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ABSTRACT
Using the linearized Boltzmann equation, we investigate how grooves carved in the phase space
of a half-mass Mestel disc can trigger the vigorous growth of two-armed spiral eigenmodes.
Such grooves result from the self-induced dynamics of a disc subject to �nite-N shot noise,
as swing-ampli�ed noise patterns push stars towards lower angular momentum orbits at their
inner Lindblad radius. Supplementing the linear theory with analytical arguments, we show
that the dominant spiral mode is a cavity mode with re�ections off the forbidden region
around corotation and off the deepest groove. Other subdominant modes are identi�ed as
groove modes. We provide evidence that the depletion of near-circular orbits, and not the
addition of radial orbits, is the crucial physical ingredient that causes these new eigenmodes.
Thus, it is possible for an isolated, linearly stable stellar disc to spontaneously become linearly
unstable via the self-induced formation of phase-space grooves through �nite-N dynamics.
These results may help explain the growth and maintenance of spiral patterns in real disc
galaxies.

Key words: galaxies: evolution – galaxies: kinematics and dynamics – galaxies: spiral.

1 INTRODUCTION

Despite the many tantalizing hints gleaned from detailed observa-
tions (Meidt, Rand & Merri�eld2009; Salo et al.2010; Beckman
et al.2018), analytical calculations (Goldreich & Lynden-Bell1965;
Julian & Toomre1966; Lynden-Bell & Kalnajs1972; Mark 1976;
Omurkanov & Polyachenko2014; De Rijcke & Voulis2016), and
numerical simulations (Sellwood2011; D’Onghia, Vogelsberger &
Hernquist2013; Sellwood & Carlberg2014; Saha & Elmegreen
2016; Semczuk, �okas & del Pino2017), the cause(s) and the life
expectancy of spiral structures in disc galaxies are still uncertain.
Even restricting the general problem to that of the gravitational
dynamics of an axially symmetric, razor-thin stellar disc still leaves
a wealth of dynamical processes to be explored and understood.
Given the observed variety of the spiral galaxy zoo, with specimens
ranging from the beautifully symmetric grand-design spirals to the
patchy and chaotic �occulent disc galaxies, a unique explanation
may even seem elusive. This is unfortunate, given the apparent
importance of spiral structures for the secular evolution of the
galaxies that host them (Zhang1998; Sellwood & Binney2002;
Ro�skar et al.2008, 2012; Sellwood 2014; Fouvry et al.2015;
Vaghmare et al.2015; Daniel & Wyse2018) and for regulating

� E-mail: sven.derijcke@UGent.be(SDR);fouvry@ias.edu(JBF);
pichon@iap.fr(CP)
• Hubble fellow.

the rate and location of their star formation (Seigar & James2002;
Aramyan et al.2016; Hart et al.2017).

Early on in the history of this topic, it was understood that stellar
discs can respond vigorously to disturbances whose wavelength is
much smaller than the host disc. Such localized perturbations can
be shown to be strongly ampli�ed as they shear from leading to
trailing (Goldreich & Lynden-Bell1965; Julian & Toomre1966;
Toomre 1981). This ‘swing ampli�cation’ mechanism appears
to be a plausible explanation for the ragged appearance of the
�occulent disc galaxies. It cannot, at �rst sight, explain the open,
long-wavelength patterns observed in grand-design systems. In the
original quasi-steady-state theory for grand-design spirals (Lin &
Shu 1964), the gravitational maintenance of an imposed spiral
pattern was expounded. However, this theory lacked a generating
mechanism for the spiral patterns.

Barring those cases where a spiral pattern can be linked to an
external pertuber’s tidal forces, an internal cause must be searched.
It was soon realized that such patterns could originate from growing
eigenmodes in linearly unstable stellar discs (Toomre1964; Hunter
1965; Kalnajs 1977; Vauterin & Dejonghe1996). If a galaxy is
linearly unstable, even the smallest perturbation is suf�cient to
trigger its eigenmodes (Toomre1964; Hunter1965; Kalnajs1977;
Vauterin & Dejonghe1996; Pichon & Cannon1997) and begin
its evolution towards higher entropy states (Lynden-Bell & Kalnajs
1972). This leads to secular radial migration of stars and disc heating
(Zhang1999; Sellwood & Binney2002; Ro�skar et al.2008, 2012).

C� 2019 The Author(s)
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In this paper, we show that such linearly unstable states need
not be exceptional and that they are, in fact, a natural outcome
of the self-induced dynamics of a �nite-N stellar disc (withN
� 1 the number of stars). This point was already argued by
Sellwood (2012) and Fouvry et al. (2015), who investigated the
evolution of a linearly stable half-mass Mestel disc (Mestel1963;
Toomre 1981) using N-body simulations and the integration of
the inhomogeneous Balescu–Lenard equation (Heyvaerts2010;
Chavanis2012), respectively. The latter equation, which is valid at
the order 1/N, accounts for the self-driven orbital secular diffusion
of a self-gravitating system induced by the intrinsic shot noise due to
its discreteness. This diffusion results in the formation of a resonant
groove in phase space along a speci�c resonant direction. In other
words, the �nite-N dynamics of an initially linearly stable stellar
disc can lead to its spontaneous destabilization and the subsequent
growth of spiral-shaped eigenmodes. The origin of these modes
lies in the gravitational ampli�cation of waves trapped between the
groove and corotation.

This paper is organized as follows. In Section 2, we introduce the
half-mass Mestel disc model, both without and with phase-space
grooves. This is followed by our linear mode analysis of this model
in Section 3. We discuss the signi�cance of our results in Section 4
and we conclude with Section 5. The linear stability tool we employ
is shortly described in Appendix A.

