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ABSTRACT
The reconstruction of the cosmic horseshoe gravitational lens using the perturbative method
reveals the presence of significant third-order terms. The presence of these higher order terms is
apparent in the numerical expansion of the perturbative fields in Fourier series. The expansion
of the fields at order 2 produces a higher value of the chi-square. Expanding at order 3 provides
a very significant improvement, while order 4 does not bring a significant improvement over
order 3. The presence of the order 3 terms is not a consequence of limiting the perturbative
expansion to the first order. The amplitude and signs of the third-order terms are recovered by
including the contribution of the other group members. This analysis demonstrates that the fine
details of the potential of the lens could be recovered independently of any initial assumptions
by using the perturbative approach.

Key words: gravitational lensing: strong – methods: numerical.

1 IN T RO D U C T I O N

Strong gravitational lensing offers a unique opportunity to probe
the dark haloes potential in the vicinity of the Einstein circle. The
lensing potential relates directly to the projected matter distribution
and as a consequence is a direct measurement of the matter dis-
tribution in the lens. However, deriving a precise relation between
the observations of a gravitational lens and the lensing potential is
generally difficult. There are basically two main problems. First, the
lens may show some degree of complexity and may not be properly
described with simple analytical models. And secondly, some de-
gree of degeneracy in the modelling of the lens is generally present,
see for instance, Saha & Williams (2006), Wucknitz (2002) and
Chiba & Takahashi (2002). A solution to the first point is to use a
general, model-free method for the reconstruction of the potential.
A simple example of a general method is to use a grid to reconstruct
the potential. However, the obvious drawback is that the grid in-
troduces many free parameters and thus aggravates the degeneracy
issue. The example of the grid illustrates the intrinsic difficulty to
develop a method that is both model independent and not prone to
degeneracy issues. A number of solutions to these issues have been
studied in the literature. The first group of solutions is based on the
introduction of constraints on the model. It is obvious that intro-
ducing proper constraints in the model reduces degeneracy and also
the likelihood of false solutions. An example of such constraints is
given by the introduction of regularization schemes for the source,
see for instance, Warren & Dye (2003) and Suyu et al. (2006). An-
other solution is to use a specialized potential expansion like Evans
& Witt (2003) or Trotter, Winn & Hewiit (2000). The merit of these
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expansions is to explore models with large degrees of freedom but
relatively low levels of degeneracy. And finally, another option is to
assume some initial guess for the potential and to refine this guess
using a general numerical scheme. Example of this approach can
be found in Vegetti & Koopmans (2009) and Suyu et al. (2009).
Provided that the initial assumption about the potential model is
justified, these methods offer an interesting exploration of the pa-
rameter space in the vicinity of the initial guess. An interesting
way to tackle the degeneracy problem is to develop a method that
offers a direct relation between the arc morphology and the poten-
tial. This is precisely what the perturbative approach (Alard 2007)
achieves. Some specific examples of reconstruction of arc systems
using the perturbative approach are presented in Alard (2009) and
Alard (2010). In particular, the reconstruction of the lens in Alard
(2009) shows that very complex systems can be handled in this
approach. The application of the perturbative method to the cosmic
horseshoe gravitational lens offers the possibility to push the recon-
struction to a high level of accuracy. The Hubble Space Telescope
(HST) data available for this lens offer an excellent resolution and
a wealth of details allowing us to probe the fine details of the halo
dark matter distribution. However, it is important to note that no
additional data like for instance kinematic data are available for the
cosmic horseshoe lens. As a consequence, it will not be possible
to perform the interesting cross-analysis performed in Czoske et al.
(2008), Barnabè et al. (2009), Barnabè et al. (2011) and Czoske
et al. (2012).

1.1 The perturbative approach

This section will recall the basics of the first-order perturbative
method presented in Alard (2007). In strong gravitational lensing,

C© 2017 The Author
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/467/2/1997/2949366 by C
N

