terms available in Celerite allows the implementation 
f a large variety in the kernels that can be used, but formulat-
ng the CARMA PSD in terms of Celerite ’s kernel terms is
ighly involved. CARMA pack also includes the functionality of 
hoosing an optimal ( p , q ) of the model used to fit the time 
eries. 

We perform the CARMA modelling using time series in the rest-
rame of each quasar. To model our light cures to a generalized
ARMA model with CARMA pack , we obtain the optimal ( p , q )
f the model. CARMA pack does this by finding the maximum 

ikelihood estimate of the CARMA models produced from a user- 
nput grid of ( p , q ) values. We choose to search a parameter space
here 1 < p ≤ 7 and all q < p . After using 100 different optimizers

nitialized to random values for the CARMA parameters for a given 
odel, the maximum likelihood estimate is chosen as the best- 
tting parameters for that model. This is process is performed for a
pecified region in parameter space of p and q , after which the code
icks the ( p , q ) combination which minimizes the corrected Akaike
nformation Criterion (AICc; Akaike 1973 ) provided by Hurvich & 

sai ( 1989 ). After choosing the optimal CARMA model for a given
bject, we use CARMA pack to derive the maximum likelihood 
osterior distribution for all of the CARMA parameters. We then 
se CARMA pack ’s MCMC implementation to sample the CARMA 

arameters, given the order of the model. After testing the effect 
f the number of iterations of the MCMC on the convergence of
tted parameters (discussed in Section A4 ), we found the results are
ell convergent for 60 000 iterations and 30 000 burn-in samples. 
fter running the MCMC sampler, CARMA pack will then output 

amples for all of the CARMA parameters using the posterior 
istribution of the object’s fitted CARMA model. We can then use 
ARMA pack to sample the PSD of the light curve given the fitted
ARMA model, where we opt to use 10 000 samples. Similar to
ur structure function analysis, we use the median value of the 
ARMA parameters and PSD as the best-fitting value, and the 16th 
nd 84th percentiles of the samples to obtain the uncertainties in 
he values. 

In a similar manner to Simm et al. ( 2016 ), we define a median
oise level, 2 × median( � t ) × median( σ 2 

y ), for each PSD to define
here the PSD is credible. In this expression, � t is a list of time lags

n a given time-series, and σ y is the measurement uncertainty in the 
ight-curv e flux es. 
4 Sampling methods 

ne significant step in generating DRW and CARMA parameters 
or each light curve is the generation of samples from the posterior
robability distribution through the use of MCMC sampling. In 
elerite , this is done using the popular PYTHON -based MCMC
ampler EMCEE , while the sampling in CARMA pack is done through
 custom, C ++ MCMC sampler. One important parameter of 
ampling is the number of burn-in samples and actual samples to
se for a given data set. The burn-in samples for an MCMC sampler
elp to initialize the sampler to the data and allow it to converge
roperly. The number of actual samples for an MCMC sampler 
f fects ho w well the posterior probability distribution for a parameter
s sampled. For Celerite DRW fits, we opt to use 500 burn-in
amples and 2000 actual samples, which we found to be the optimal
alues through trial and error. For the CARMA pack fits, we adjust
he number of burn-in samples relative to the total samples as well as
he number of total samples to see where the results from the sample
ould converge and have low fluctuations. In Fig. A2 , we show the

volution of the two DRW parameters o v er iterations of the sampler
hen fitting one of our quasar light curves to a CARMA(1,0) model

n CARMA pack . We can see that there are large fluctuations in the
ampled value in the early iterations, but the value converges to a
et value after ∼50 000 iterations of the sampler. In Fig. A3 , we
ho w the e volution of the sampled parameter values for these DRW
arameters, for the same quasar, as the number of burn-in samples
ncreases for a fixed total number of samples of 100 000 (which we
ave seen has a converged parameter v alue). This sho ws that the
ncertainty of the value produced with a relati vely lo w number of
urn-in samples is high, but decreases to a nearly constant value at
2, 000 burn-in samples (.02 N burn in /N samp ). The default value for the

umber of burn-in samples is half the total number of samples, which
dequately allows for the initialization of the sampler. Therefore, we 
pt to use 60 000 samples and 30 000 burn-in samples for each
ARMA pack fit. 
MNRAS 514, 164–184 (2022) 
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M

Figure A3. DRW parameters reco v ered from a DRW fit to an e xample quasar 
light curve, using a CARMA(1,0) model in CARMA pack , as the number of 
burn-in samples for the MCMC sampler increases. We choose N samp = 10 5 , 
as Fig. A2 showed that for this number of iterations, both parameters have 
already converged. We opt to use the default number of burn-in samples 
that CARMA pack chooses (0.5 N samp ) for which the output parameters have 
already converged. 

Figure A4. The ensemble PSD from mock DRW light curves generated 
using the best-fitting DRW parameters from the real quasar light curves in 
Section 3.1 . The expected DRW ensemble (median) PSD is shown in the black 
solid line with 1 σ uncertainties highlighted in grey. The blue line shows the 
ensemble (median) PSD from generalized CARMA fits with CARMA pack . 
The generalized CARMA fits correctly reco v er the DRW PSD, with no 
evidence for slope steepening at the highest frequencies sampled here. 