2 THE HALF-MASS MESTEL DISC

2.1 The linearly stable half-mass Mestel disc

The Mestel disc (Mestel1963) has a surface mass density given by

� (r ) = � 0
r0

r
, (1)

which self-consistently generates a gravitational �eld with a binding
potential

V0(r ) = Š v2
0 ln

�
r
r0

�
. (2)

Here,v0 is the constant circular velocity of this stellar disc model
and r0 is a scale length. Clearly,v2

0 = 2� G� 0r0 for consistency
(this relation de�nes the density scale factor� 0). A self-consistent
distribution function, or DF, for this model exists, of the form

FM(E, J � ) =
� 0

2q/2
�

� r q
0 � 2+ q�

� 1+ q
2

� J q
� exp(E/� 2), (3)

with E binding energy,J� angular momentum, andq a real number
that links the radial velocity dispersion� to the circular velocity
v0 via the relation� 2 = v2

0/ (1 + q) (Toomre1977). We adopt the
numerical valuesq = 11.4 andr0 = 20, similarly to Sellwood
(2012).

In order to obtain a stellar disc with a �nite total mass and with a
non-diverging central density, we multiply this DF with two cut-out
functions,Hinner(J� ) andHouter(J� ), of the form

Hinner(J� ) =
J n

�
(rinnerv0)n+ J n

�
, (4)

Houter(J� ) = (routerv0)m

(routerv0)m+ J m
�

. (5)

Here, we choosen= 4,m= 5,router= 11.5, and we adopt units such
thatv0 = G = rinner = 1. As in Sellwood (2012), we use a Plummer
softening length� = 1/8 in equation (A5) for the inter-particle
interaction potential.

The DF is further multiplied with an active fraction� = 1/2, such
that the DF describing the dynamics of the stellar component of the
half-mass Mestel disc has the form

F0(E, J � ) = �H inner(J� )FM(E, J � )Houter(J� ). (6)

The rest of the matter, making up the de�cit between the stellar
density generated by the DF (6) and the Mestel disc density (1),
is supposed to reside in a rigid, unresponsive halo and bulge. As
reported by Toomre (1981), Evans & Read (1998), Sellwood (2012),
and Fouvry et al. (2015), this stellar disc is linearly stable, a fact
that we con�rmed with our own stability analysis.

2.2 The grooved half-mass Mestel disc

While this half-mass Mestel disc is linearly stable, this does not
mean that it cannot evolve secularly through �nite-N effects. In
order to maximally elucidate the underlying dynamics, Sellwood
(2012) and Fouvry et al. (2015) consider only gravitational forces
up to them = 2 harmonic in their studies of the evolution of this
disc model. Therefore, we will likewise only considerm= 2 spiral
patterns in the remainder.

As shown by Sellwood (2012) and Fouvry et al. (2015), swing-
ampli�ed �nite- N stellar density �uctuations in this Mestel disc
transport angular momentum away from their inner Lindblad
resonances (ILRs) and scatter stars away from (near-)circular
orbits around certain angular momenta. If a spiral wave is time-
independent in a corotating coordinate frame then each star evolves
along a track of constant Jacobi integral,EJ, given by

EJ = E + 	 pJ� , (7)

with 	 p the wave’s pattern speed. The interaction between the stars
and transient swing-ampli�ed patterns induces stellar migration
through action space, changing the stars’ binding energy and angular
momentum but preserving their Jacobi integral. At a pattern’s ILR,
this pushes stars away from circular orbits towards orbits with lower
angular momentumJ� and higher values of the radial actionJr.
Hence, the DF develops what we here refer to asgrooves(loci
around constantEJ-values where stars have diffused away from
high-J� orbits, leaving behind a depleted DF) andridges (loci
around constantEJ-values where stars have diffused towards high-Jr

orbits, causing an enhanced DF).
In Fig. 1, we show the DF of the half-mass Mestel disc, grooved

on the long term by the non-linear evolution of swing-ampli�ed
particle-shot noise, as obtained in simulation 50M of Sellwood
(2012)1 [see also �g.7 in Sellwood (2012) and �g. 4 in Fouvry et al.
(2015)]. Three grooves can be identi�ed where circular orbits are
depopulated around angular momentum valuesJ� � 1.2, 1.55, and
1.90. In order to rapidly convert between binding energyE, angular
momentumJ� , and the radial actionJr, we used the formulae from
Williams, Evans & Bowden (2014).

Concurrent with the appearance of these grooves in action space,
the stellar disc develops a set of vigorously growing spiral patterns
whose amplitudes exponentiate with time (see �g.2 in Sellwood
2012). The most vigorous among these modes has a rotation
frequency
 = m	 p � 0.55 (see �g.4 in Sellwood2012). It cannot
be an eigenmode of the ungrooved half-mass Mestel disc because
it is known to be linearly stable. Since the mode already appears in
the linear regime, it is unlikely to be caused by non-linear mode
coupling (Masset & Tagger1997). Randomizing the azimuthal

1Based on simulation data kindly provided to us by Prof. J. Sellwood.
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Figure 1. The phase-space distribution of the particles in simulation 50M of
Sellwood (2012) at time 1400, presented as a function of angular momentum,
denoted byJ� , and the radial action, denoted byJr . Circular orbits are
characterized byJr = 0. The contours of constant stellar phase-space density
are evenly spaced between 2.5 and 95 per cent of the maximum value of the
DF (estimated as the mean of the 10 highest valued pixels). Three grooves
can be identi�ed where circular orbits are depopulated around the angular
momentum valuesJ� � 1.2, 1.55, and 1.90.

particle positions does not prevent the pattern’s growth, quite on
the contrary, so any non-axisymmetric features that grew during the
disc’s �rst phase of evolution cannot have caused this growing mode
(see �g. 5 in Sellwood2012). The fact that it grows exponentially
with time suggests that it is a true eigenmode particular to the
grooved half-mass Mestel disc.