R
S - ISTO

 user on 08 August 2022

mailto:alard@iap.fr


1998 C. Alard

the response to a small perturbation can be large. This high degree
of non-linearity does not seem compatible with a perturbative ex-
pansion, especially a first-order expansion. However, it is important
to note that for tangential gravitational arcs the non-linearity is in
the angular coordinate. The amplitude of the response to a pertur-
bation in the radial coordinate is much smaller. This suggests that
the perturbative expansion should be performed using the radial co-
ordinate. But it does not solve the problem of the high non-linearity
in the angular domain. This issue is solved by introducing a special
perturbative framework. To develop this framework, let us consider
a point source situated at the centre of a circularly symmetric lens.
Due to the symmetry of the potential, the image of the central point
source is an infinity of points situated on a circle. The radius of this
perfect ring is the Einstein radius. For convenience, the Einstein
radius is normalized to unity by using a proper choice of units. The
infinite number of images on the circle is located at all angular po-
sitions. As a consequence at any angular position, an image of the
central point exists. Let us define this perfect ring situation as the
unperturbed situation. Thus, for any image formed in a perturbed
situation at angular position θ an image on the unperturbed unit cir-
cle will also exist at the same angular position θ . As a consequence,
the perturbed image can be considered as a perturbation only in
the radial direction of the specific unperturbed image at the same
angular position. Thus, the response to a general perturbation ψ(r,
θ ) of the circular potential φ0(r) is a radial displacement dr of the
image. The displacement dr is of the same order as the potential
perturbation. The general expression for the potential reads

φ(r, θ ) = φ0(r) + εψ(r, θ ). (1)

And the radial response is

r = 1 + εdr, (2)

where ε � 1. Let us now consider a perturbed situation where the
source is not exactly at the centre of the circular potential but has a
small impact parameter RS of the order of ε. Thus,

RS = εrS. (3)

We are now ready to introduce the perturbative expansions of
equations (1)–(3) in the lens equation. The lens equation reads

RS = r − ∇φ. (4)

Developing the lens equation to the first order in ε leads to

rS = (κ2 dr − f1) ur − df0

dθ
uθ (5)

with

f1 =
[

dψ

dr

]
r=1

; f0 = ψ(1, θ ); κ2 = 1 − d2φ0

dr2
. (6)

It is useful to introduce the impact parameter of the source, namely
rS = r̃S + r0 leading to

r̃S = (
κ2 dr − f̃ 1

)
ur − df̃ 0

dθ
uθ (7)

with

f̃ i = fi + x0 cos(θ ) + y0 sin(θ ), i = 0, 1.

And the impact parameter vector r0

r0 = (x0, y0).

The fields f1 and df0
dθ

have direct and simple physical meaning.
To illustrate this direct relation to the observation we will now

consider a circular source. It is straightforward to solve equation (7)
and obtain the images of the circular contour of the source. For a
contour with radius r0, equation (7) is of second order in dr leading
to the following two solutions,

κ2dr = f̃1 ±
√

r2
0 − df̃0

dθ

2

. (8)

Equation (8) provides a direct relation between the contours of the
images and the perturbative fields f̃1 and df̃0

dθ
. The field f̃1 is the

mean position of the image contour at each angular position θ .
While the field df̃0

dθ
is related to the angular extent of the images.

The field df̃0
dθ

is zero at the centre of the image and has precisely
the value r0 at the image edge. As a consequence, the morphol-
ogy of the fields df̃0

dθ
controls the formation of the images. This

direct relation between the theory and the observations is a unique
feature of the perturbative model. It is interesting to emphasize
at this point that other methods that could appear similar to the
perturbative approach are not equivalent. For instance, the model
developed in Evans & Witt (2003) is not as general as the pertur-
bative expansion. This model would be equivalent to a single field
perturbative expansion, or to say it differently that the second field
would be a fixed dependence of the first one. In the same spirit,
it is also interesting to note that the Trotter et al. (2000) Fourier
expansion is not equivalent to a Fourier series expansion of the per-
turbative fields. The actual Trotter et al. (2000) expansion requires
more coefficients than the corresponding Fourier series expansion
of the fields. It is also clear that by no mean it is required to expand
the perturbative fields in Fourier series, any other representation of
the fields is possible. The main interest of the Fourier series expan-
sion of the fields is the direct relation with the multipole expansion
at the Einstein radius. Since this relation also allows the formal sep-
aration of contributions inside and outside the Einstein radius. In
order to exploit the relation to the multipole expansion, the Fourier
series expansion of the fields will be adopted in this paper. To con-
clude this introduction on the perturbative method, it is important to
note that a single perturbative expansion does not relate to a single
model but rather to a general class of models. Furthermore, such a
class contains an infinite number of models. This is a clear illus-
tration of the general degeneracy present in modelling gravitational
lenses.