A

H  

a  

i  

c

a  

t  

s
 

w  

d  

l  

a  

c  

C  

D  

c  

d  

o
 

d  

C  

d  

D  

c  

p  

t  

t
 

C  

o  

d  

p  

s  

s  

u  

T  

m  

b  

p  

t  

m
 

a  

a  

d  

l  

o  

l  

t  

l  

t  

a  

p  

a  

t  

a
 

i  

D  

C  

e  

D  

w  

l  

l  

t  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/514/1/164/6588051 by IN
IST-C

N
R

S IN
EE IN

SB user on 12 April 2023
5 Fitting simulated DRW light cur v es 

ere, we test if simulated DRW light curves with the same sampling
nd S/N as our real data would produce a steep high-frequency slope
n the CARMA PSD. First, we generate mock g -band DRW light
urves for all quasars in our sample using the best-fitting τDRW, obs 
NRAS 514, 164–184 (2022) 
nd σ DRW 

in Section 3.1 . These mock light curves are sampled at
he same times and with the same S/N as the real light curves in our
ample. 

Next, we use CARMA pack to fit these mock DRW light curves
ith a generalized CARMA model following the same procedures
escribed in Appendix A3 . We then extract a PSD from each mock
ight curve from the best-fitting CARMA model, and construct
n ensemble PSD. The results are shown in Fig. A4 , where we
ompare the PSDs from the expected DRW model and reco v ered by
ARMA pack . We find that CARMA pack successfully reco v ers a
RW PSD for these simulated light curves, as expected. This test

onfirms that the steep high-frequency-end PSD slope seen in real
ata is not due to effects of light-curve cadence and S/N or the use
f a more flexible CARMA model to fit the light curves. 
We also use these simulated DRW light curves to investigate

ifferent choices of the best-fitting parameters in Celerite or
ARMA pack . In this work, we opt to use the median of the posterior
istribution of samples as the fiducial best-fitting parameters for all
RW and general CARMA model fits. Other works may use different

hoices for their best-fitting parameters [such as the maximum-a-
osteriori (MAP; MacLeod et al. 2010 ) or the expectation value of
he marginalized posterior (Suberlak et al. 2021 )]. Here, we discuss
he differences in these choices of the best-fitting parameters. 

When modelling our quasar light curves with Celerite or
ARMA pack , we are given a number of samples for each parameter,
utput by a certain MCMC algorithm. The posterior probability
istribution is simply the normalized distribution of the output
arameters themselves. Using the median of the posterior is less
usceptible to large fluctuations in the probability due to insufficient
ampling of the distribution. The MAP, ho we v er, can pro v e to be
nreliable, as it can be easily influenced by these fluctuations.
he marginalized posterior utilizes the joint-posterior distribution of
ultiple parameters, giving a more robust look into the relationships

etween parameters, and taking that into account to choose the best
ossible value. The expectation value of this distribution (as opposed
o the MAP or median) can aid if the posterior distribution has

ultiple peaks. 
We compare different choices, including median posterior, MAP,

nd expectation value. Both the MAP and the expectation value of
 parameter’s distribution are obtained by using the marginalized
istribution of each parameter. This is done through the use of the
ikelihoods output from the Celerite fitting, for each quasar. One
f the functions implemented in Celerite allows one to obtain a
ikelihood for a given set of parameters and data, given the model fit
o a certain set of data. Therefore, for each sample from a given quasar
ight-curve fit, we can construct a grid in parameter space, performing
his likelihood calculation for an arbitrary number of points to obtain
n n -dimensional posterior distribution, where n is the number of
arameters. In this case, Celerite fits for both DRW parameters
nd a noise term, making this posterior three dimensional. We can
hen marginalize o v er this distribution for each of the parameters,
nd obtain a best-fitting parameter for each light curve. 

We compare these different choices of best-fitting parameters
n Fig. A5 . We obtained these values from fitting our simulated
RW light curves with a DRW model with Celerite , as well as
ARMA pack (in the latter case, a DRW or CARMA(1,0) model is
nforced). We find that all these choices perform similarly for both
RW parameters with a similar amount of scatter, when compared
ith the input DRW parameters used to construct the simulated

ight curv es. Ov erall, σ DRW 

is better reco v ered than τDRW, obs . F or
ong input τDRW 

, the reco v ered τDRW 

is generally biased low due
o an insufficient baseline of the light curve (e.g. Kozłowski 2017 ).
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Figure A5. Comparison of the reco v ered and input DRW parameters ( τDRW, obs , σDRW 

) from our test using simulated DRW light curves. The best-fitting 
value for the reco v ered parameter was obtained via three different methods: (1) the MAP from Celerite fitting samples, (2) the expectation value of the 
marginalized posterior using Celerite fitting samples, (3) the median value of the Celerite fitting samples, and (4) the median value of the CARMA pack 
DRW fit samples. For each panel, the unity relation is shown as a red line. 

Figure A6. Comparison of different choices of the best-fitting DRW parameters in Celerite , obtained from our simulated DRW light curves. These 
τDRW, obs and σDRW 

values are determined using the same sets of posterior samples. The method used to obtain these MAP values and expectation values uses 
the marginalized posterior distribution of the samples. The red line in each panel indicates the unity relation. 
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he least o v erall bias in τDRW 

for our sample, justifying our choice
f this particular definition of best-fitting DRW parameters in this
ork. 
Fig. A6 shows the comparison of the three different choices of

he best-fitting DRW parameters, using Celerite for the same
imulated DRW light curves described above. While there are
orrelations among these different choices, there are also systematic
ffsets among them. For this study, we have chosen the median
osterior as our fiducial best-fitting parameters, given its performance
n reco v ering the input DRW parameters as demonstrated in Fig. A5 .
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