Using linear stability analysis, we now show that the vigorously
exponentiating patterns observed by Sellwood (2012) are indeed
eigenmodes of the grooved half-mass Mestel disc. For this, we use
PYSTAB, aPYTHON/C++ computer code to analyse the stability of a
responsive, self-gravitating razor-thin stellar disc embedded in the
gravitational �eld of a rigid axisymmetric or spherically symmetric
central bulge and dark-matter halo. The details of the mathematical
formalism behind this code and of its implementation can be found
in Vauterin & Dejonghe (1996), Dury et al. (2008), and De Rijcke &
Voulis (2016), so we will not repeat these here in detail. We provide
a brief overview of the formalism and of the employed values of
some numerical parameters of the code in Appendix A.

3 MODE-ANALYSIS OF THE GROOVED
HALF-MASS MESTEL DISC

3.1 The Þducial grooved half-mass Mestel disc

We �rst mimicked the grooves visible in the DF of simulation 50M
(see Fig.1) of Sellwood (2012) by multiplying the DFF0(E, J� )
with ‘groove functions’ of the form

f groove(x) = 1 +
a

(1 Š x)�
+ b + cx + dx2, (8)

with x varying along a line of constant Jacobi integral, normalized
such thatx = 0 at the circular orbit andx = 1 at the radial orbit.
Each groove function differs from 1 only inside a narrow region of
width 2w centred on a given Jacobi integral. Iffgroove(x) > 1, the
phase-space density is increased; iffgroove(x) < 1, the phase-space
density is decreased.

Based on Fig.1, we identify three angular momenta where cir-
cular orbits are signi�cantly depopulated: atJ� � 1.2 (�rst groove),
1.55 (second groove), and 1.9 (third groove), corresponding to the
ILR of waves with pattern speeds	 p = 0.244, 0.189, and 0.154,
respectively. We will henceforth refer to the half-mass Mestel disc
with these three grooves as the �ducial grooved half-mass Mestel
disc.

At the �rst groove, atJ� � 1.2, the value of the DF decreases
by 57 per cent while, at the second and third grooves, atJ� �
1.55 and 1.9, the value of the DF decreases by 5 per cent. The �rst
groove leads to a marked population increase of the lower angular
momentum/higher radial action orbits, which is mimicked here by
setting � = 11 in equation (8). The second and, especially, the
third grooves show much less pronounced DF increases towards
low angular momentum orbits, so we choose� = 6 for these. For
each groove, the parametersw, a, b, c, andd are chosen such that
the grooves visible in Fig.1 are adequately reproduced, cf. Figs2
and3, and Table1. We took care to conserve the total mass of the
stellar disc to within a few tenths of a per cent.

3.2 Linear stability analysis of the Þducial grooved Mestel disc

As explained in Appendix A, each eigenmode corresponds to
a complex frequency
 for which the matrixC(
 ), de�ned in
equation (A7), has a unity eigenvalue. In Fig.4, we plot the quantity
min |� (
 ) Š 1| in the complex frequency plane of the �ducial
grooved half-mass Mestel disc. This quantity is zero at the loci
of the eigenmodes.

The complex frequencies
 of the dominant eigenmodes retrieved
with PYSTABfor the �ducial grooved half-mass Mestel disc are listed
in Table2, along with the radii where the main resonances (ILR, CR,
OLR) occur, with CR the corotation resonance radius and OLR the
outer Lindblad resonance radius. Resonances that (approximately)
overlap with the position of a groove are printed in boldface. For
the Mestel disc, the resonance radiirres, of anm-armed mode with
pattern speedm	 p = 
 real, with 
 real the real part of the mode
frequency, are given by

rres, =
�

m +
�

2
� 1


 real
. (9)

Here,  = 0 gives the CR while = ± 1 gives the Lindblad
resonances.

3.3 The� = 0.597+ 0.013i mode: a cavity mode

The most rapidly growing global spiral mode has a pattern speed
m	 p = 0.597, which places its ILR at a radius of 0.98, very
near the inner edge of the �rst groove, while its OLR occurs at
a radius of 5.72. The other global spiral mode, with a pattern speed
m	 p = 0.465, has a negligible growth rate (this is actually the
fastest growing member of a cluster of eigenmodes with pattern
speeds between 0.45 and 0.5, cf. Fig.4). The surface density of
the dominant global spiral mode is plotted in Fig.5 (top panel)
where we compare it with the dominant spiral pattern found in the
N-body simulations reported in Sellwood (2012) (bottom panel).
The frequency of the emerging pattern is estimated2 at 
 �
0.577 + 0.018i in simulation 50M and at
 � 0.599 + 0.016i
in simulation 50Mc. We �nd
 = 0.597+ 0.013i for the dominant
eigenmode of the �ducial grooved Mestel disc. This good agreement

2Private communication with J. Sellwood.
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Grooves and spiral modes 3201

Figure 2. The DF of the �ducial grooved half-mass Mestel disc. The
contours are the same as in Fig.1. The dotted line traces a constant Jacobi
integral along the main groove.

between the pattern speeds leads us to con�rm that we are, in fact,
seeing the same mode in the linear stability analysis and in the
N-body simulations.

3.3.1 Mode generating mechanism: linear stability analysis

As noted by Sellwood & Carlberg (2014), a phase-space groove
induces a spatially localized change of the velocity with which spiral
waves can be radially propagated through the disc. A groove locally
changes the ‘impedance’ of the stellar disc. Using the suggestive
analogy of waves being partially re�ected at the junction between
two strings with different mass densities (and hence different wave
velocities), these authors argue that stellar density waves impacting
radially inward on a phase-space groove will, likewise, be partially
re�ected outward again. This creates the possibility of setting up a
resonant cavity within which inwards moving waves are (partially)
re�ected back out again by the groove and outwards moving waves
are re�ected back inwards at corotation, thus creating a standing
wave pattern.