2 BU I L D I N G T H E P E RT U R BAT I V E SO L U T I O N

In the perturbative approach (Alard 2007, 2009, 2010), the con-
struction of the solution requires the evaluation of the two fields f1

and df0
dθ

. These two quantities are functional of the angular variable
in the lens plane θ .

2.1 Initial approximation

The circular source model is used as a first guess in order to estimate
the parameters of a piecewise polynomial model of the fields. The
reconstruction of f1 is direct, while df0

dθ
is estimated using the fol-

lowing constraints, the field is near zero in the central region of each
images, and the field is above a threshold value in the dark areas. In
this particular lens, the nature of the first guess is simplified since
the structure of the images reveals a fold configuration. The initial
estimation of f1 is done by taking the mean position of the bright
spots in the image. An estimation of f1 can also be done by estimat-
ing the closest fold configuration. These two estimates give quite
similar results and are both appropriate as a first guess. A similar
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approach is used for df0
dθ

, one can reconstruct the field by estimating
its local behaviour near the nodes and make an interpolation with
the constraint that the field must be above a certain threshold in the
dark areas. Taking the closest fold configuration gives also similar
results for df0

dθ
. This initial guess is consistent with the topological

properties of the solution and is an approximate description of its
general shape. To reach the optimal level of accuracy, this solution
needs to be refined numerically. The numerical refinement could
be performed directly on the polynomial piecewise elements, but
since the Fourier expansion of the fields is related to the multipole
expansion of the potential, it is more efficient to expand the fields
using Fourier series,⎧⎪⎪⎨
⎪⎪⎩

f1 =
∑

n

α1,n cos(nθ ) + β1,n sin(nθ )

df0
dθ

=
∑

n

α0,n cos(nθ ) + β0,n sin(nθ )
. (9)

2.2 Source and image reconstruction

The first step in the construction of the refined numerical model
is to make an initial estimation of the Fourier series coefficients.
This is easily accomplished by computing the scalar product of
the Fourier basis functions with the piecewise polynomial model.
Once the Fourier coefficients are initiated, the optimal value of the
coefficients are computed by minimizing the chi-square between
the re-constructed image of the source and the HST data. The re-
construction of the source and its associated images are complex
processes. Many interesting papers describe this process in detail,
for instance, Tagore & Jackson (2016), Jackson et al. (2015), Birrer,
Amara & Refregier (2015), Birrer et al. (2014), Brownstein et al.
(2012) and Bolton et al. (2012). We will now describe in details
the source reconstruction method used in this work. The accurate
reconstruction of the source and of its associated images requires
to work at a resolution in the image plane smaller than the pixel
size. As a consequence, a finer grid in the image plane is formed
by subdividing the pixels. The typical over-resolution is of a factor
of 10 in each direction. The values of the image on the subgrid are
obtained by B-spline interpolation. This subgrid in the lens plane is
transported in the source plane using the perturbative lens equation
at order 1 (equation 5). The size of the grid in the source plane
is adapted to the resolution of the grid in the lens plane. The grid
size in the source plane has to be small enough to preserve the
smallest details of the original grid in the image plane. Basically a
resolution element in the image plane (a pixel grid) is transformed
to a complex figure in the source plane. This complex figure has a
minimum dimension, and this dimension should be at least larger
than the source plane grid size. Considering now all the grid pixels
in the image plane, we compute the minimum of the local pixel di-
mension. This minimum gives some idea about the size of the grid
in the source plane. In practice to ensure a proper conservation of
information, the actual grid size has to be smaller and thus should
be divided using a proper scaling factor. This scaling factor should
be large enough but not too large, to avoid oversampling the in-
formation. To determine this scaling factor, numerical experiments
were performed using various scaling factors, 1.5, 2 and 3. Each
time and for each scaling factor the process of computing the solu-
tion was repeated by oversampling by a factor of 2 (or equivalently
multiplying the scaling factor by 2). The criterion used to assess the
relevance of a given scaling factor is to compare the regular solution
and the oversampled solution, which should deviate only by the typ-
ical amplitude of the noise fluctuations. The result of the numerical