In the WASER feedback cycle (Toomre1969; Mark 1976),
an ingoing short-wavelength trailing wave is re�ected from the
unresponsive, dynamically hot disc interior [if the ToomreQ
parameter (Toomre1964) rises suf�ciently rapidly towards small
radii] into an outgoing long-wavelength trailing wave. At CR, this
wave overre�ects into an ingoing and an outgoing short-wavelength
trailing wave. Hence, the WASER only involves trailing waves.
Moreover, it leads to rather modest wave ampli�cations and then
only for low Q values. Much more impressive ampli�cations can
be obtained by the swing ampli�er feedback cycle (Toomre1977,
1981; Bertin et al.1989). In this theory, an ingoing trailing wave
is re�ected from the galaxy centre as an outgoing leading wave.
Around CR, this wave is overre�ected into an outgoing and an ingo-
ing trailing wave at which point ampli�cation factors of 1–2 orders
of magnitude can be achieved. Signi�cant ampli�cation occurs for
discs withQ � 2. Interference between the leading and trailing
waves within the resonant cavity is expected to produce a growing
eigenmode with a ‘lumpy’ density distribution (Athanassoula1984;
Binney & Tremaine2008).

If the inner Q-pro�le of the half-mass Mestel disc were steep
enough to re�ect ingoing waves outwards again, it would already
have done so in the ungrooved model and that model is linearly

Figure 3. Top panel: a cut through the DF of the �ducial grooved half-mass
Mestel disc along theJr = 0 line, where the circular orbits reside, as a
function of angular momentumJ� (full line). For a comparison, the dotted
line traces the ungrooved DF. The grey histograms show the distribution
of the particles in simulation 50Mc of Sellwood (2012) over circular orbits
(based on simulation data kindly provided to us by Prof. J. Sellwood).
Bottom panel: a cut through the DF of the �ducial grooved half-mass Mestel
disc along the main ridge, plotted as a function of the radial actionJr (full
line). The dotted line traces the ungrooved DF along the main ridge. In
particular, we note the depletion of stars on quasi-circular orbits, and the
addition of stars on more radial orbits.

Table 1. The parameter values employed in the ‘groove function’fgroove

that de�nes the pro�le of each groove (cf. equation 8).

� w a b c d

First groove 11 0.29 0.474 Š 0.044 Š 5.219 Š 44.796
Second groove 6 0.10 0.562 0.388Š 3.371 Š 15.619
Third groove 6 0.12 0.081 0.869Š 0.486 Š 3.242

stable. Therefore, it is unlikely that the WASER feedback cycle
is responsible for the growth of the global modes in the grooved
half-mass Mestel disc. On the other hand, the ToomreQ parameter
is smaller than 2.0 in a large part of disc, between radii in the
range� 1.4–9.0, and hovers around a value of 1.5 between radii
in the range� 2.0–6.0. From the famous ‘dust to ashes’ �gure of
Toomre (1981), it is clear that swing ampli�cation in theQ = 1.5,
X = kcritr/m = 2 half-mass Mestel disc without inner or outer
cut-outs can boost wave amplitudes by a factor of� 30 (which
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Figure 4. The quantity min|� (
 ) Š 1| in the complex frequency plane of the �ducial grooved half-mass Mestel disc. An eigenmode lives wherever this
quantity is zero (dark regions).

Table 2. The eigenmodes of the half-mass Mestel disc with three grooves at
J� = 1.2, 1.55, and 1.9. The complex mode frequency is denoted by
 . The
radii of the main resonances (ILR, CR, OLR) are indicated and resonances
that (approximately) overlap with the position of a groove are printed in
boldface. The physical nature of each mode (global or groove mode) is
given in the last column.


 ILR CR OLR Type

0.597+ 0.013i 0.98 3.35 5.72 global mode
1.662+ 0.004i 0.35 1.20 2.01 groove mode
0.465+ 0.001i 1.26 4.30 7.34 global mode
1.101+ 0.000i 0.53 1.82 3.10 groove mode

signi�cantly hastens the disc’s secular dynamics). Unfortunately,
those ampli�ed waves are subsequently absorbed at the ILR. This
is, however, not an issue for thegroovedhalf-mass Mestel disc. In the
case of waves with a pattern speedm	 p = 0.597, corresponding to
the dominant global mode of the �ducial grooved half-mass Mestel
disc, the ILR (at a radius of 0.98) is shielded by the re�ective
�rst groove (around a radius of 1.2). Moreover, this dominant
global mode clearly has a ‘lumpy’ density distribution (cf. Fig.5),
indicative of interference between leading and trailing waves.

3.3.2 Mode generating mechanism: WKB arguments

If an eigenmode is indeed a standing wave built from wave packets
travelling inside a resonance cavity between radiirinf andrsup then
it must obey the quantum condition
� rsup

rinf

k (
 real, r ) dr = � , (10)

wherek is the radial wavenumber of the waves. The mode’s growth
rate
 im = � { 
 } then follows from the relation

1

 im

� rsup

rinf

dr
vg(r )

=
ln 2
2

, (11)

with vg(r) the radial group velocity of the travelling wave patterns
(Mark 1977; Bertin 2014). Hence, the narrower the cavity and the
larger the group velocity, the stronger the growth. These integrals
are to be performed over a full circle between their lower and upper
bounds.

In the WKBJ limit, the dispersion relation for travelling waves is
given by

� 2
�
1 Š s2

�
= 2� G� |k| F(s, � )eŠ� |k|. (12)

Here,

s =

 real Š m	

�
and� =

�
k� r

�

� 2

, (13)

with 	 and� the angular and epicycle frequency of near-circular
orbits, respectively (Kalnajs1965; Lin & Shu 1966). The reduction
factor on the right-hand side of this equation is the product of two
factors: an exponential factor caused by the Plummer softening with
softening length� (Romeo1994), for which we adopt the value�
= 1/8, and the well-known reduction factor

F(s, � ) = 2
�
1 Š s2� eŠ�

�

	

n� 1

I n(� )

1 Š s2

n2

, (14)

with In a modi�ed Bessel function of the �rst kind, due to the
stellar velocity dispersion. This latter expression is only correct for
a Schwarzschild DF so the following results must be regarded as
approximate. The group velocityvg of a wave packet centred on
wavenumberk is given by

vg =
�
 real

�k
. (15)