experiments indicates that a factor of 2 is the minimum in order
to obtain a consistency between the solution and the over-resolved
solution. This numerical process is rather costly but has the merit
of being robust. In some areas, the grid size has to be adapted by
extending the bin size in order to have at least a few points from the
image plane falling into the bin in the source plane. When several
values fall in the same cell of the source plane (which is by defini-
tion the case when several images are formed), the different values
are averaged. Note that averaging the values coming from the image
plane is actually equivalent to an estimation of the source grid point
weight by least-squares minimization. In effect the source model
can be described as a sum of local grid bin, these images do not
overlap and thus have no cross terms in the least-squares matrix.
As a consequence, the least-squares weight is directly the cross
product of the data with the image of the source local bin, which
itself is equivalent to the sum of pixel values covering the image.
As a consequence, this averaging process is actually equivalent to
a semilinear process as described in Warren & Dye (2003), with
the basis functions for the source being the bin in the source plane.
Once a source model is constructed, the corresponding image is
formed by estimating the values of the pixels on the finer grid in the
lens plane. The finer grid image is integrated to produce an image
at the initial resolution.

2.3 Image deconvolution

The source and image reconstruction procedure we described ig-
nores the problem of the convolution of the image with the point
spread function (PSF). A numerical model of the PSF is recon-
structed using the TINY TIM software (Krist, Hook & Stoehr 2011)
and another one is obtained by using the empirical model of An-
derson (2016). In this work, we use these two different models in
order to check for the influence of the PSF model on the result.
Note that the Anderson (2016) empirical model is not available for
the F475W filter but only for the F675W and F875W filters. It is
important to note that the difference between the two PSF models
is small. The Anderson (2016) PSF model is a little sharper than the
TINY TIM PSF model, with a typical difference in relative width of
about a few per cent. To correct for the effect of the PSF convolution
on the image, an iterative Van Cittert method (Van Cittert 1931) is
implemented. The Van Cittert correction is the difference between
the HST image and the image of the source. In order to correct the
source model, this correction is sent back to the source plane. An
image of the corrected source is computed and the method is iter-
ated again. The number of iterations in the deconvolution process
should be optimized to reach the optimal signal-to-noise ratio. The
signal is evaluated by measuring the amplitude of the density peaks
in the source reconstruction. The deconvolution process narrows
the peaks and thus increases the central value, thus the higher the
peak the more the deconvolution process has operated. On the other
hand, the noise is evaluated in low-signal areas of the source and
also using the control points. After a certain number of iterations
no signal improvement is obtained but only the noise amplitude
is increased. It is found that below 5 iterations some signal is lost,
while above 10 iterations only noise is increased. As a consequence,
the optimal number of iterations is between 5 and 10. Note that in
this process the noise is entirely the noise present in the data, and
at each step the noise sent back to the source plane is the actual
level of the Paley decomposition of this noise. The Paley decom-
position refers to a simple wavelet transform also known as the
Littlewood–Paley wavelet, see Daubechies (1992) for more details.
The Paley decomposition of the noise does not change and thus it
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2000 C. Alard

Figure 1. The HST WFC3 image of the cosmic horseshoe lens taken using the F475W filter.

is not useful to re-estimate each time the optimal number of itera-
tions. An important point is that it would be quite risky not to fix
the number of iterations. The obvious risk is that the method would
not converge or converge to a false solution since a jump in the
number of iterations would result in random fluctuations with no
physical meaning. Finally, a number of eight steps were adopted;
however, changing this number and taking any number between 5
and 10 does not produce significant changes.

2.4 Accurate numerical estimation of the fields

The numerical fit of the data is performed on a selected area. First,
the area occupied by the arc is identified by applying a threshold
and then this area is extended by performing a convolution with
the pixels above the threshold. This convolution procedure ensures
that the outliers of the arc are properly included. In addition to the

data point in the selected area, a number of points located in a ring
around the arc are also included. These points correspond to dark
areas and as such are useful to enforce the constraint that no images
are formed in dark areas. These points will be designated as control
points. Note that initially the solution guess is built to form no im-
age in the dark areas. As a consequence, controlling that no images
are formed in the dark areas is more a matter of precaution and also
a precaution to avoid the development of false solutions. It is also
useful to estimate the statistic of the noise for the control points.
The reconstruction of the solution is a complex numerical process,
it is thus interesting that this process itself does not generate spu-
rious noise. Since the control points are located in dark areas, the
statistics of the noise should remain that of pure noise, any devia-
tion indicating a problem. This control of the noise statistics is an
additional precaution to ensure that no spurious solution is gen-
erated. In the first step of the numerical refinement the fields are

MNRAS 467, 1997–2008 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/467/2/1997/2949366 by C
N