From the dispersion relation stated above, we can derive the relation



2s
1 Š s2

+ e� |k| � ln F
�s

�
vg = Š

�
k



1 Š � |k| + 2e� |k| � ln F

� ln �

�

(16)

for the group velocity. The partial derivatives of the reduction factor
F that �gure in this equation can be evaluated analytically as

� F
��

=
�
1 Š s2� eŠ�

�

	

n� 1

I nŠ1 Š 2
�
1 + 1

�


I n + I n+ 1

1 Š s2

n2

,

� F
�s

= Š 4s
eŠ�

�

	

n� 2

1 Š 1
n2

1 Š s2

n2

I n, (17)

where all Bessel functions have� as argument. We terminate the
in�nite sums in the evaluation of this reduction factor and its
derivatives when a relative accuracy of 10Š6 has been obtained.

We now wish to compute the frequency of a growing standing
wave in the half-mass Mestel disc with a groove at a radiusrgroove,
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Grooves and spiral modes 3203

Figure 5. Top panel: the positive part of the surface density perturbation
of the m = 2 global mode with frequency 0.597+ 0.013i of the �ducial
grooved half-mass Mestel disc. The contour values increase linearly between
1 and 99 per cent of the maximum surface density value. The full line
indicates the position of the �rst, main groove and dashed lines mark the
mode’s ILR, CR, and OLR. Bottom panel: the surface density perturbation
of this mode taken fromN-body simulation 50Mc by Sellwood (2012).
Dotted lines mark the Lindblad resonances while the full line marks the CR
radius.

which is supposed to re�ect incoming wave packets back out again,
using this analytical theory. For a given real frequency
 real, we
�rst compute the inner radius of the forbidden region around CR,
where the dispersion relation (12) admits no real solutions fork.
This we equate to the outer radius of the resonance cavity,rsup. For
the inner radius,rinf , we use the maximum of the groove radius and
the wave’s ILR radius. In practice, this always turned out to be the
groove radius.

For any radiusr inside the resonance cavity, we then �nd the two
positive solutionskshort(
 real, r) andklong(
 real, r) of the dispersion

Figure 6. The positive part of the surface density perturbation of them
= 2 mode of the �ducial grooved half-mass Mestel disc, with frequency

 = 1.662+ 0.004i. The contour values increase linearly between 1 and
99 per cent of the maximum surface density value. The dashed lines mark
the modes’ ILR, CR, and OLR and the full line indicates the position of the
�rst, main groove.

relation (12). The quantum condition (10) can be rewritten as
� rsup

rinf

k (
 real, r ) dr=
� rsup

rinf

�
kshort(
 real, r )+ klong(
 real, r )

�
dr= � .

(18)

Numerical root �nding �nally allows us to solve this equation
for the real frequency
 real in case the disc supports a cavity
mode. Equation (16) yields the group velocities,vg, short(r) and
vg, long(r), of the short and long branch waves, respectively. These
are then inserted into equation (11), which can be rewritten
as
� rsup

rinf

dr
vg(r )

=
� rsup

rinf



1

vg,short(r )
+

1
vg,long(r )

�
dr

=
ln 2
2


 im. (19)

This, �nally, provides us with an estimate for the growth rate
 im

of the growing mode.
For the �ducial value of the groove radius,rgroove = 1.2, this

yields the analytical frequency estimate
 = 0.510+ 0.017i. This
is tantalizingly close to the value
 = 0.597 + 0.013i that we
derived from the full linear theory. Together with all the arguments
given above, this can be taken as evidence for the idea that the
dominant global mode of the grooved Mestel disc is caused by
swing-ampli�ed travelling wave packets inside a resonance cavity
between the groove – rendered re�ective by the depopulation of
near-circular orbits – and the mode’s CR.

3.4 The� = 1.662+ 0.004i mode: a groove mode

Glancing back at Table2, the second most unstable mode of the
grooved Mestel disc, depicted in Fig.6, has properties that suggest
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3204 S. De Rijcke, J.-B. Fouvry, and C. Pichon

Figure 7. Close-up view of the density peak of the
 = 1.662+ 0.004i
groove mode from Fig.6. Full-line contours trace the surface density
perturbation (in 10 equidistant steps between 1 and 99 per cent of its
maximum value) while the dotted contours trace the mode’s gravitational
binding potential (in 10 equidistant steps between 1 and 99 per cent of its
maximum value). Dashed circles mark the loci of the mode’s ILR, CR,
and OLR. The two full-line circles demarcate the region where the groove
reaches 50 per cent of its maximum depth, which is a measure for its width.

that it is a groove mode caused by the �rst groove,3 depopulating
circular orbits around angular momentumJ� = 1.2. There actually
appears to exist a cluster of eigenmodes with pattern speeds very
close to this value, cf. Fig.4, of which this is the most rapidly
growing member.

Sellwood & Kahn (1991) describe growing instabilities with their
CR at a sharp groove, i.e. a local depression in the stellar density
distribution, that are an instance of the negative-mass instability
(Lovelace & Hohlfeld1978). These authors show that such groove
modes originate from the coupling of two waves, one on each side
of the groove, with their corotation resonance inside the groove.
The wavy displacements of disc material at the groove’s edges
couple across the groove through gravity. Thus, local overdensities
can exchange angular momentum in such a way that material on
the groove’s inner edge gains angular momentum and is pulled
outwards while material on the groove’s outer edge loses angular
momentum and is pulled inwards. This counteracts the disc’s shear
and facilitates mass clumping. Thus, the amplitude of these mass
displacements grows exponentially with time. The rest of the pattern
can then be explained as the disc’s response to these growing
overdensities via the mechanism described by Julian & Toomre
(1966).

The CR of the
 = 1.662+ 0.004i mode indeed sits squarely
inside the �rst groove, cf. Fig.7. It is also clear from this �gure
that the mode, as expected for a groove mode, consists of two
density peaks sitting on either side of the groove with a gravitational
potential peak between them. This suggests this is a groove mode
caused by the �rst groove. There also appears to exist a neutral

3Private communication with J. Sellwood: power spectra of the simulations
described in Sellwood (2012) show the existence of a slowly growing
pattern with a pattern speedm	 p � 1.65 when extended to higher pattern
frequencies than was reported in �g.4 of that work.

eigenmode with a pattern speedm	 p = 1.101 that can, likewise,
be interpreted as a groove mode caused by the third groove.
Its vanishing growth rate explains why it did not appear in the
simulations reported by Sellwood (2012).

4 DISCUSSION

4.1 The number of grooves

The presence of the minor second and third grooves has little bearing
on the existence of the modes although it does slightly impact their
frequencies. For instance, if we remove these two minor grooves,
keeping only the deep and wide �rst groove, the main global mode is
retrieved with a frequency
 = 0.603+ 0.016i, with its ILR sitting
at a radius of 0.97, still just inside the inner edge of the groove. The
groove mode now has a frequency
 = 1.695+ 0.003i. Its CR, now
at a radius 1.18, again falls inside the groove. The remaining groove
is obviously instrumental to the existence of these modes. Without
it, the grooveless half-mass Mestel disc is, as already mentioned,
linearly stable.

4.2 The groove proÞle

A groove consists both of a depletion of circular orbits and an
overpopulation of more radial orbits. In order to test which of these
two features is actually causing the modes in the grooved Mestel
disc, we �rst computed the eigenmode spectrum of a model with
the �ducial groove function modi�ed according to the prescription

f groove(x) 	 max
�

1, f groove(x)
�

(20)

so that no stars are ever removed but only added. This removes the
grooves at the loci of near-circular orbits but leaves the ridges at
more radial orbits in place. This particular model turned out to have
a single (barely) growing global eigenmode at
 = 0.611+ 0.001i.
The high-frequency mode of the �ducial model is completely
absent.

Next, we computed the eigenmode spectrum of a model with the
�ducial groove function modi�ed according to the prescription

f groove(x) 	 min
�

1, f groove(x)
�

(21)

so that no stars are ever added but only removed. This removes the
ridges at more radial orbits but leaves the grooves at the loci of near-
circular orbits in place. This model has two growing eigenmodes,
at 
 = 0.593+ 0.013i and
 = 1.663+ 0.003i. These are virtually
the same as the eigenmodes of the �ducial grooved Mestel disc.
Likewise, we analysed a model in which the depth of the three
grooves of the �ducial model is kept constant along lines of constant
Jacobi integral. In other words, the �rst groove depresses the DF
by 57 per cent and the second and third grooves by 5 per cent
everywhere along the groove in question. The stellar mass of this
model is a bit smaller than in the �ducial model but this has no
apparent consequences. Indeed, this model’s mode spectrum is
almost identical to that of the �ducial model.

Putting these results together, we are led to the conclusion
that it is the depopulation of the near-circular orbits andnot the
overpopulation of the radial orbits that is crucial to the existence
of the growing eigenmodes of the grooved Mestel disc. This
corroborates the results from Sellwood & Kahn (1991), who use
an approximate analytical computation to demonstrate that grooves
are destabilizing while ridges are not.
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Grooves and spiral modes 3205

Table 3. Reprise of Table2, with the eigenmodes of the half-mass Mestel
disc with three grooves atJ� = 1.2, 1.55, and 1.9 with various depths.
The depth of the �rst groove, expressed relative to its �ducial depth, is
indicated in the �rst column. The depths of the other two grooves are varied
proportionally. The complex mode frequency is denoted by
 . The radii
of the main resonances (ILR, CR, OLR) are indicated and resonances that
(approximately) overlap with the position of a groove are printed in boldface.
The physical nature of each mode (global or groove mode) is given in the
last column.

Depth 
 ILR CR OLR Type

155 per cent 0.582+ 0.019i 1.00 3.44 5.86 global mode
1.709+ 0.016i 0.34 1.17 2.00 groove mode
1.078+ 0.010i 0.54 1.86 3.17 groove mode
0.471+ 0.001i 1.24 4.25 7.25 global mode

100 per cent 0.597+ 0.013i 0.98 3.35 5.72 global mode
1.662+ 0.004i 0.35 1.18 2.01 groove mode
0.465+ 0.001i 1.26 4.31 7.35 global mode

80 per cent 0.604+ 0.008i 0.97 3.31 5.65 global mode
60 per cent 0.611+ 0.002i 0.96 3.27 5.59 global mode

4.3 The groove depth

We varied the depths of the grooves, keeping their respective
depths in proportion. This leads to the eigenmode spectra listed
in Table3. Clearly, the deeper the grooves, the more rapidly the
mode with a pattern speedm	 p � 0.6 grows. This con�rms the
�nding by Sellwood (2012) and Sellwood & Carlberg (2014) that
new instabilities only start to grow when the phase-space grooves
are suf�ciently deep.

Moreover, new eigenmodes appear as the grooves are deepened.
For instance, the mode with a frequency
 = 1.078+ 0.010i, which
appears in the spectrum of the model with a �rst groove that is
1.55 times as deep as in the �ducial model, is a groove mode with
its CR at the position of the third groove, at angular momentum
J� = 1.9. This corroborates the results from Sellwood & Kahn
(1991), who �nd that a groove of a given width needs to exceed a
critical depth before it can create a groove mode. Using approximate
analytical calculations, these authors predict the critical depth to be
proportional to the groove’s width, which is in rough agreement
with the required groove depths we observe here.