R
S - ISTO

 user on 08 August 2022



Cosmic horseshoe 2001

Figure 2. The initial guess (dark colour) superimposed with the refined
solution at Fourier order 2. The field df0

dθ
is represented by a continuous line,

while f1 is represented with a dotted line.

modelled by order 2 Fourier series. Given a model of the fields a
reconstruction of the source and images of the source are performed
using the method described is Sections 2.2 and 2.3. Using the dif-
ference between the reconstructed images and the HST images a
weighted chi-square is estimated. The weights applied in the chi-
square estimation are computed using the noise expectation (see
Section 2.5). The reconstruction is applied first to the blue (F475W)
HST WFC3 calibrated image (see Fig. 1). The main asset of the
blue band is that the residual contribution of the central deflector
to the flux of the arc is very faint. At this point, it is important to
note that the reconstruction process that we will now describe for
the F475W band is applicable to the F675W and F875W bands. As
a consequence, the results for these two former bands will be given
directly without needing a redescription of the process each time.
Despite the weakness of the outer wings from the main galaxy, a
Sérsic model was fitted to the deflector and the contribution around
the arc was subtracted (see Figs 12–14). The typical amplitude of
the subtraction is at the noise level. The refinement process is per-
formed on this processed image of the arc by using the Simplex
method (Nelder & Mead 1965). The approximate guess for the
coefficients is used to initialize the Simplex, and start the mini-
mization process of the chi-square. It is important to note that the
result of this minimization process does not produce significantly
different results if the initial guess is changed. Experiments were
conducted by changing the parameters of the initial guess by an
amplitude that is of the order of the refinement. The results of these
experiments indicate a general convergence to the same solution.
The stability of the solution is due to the perturbative approach.
This method provides a fundamental reduction of the degeneracy
problem encountered in the modelling of gravitational lenses. The
result of the Simplex minimization is presented in Figs 2 and 3.
In the next step, the expansion in Fourier series of the numerical
solution is extended to higher order. Fir st it is extended to order
3, the initial guess is the second-order solution with zeros for the
third-order terms. Similarly the solution is extended to order 4. In
the fit of the Fourier expansion of the fields, an important problem
is to evaluate the reasonable number of parameters to adjust with
respect to the information and constraints available. The constraints
available in this lens come from the conjugate images of the source
local density peaks. In Fig. 10, we observe four main density peaks
inside the caustics and seven outside. Since there are three con-

Figure 3. The solution for the fields at order 2 (dark colour) superimposed
with the refined solution at Fourier order 4. The field df0

dθ
is represented by

a continuous line, while f1 is represented with a dotted line.

Table 1. The χ2/dof as a function of the order of the Fourier series
expansion of the fields for the three different filters.

Order 2 3 4

χ2/dof (F475W) 2.29 1.38 1.28
χ2/dof (F675W) 1.88 1.32 1.22
χ2/dof (F875W) 2.14 1.52 1.47

straints per image (the coordinates and the amplitude) and that if N
image are formed (N−1) effective equations exists, we find a total
of 45 constraints. This total number of constraints largely exceeds
the number of parameters of the order of 4 Fourier expansion that
contains 17 parameters. We will now turn to the essential discussion
of the noise and statistical properties of the solutions.

2.5 Noise and statistical properties of the solutions

The statistical expectation of the noise in the image σ 0 corresponds
to the photon noise derived from the photon counts. Using this
statistical expectation for the noise the chi-square and χ2/dof are
estimated for the different models (see Table 1). The corresponding
histogram of the normalized deviations for each model is presented
in Fig. 4. For comparison, the χ2/dof for the two other filters avail-
able in the HST archive are also presented in Table 1. There is a very
marked difference between the χ2/dof obtained at orders 2 and 3.
The gain in χ2 obtained by going to order 4 is much less spectacular.
This suggests that the order 3 terms are important and significant.
To test this hypothesis, it is essential to estimate the amplitude of
the noise fluctuation for the Fourier coefficients. The least-squares
minimization is non-linear, but can always be linearized near the
optimal solution. Let us define the optimal solution:

P = [α0,i , β0,i , α1,i , β1,i]{i=1..4}.