4.4 The position of the grooves

An investigation of the role of the positions of the grooves is not
possible with the techniques of Sellwood (2012) and Fouvry et al.
(2015), where the grooves grow due to stellar dynamics and their
position is determined by the physics of the problem. Here, on the
contrary, we have full control over the positions of the grooves.
We simply change the angular momentum of the circular orbits
depleted by the �rst groove between 0.8 and 3.5 while maintaining a
constant pattern speed ratio between the three grooves and keeping
all other groove properties constant. This causes the grooves to
jointly sweep across the phase-space region with the highest stellar
density.

The result is plotted in Fig.8. Here, the black bullets indicate
the frequency of the dominant global eigenmode in the complex
frequency plane for different positions of the grooves. Each data
point is labelled with the angular momentumJ� of the circular
orbits depleted by the �rst groove as it sweeps through phase space.
Growing eigenmodes are triggered only if the grooves fall in a
‘responsive’ region of phase space (see also De Rijcke & Voulis
(2016)). In this case, this means a groove carving into the most

Figure 8. Position of the dominantm = 2 eigenmode in the complex
frequency plane of the half-mass Mestel disc as a function of groove
position, computed using the full linear theory (black bullets) and using
the approximate calculation from paragraph 3.3.2 (grey stars). The angular
momentum of the �rst groove takes on values betweenJ� = 0.8 and 3.5, as
indicated next to each data point. The ratio of the angular momentum of the
second and third grooves to that of the �rst groove is kept constant, causing
the grooves to jointly sweep through phase space. The �ducial grooved
Mestel disc corresponds toJ� = 1.2.

densely populated region of phase space: that of the circular orbits
with radii between 1.5 and 2.5. A groove falling outside this region
has a much less marked effect, as can be expected from removing
stars from sparsely populated phase-space surroundings.

The grey stars in Fig.8 show the analytical estimate for the
frequency of the dominant global eigenmode as a function of
groove position, using the analytical formalism detailed in para-
graph 3.3.2. Each star is labelled with the angular momentumJ�

of the circular orbits depleted by the �rst groove. This estimate,
derived from an analytical calculation based on the assumption
that we are dealing with a cavity mode between the groove
radius and the forbidden region around corotation, is clearly in
rough agreement with the full linear theory result. Given the
approximations underlying this calculation, this level of agreement
is actually surprisingly good and can be taken as strong evidence
for our interpretation of the dominant global eigenmode as a cavity
mode.

4.5 Gravitational softening

Gravitational softening with a Plummer kernel with a softening
length� = 1/8, as employed by Sellwood (2012), has a very strong
impact on the eigenmode spectrum of the grooved Mestel disc.
In Table 4, we list the dominant eigenmodes of the unsoftened
grooved Mestel disc model. Without gravitational softening, the
groove modes grow much faster than in the softened model. For
instance, the groove mode caused by the �rst groove is now by
far the fastest growing mode. The global modes aroundm	 p �
0.45 andm	 p � 0.6 appear to be relatively unaffected by softening
but they are now surpassed in growth rate by the groove modes.
Moreover, new eigenmodes appear in the spectrum of the unsoftened
model: the very rapidly growing mode at
 = 0.6740+ 0.040i and
the slowly growing mode at
 = 0.5420+ 0.003i.
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Table 4. The eigenmodes of the unsoftened half-mass Mestel disc with
three grooves atJ� = 1.2, 1.55, and 1.9. The complex mode frequency
is denoted by
 . The radii of the main resonances (ILR, CR, OLR) are
indicated and resonances that (approximately) overlap with the position of
a groove are printed in boldface. The physical nature of each mode (global
or groove mode) is given in the last column.


 ILR CR OLR Type

1.7260+ 0.068i 0.34 1.16 1.98 groove mode
0.6740+ 0.040i 0.87 2.97 5.06 global mode
0.5470+ 0.011i 1.07 3.65 6.24 global mode
1.0650+ 0.004i 0.55 1.88 3.21 groove mode
0.5420+ 0.003i 1.08 3.69 6.29 global mode
0.4200+ 0.001i 1.39 4.76 8.13 global mode

5 CONCLUSIONS

We have studied the linear stability of a half-mass Mestel disc, with
a distribution function modi�ed with phase-space grooves like the
ones found in the works of Sellwood (2012), Fouvry et al. (2015),
and Fouvry (2017). The ungrooved model is linearly stable so that
any modes found in the grooved models must somehow be related to
the presence of the grooves. Since we compare our linear stability
computations withN-body simulations, we take into account the
effects of gravitational softening (De Rijcke, Fouvry & Dehnen
2018).

In the �ducial grooved model, we mimic the grooves visible in
the DF of theN-body simulation 50M of Sellwood (2012) and show
that this model hasm = 2 eigenmodes with properties very close
to the two-armed spiral patterns visible in its simulated analogue.
We argue that, at least in this case, the dominant new eigenmode is
a cavity mode, living inside a resonance cavity between the groove
– rendered re�ective by the removal of stars from near-circular
orbits – and the forbidden region around corotation (Mark1977;
Bertin 2014). Other, more slowly growing new eigenmodes can be
interpreted as groove modes (Sellwood & Kahn1991).

This con�rms the suggestion put forward in Sellwood (2012) and
Sellwood & Carlberg (2014) that grooves can be a potent source of
new, rapidly growing eigenmodes. These grooves are produced by a
series of uncorrelated swing-ampli�ed waves, sourced by the �nite-
N nature of any self-gravitating stellar system. In other words, it
is possible for an isolated, linearly stable stellar disc, initially
without recourse to any growing eigenmodes that can transport
its angular momentum outwards as desired by the second law of
thermodynamics (Lynden-Bell & Kalnajs1972), to spontaneously
become linearly unstable via the formation of grooves in phase
space through �nite-Ndynamics. The simple model of the half-mass
Mestel disc with inner and outer cut-outs serves as a template for
more realistic galaxy models, equipped with more plausible bulge
and halo components. The idea is that the dynamical processes
leading to the vigorously growing spiral modes in this Mestel disc
also explain the spirals inN-body simulations of more complex
galaxy models, something which needs to be investigated further.