We linearize the lens model M(P) near P :

M(P + dP ) = M(P) +
∑

n

∂M

∂pn

dpn, (10)

where pn and dpn are the components of the vectors P and dP,
respectively. The model in equation (10) is formally equivalent to a
linear least squares with basis vectors, ∂M

∂pn
. As a consequence, the
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2002 C. Alard

Figure 4. Histograms of the normalized deviations for the order 2 (green),
order 3 (blue) and order 4 (red). The dashed line corresponds to the theoret-
ical Gaussian expectation.

Figure 5. The amplitude of the Fourier components as a function of the
order of the component. The red line represents the 4σ limit. The aster-
isks represent the components of df0

dθ
, while the diamonds represent the

components of f1.

errors on the parameters are directly the diagonal elements of the
inverse of the corresponding normal least-squares matrix. Explicitly,
the normal least-squares matrix elements are

Aij =
∑
Image

1

σ 2
0

∂M

∂pi

∂M

∂pj

.

Defining C = A−1 the variance associated with parameter pn is,
σ n = Cnn. A numerical estimation of the matrix elements Aij shows
that the associated variance elements σ n are almost constant and
equal to 0.510−3 in units of the Einstein radius RE. The calculation
of the variance of the Fourier components allows a direct estimation
of the significance of the components at different orders (see Fig. 5).
It is clear in Fig. 5 that components of order n ≥ 3 are well above the
4σ limit. This is a direct confirmation that the order 3 components
are very significant and essential to the modelling of this lens. The
amplitude of the order 4 component is not significant for the df0

dθ

field and is only marginally significant for the f1 field.

3 A NA LY Z I N G T H E SO L U T I O N

The structure of the fourth-order solution is now explored in details.
The reconstruction for the F475W filter in the lens plane is presented
in Fig. 6. A comparison of the fine details of the solution and the
original HST image in the F475W band is presented in Fig. 7. A
general appreciation of the quality of the reconstruction is also pro-
vided by the difference image with the original image (see Fig. 8).
For consistency, the solution in the F475W band is compared to the
solutions in the 2 other bands, see Fig. 15 and Table 2 for more
details. The comparison shows that the solutions in the different
bands are compatible considering the noise fluctuations. Similarly,
the consistency between the solutions in the same band for the two
different PSF models is evaluated in Fig. 15 and Table 2. The results
obtained indicate that the solutions in the same band for different
PSF are consistent within the expectation of the noise fluctuations.
It is interesting to note that the result is not influenced by changing
slightly the PSF model and that the method is stable with respect to
small changes in the PSF model. The reconstruction in the source
plane is presented in Fig. 9. Note that the source reconstruction
was obtained by co-adding the reconstructions obtained in the three
bands. For a more detailed view of the source, see Fig. 10. It is inter-
esting to note that Bellagamba, Tessore & Metcalf (2017) derived a
quite similar source model using a completely different approach.

3.1 Effect of degeneracy induced by higher order
perturbative terms

The first-order perturbative expansion neglect the effect of higher
order terms in the expansion. For most gravitational arcs, it is possi-
ble to reduce the higher order expansion to a first-order expansion.
Which means that some small degeneracy problem is present. The
amplitude of the correction due to higher order terms is evaluated
using realistic (NFW) models for the halo of the deflector. Let us
consider a purely elliptical NFW halo that by definition has no
third-order distortion of its isophotes. We consider the perturbative
expansion of this elliptical NFW model to perturbative order 2. The
forced reduction of this expansion to order 1 introduces additional
degenerate terms in the expansion. Could these terms be responsi-
ble for the order 3 terms that we observe in the lens model? The
expansion at order 2 reads (Alard 2016)

rS =
(

κ2 dr − κ3
dr2

2
− f̃1 − f2dr

)
ur

−
(

df̃0

dθ
+

(
df1

dθ
− df0

dθ

)
dr

)
uθ

κ3 =
[

d3ψ0

dr3

]
r=1

(11)

and

f2 = ∂2ψ

∂r2
.