Ultimately, one hopes that understanding these dynamical pro-
cesses in simulated galaxies furthers our understanding of the
growth and maintenance of spiral structure in real galaxies. Real
spiral galaxies evidently contain much more stars than the� 106–
108 particles that are routinely used inN-body simulations and
their stellar bodies are, therefore, much smoother than those of
their simulated counterparts. As shown by Sellwood (2012) and
Fouvry et al. (2015), the time at which the disc’s dynamics, driven
by �nite-N shot noise, has carved suf�ciently deep phase-space

grooves and the new eigenmodes start to manifest themselves
grows with the numberN of particles, so one can wonder whether
the mechanism discussed here actually applies to real galaxies.
However, whereas the stellar bodies of real galaxies are perhaps
much smoother than those of simulated galaxies, they possess other
potent sources of gravitational ‘noise’, such as giant molecular
clouds or globular clusters moving in or through the stellar disc
(D’Onghia et al.2013), orbiting satellite dwarf galaxies (Mart�́nez-
Delgado et al.2008; Laporte et al.2018), and dark-matter subhaloes
(Dubinski et al.2008; Chequers, Widrow & Darling2018; Hu
& Sijacki 2018), which could play the same role as the particle
noise present in simulations. Moreover, stellar discs are dynami-
cally cold systems so that through self-gravity any perturbation is
dressed by a polarization cloud, which further hastens the disc’s
evolution.
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APPENDIX A: GRAVITATIONALLY SOFTENED
LINEAR STABIL ITY ANALYSIS

In short, an axially symmetric disc galaxy model is characterized
by a distribution functionF0(E, J� ), with E the speci�c binding
energy andJ� the speci�c angular momentum of a stellar orbit, and
a (positive) gravitational binding potentialV0(r). PYSTAB retrieves
those complex frequencies
 for which a spiral-shaped perturbation
of the form

Vpert(r, �, t ) = Vpert(r )ei(m� Š
t ) (A1)

constitutes an eigenmode with an in�nitesimal amplitude. Here, (r,
� ) are polar coordinates in the stellar disc,Vpert(r) is a complex
function quantifying the mode’s amplitude and phase,m is its
multiplicity, 	 p = R{ 
 } /m its pattern speed, and� { 
 } its growth
rate. A general perturbing potential can always be expanded in
such spirals and, for in�nitesimal amplitudes, these can be studied
independently from each other.

In essence,PYSTAB solves the �rst-order collisionless Boltzmann
equation to �nd the response distribution functionfresp(r, � , vr , v� ,
t) produced by a given perturbationVpert(r, � , t). This response
distribution function generates a response density given by

� resp(r, �, t ) =
�

f resp(r, �, v r , v� , t )dvr dv� , (A2)

which, in turn, corresponds to a response gravitational potential
given by

Vresp(
r ) = G
�

� resp(
r �) � (|
r Š 
r �|) d2
r �, (A3)

with � the inter-particle interaction potential. For Newtonian
gravity, one evidently has

� (|
r Š 
r �|) =
1

|
r Š 
r �|
, (A4)

while Plummer softened interactions are quanti�ed by the choice

� (|
r Š 
r �|) =
1

�
� 2 + |
r Š 
r �|2

, (A5)

with � the softening length.
Since we want to validate our approach by comparing particular

results with the numerical simulations presented in Sellwood
(2012), we mimic the strategies employed in that work, in particular
the softening method. There, the initial condition is generated by
sampling stellar particles from the distribution functionF0(E, J)
evaluated using the mean Newtonian gravitational potentialV0(r),
independent of the gravitational softening that is employed to evolve
the particles through time. Moreover, the axially symmetric force
�eld of the base state is evaluated correctly, i.e. without softening,
while the non-axisymmetric force �eld of the growing waves is
softened. Therefore, in our search for unstable models, we only
implement Plummer-type softening in the response potentialVresp(r,
� , t), but not in the axially symmetric base state potentialV0(r).
Using this strategy, equation (A3) is the only place where the
softened gravitational interaction enters the computation of the
modes. This approach to including gravitational softening in linear
stability analysis is detailed in De Rijcke et al. (2018).

Eigenmodes are identi�ed by the fact that

Vpert(r, �, t ) � Vresp(r, �, t ), (A6)

andPYSTAB employs a matrix method (Kalnajs1977; Vauterin &
Dejonghe1996) to �nd them. To do so, the perturbing potentialVpert

is expanded in a basis of potentials,V . The response to each basis
potential, denoted byV, resp, can likewise be expanded in this basis
as

V, resp =
	

k

Ck Vk. (A7)

If the perturbation is an eigenmode, then the
 -dependentC
matrix can be shown to possess a unity eigenvalue (Vauterin &
Dejonghe1996). This feature is exploited byPYSTAB to identify
the eigenmodes. Since it is assumed that the mode amplitude is
zero at timet = Š , we only consider growing modes, i.e. with
frequencies with a positive imaginary part.
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The formalism contains a number of technical parameters, such as
the number of orbits on which phase space is sampled [here we use
norbit(norbit + 1)/2 orbits withnorbit = 600 in the allowed triangle of
turning points – or pericentre/apocentre – space], the numbernFourier

of Fourier components in which the periodic part of the perturbing
potential is expanded (here we usenFourier = 80), the number of
potential-density pairs (PDPs) that is used for the expansion of the
radial part of the perturbing potential and density (we typically
use 40 PDPs), and the shape and extent of the PDP density basis
functions. Here, we use PDP densities�  with compact radial

support. They cover the relevant part of the stellar disc and are

evenly spaced on a logarithmic scale so the resolution is highest in
the inner regions of the disc. Their radial widths are automatically
chosen such that consecutive basis functions are unresolved and can
be used to represent any smooth radial function. The corresponding
PDP potentials are computed numerically using equation (A3).

This paper has been typeset from a TEX/LATEX �le prepared by the author.
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