Assuming a thin arc model,

dr = f̃1

κ2
+ εdr2. (12)

The arc in this lens presents a thickness in the radial direction
that is small with respect to the general displacement of the fields.
Thus, equation (12) is certainly appropriate for an evaluation of
the amplitude of the third-order terms. Introducing equation (12) in
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Cosmic horseshoe 2003

Figure 6. The reconstructed image in the F475W band.

equation (11) leads to (Alard 2016)

r̃S =
(

κ2dr2 − κ3
f̃ 2

1

2κ2
2

− f̃1f2

κ2

)
ur

−
(

df̃0

dθ
+

(
df1

dθ
− df0

dθ

)
f̃1

κ2

)
uθ . (13)

Equation (13) is equivalent to equation (7) provided that the follow-
ing substitutions are performed:

⎧⎪⎪⎨
⎪⎪⎩

f̃1 → f̃1 + κ3
f̃ 2

1
2κ2

2
+ f̃1f2

κ2

df̃0

dθ
→ df̃0

dθ
+

(
df1

dθ
− df0

dθ

)
f̃1

κ2

. (14)

To evaluate the amplitude of the additional terms in equation (14),
we use the NFW halo model. The potential for an NFW halo reads
(Meneghetti, Bartelmann & Moscardini 2003)⎧⎨
⎩

φ(u) = 1
1−ln(2) g(u)

u =
√(

(1 − η)x2 + (1 + η)y2
) . (15)

The parameter η is related to the ellipticity of the halo. The potential
normalization implies that the associated Einstein radius is equal to
the typical halo size, which is a common situation for gravitational
lenses. The definition of the function g(u) reads

g(u) = 1

2
ln

(u

2

)2
+

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2arctan2

(√
u − 1

u + 1

)
u ≥ 1

−2arctanh2

(√
1 − u

u + 1

)
u < 1.

(16)

MNRAS 467, 1997–2008 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/467/2/1997/2949366 by C
N

R
S - ISTO

 user on 08 August 2022



2004 C. Alard

Figure 7. Details of the HST image in the F475W band (left) compared
with the corresponding area in the reconstructed image (right).

Using the NFW potential (see Meneghetti et al. 2003) defined in
equation (15) the functional, f0, f1 and f2 are calculated. The result
is introduced in equation (14) to evaluate the correction due to
the order 2 terms. For the f1 field the correction is �0.2x0η and
�0.2y0η for the cos (3θ ) and sin(3θ ) terms, respectively. Where
(x0, y0) are the source impact parameters. The correction for f0 is
of smaller amplitude. For this lens, x0 � 0.03, y0 � 0.13 and η

� 0.07. As a consequence, the largest third-order term is only of
�2 × 10−3 that is similar to the 4σ noise limit. Thus, it is clear from
this analysis that the observed third-order terms in this lens are not
the consequence of neglecting higher order terms in the perturbative
expansion.

4 IN T E R P R E TATI O N O F TH E L E N S MO D E L

The reconstruction of the lens is directly related to the geome-
try of the potential. The potential iso-contours equation, dr = −f0

(Alard 2009) is represented in Fig. 11. By relating the perturbative
expansion to the multipole expansion (Alard 2009), it is simple to re-
construct the potential generated by the distribution of matter inside
the Einstein circle (inner) and outside the Einstein circle (outer).
The iso-contours for the outer potential are represented in Fig. 11,
they are close to the potential iso-contours. As a consequence, most
of the potential is generated outside the Einstein circle, this is even
more true for the third order terms where over 90 per cent of the
potential originates in the outer distribution. The outer distribu-
tion includes a number of galaxies belonging to a small group of
galaxies where the central deflector is the main element (Belokurov
et al. 2007; Spiniello et al. 2011; Agnello, Auger & Evans 2013,).
Thus, it is interesting to evaluate the perturbations due to the ac-
companying galaxies in the group. The first step is to identify the
galaxies around the lens. A general search for galaxies in a ra-
dius corresponding to the size of the group (�1 arcmin; Belokurov
et al. 2007) was performed. Objects were identified by looking for
local maxima’s in a moving mesh with a size of 25 pixels. Punctual
objects with corresponding width not significantly larger than the
PSF were eliminated. The Petrosian magnitude (Petrosian 1976)
is evaluated for the remaining objects in the different photomet-
ric bands. The contribution of each galaxy to the lensing fields is
estimated by assuming a proportionality relation between the red
(F875W) flux and the total mass. The potential of the perturbator
is evaluated by considering the three following models: (i) a spher-
ical isothermal sphere, (ii) a point mass and (iii) a spherical NFW
profile. For each model, the lensing fields f1 and df0

dθ
are evaluated

using equation (9). It is interesting to note that about 90 per cent
of the contribution to the lensing perturbation is due to elliptical
galaxies with colour similar to the central galaxy. Considering that
the mass-to-light ratio of elliptical galaxies dependence is weak as a
function of the galaxy size (see Djorgovski & Davis 1987; Dressler
et al. 1987; Bender, Burstein & Faber 1992; Cappelari et al. 2013;
Desmond & Wechsler 2017), a good approximation is to assume
a constant mass-to-light ratio for this subgrid of galaxies. The flux
normalization factor is applied by dividing each flux by the flux of
the main galaxy. As a result, all masses are expressed in units of
the main galaxy mass. In this reconstruction another source of error
comes from the ellipticity of the potential. For an axis ratio of the
ellipse equal to 1 + η, the typical percentage in error induced by
the ellipticity on the fields f1 and df0

dθ
is of the order of η. For dark

matter haloes a typical value is η � 0.2. The uncertainty on mass is
at least of about 10 per cent since the flux-to-mass proportionality
relation applies only approximately to elliptical galaxies. As a con-
sequence, an error of about 25 per cent at least is expected for this
kind of model. An estimation of the fields for the different models
is presented in Table 3. The point mass and NFW model predictions
for the third-order coefficients are in general agreement with the
values reconstructed from the lens model. As shown by the relative
errors presented in Table 4, the isothermal model exceeds the error
expectation, while the errors for two other models are consistent
with the 20 to 30 per cent relative error expectations. It is interest-
ing to compare these results with Dye et al. (2008), who could not
find any contribution coming from the other group members. How-
ever, Dye et al. (2008) used low-resolution images taken from the
ground and could not reach the level of accuracy obtained with the
HST images. A more recent analysis of the cosmic horseshoe lens
was performed by Brewer, Huijser & Lewis (2016), who could not
find substantial evidence for substructures in the lens. However, the
problem of evaluating the contribution of substructures in the lens is
not equivalent to the evaluation of the group members contributions.
The elements of the group are more massive than substructures and
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Cosmic horseshoe 2005

Figure 8. The absolute value of the difference between the HST image and the reconstructed image normalized by the noise expectation (F475W band). Note
that additional points were added in pure noise area as control points (one-third of total points).

Table 2. The reduced chi-square of the difference between the Fourier
coefficients for different photometric bands (first two columns), and for the
2 PSF models (last two columns).

F875W– F675W– F875W–PSF(1)– F675W–PSF(2)–
Bands F475W F475W F875W–PSF(2) F675W–PSF(2)

σ 1.46 0.93 0.75 1.2

on average are situated at larger distances than substructures. Thus,
it is not surprising that the Brewer et al. (2016) analysis failed to
identify the contribution of the group members.

5 C O N C L U S I O N

The perturbative method allowed the reconstruction of the cosmic
horseshoe lens without making any particular assumptions about the

Figure 9. The reconstruction of the source superimposed with the caustic
system of the lens.
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Figure 10. A detailed view of the source main component.

nature of the lens. The inclusion of third-order terms was dictated
only by the necessity to optimize the chi-square. These third-order
terms were related to the group contribution later in the analysis,
but it was not necessary to make any hypothesis about the group
contribution when reconstructing the lens. In this case, the group
is made of quite a large number of galaxies and trying to make
an extensive model including each object would require too many
parameters. Such models including many parameters are generally
plagued with degeneracy issues, which is a constant re-occurring
problem in conventional gravitational lens analysis. This analysis
does not have to include all these parameters but reduces the lens
to a number of fundamental parameters. It is clear that this minimal
set of parameters (basically the expansion of the fields to order 3)
corresponds to the expectation of many models, when the model
includes more parameters than the fundamental parameters (which
would be the case here when modelling all the group). As a con-
sequence, it is clear that the perturbative approach is a method of
choice for complex systems. The perturbative approach allows a
general, non-degenerate, fast and simple analysis of any gravita-
tional lens system. It is important to note that even in the case of

Figure 11. The potential iso-contours (red line) superimposed with the iso-
contours corresponding to the outer distribution (black line). A circle with
radius unity is plotted for reference (blue line).
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Cosmic horseshoe 2007

Table 3. Models of the perturbation due to the group members.

Model df0
dθ

; cos(3θ ) df0
dθ

; sin(3θ ) f1; cos (3θ ) f1; sin (3θ )

Isothermal 0.002 − 0.0073 0.0071 0.001 75
Point mass 0.01 − 0.0123 0.0126 0.01
NFW 0.0094 − 0.011 0.011 0.0096
Reconstruction 0.011 − 0.0078 0.0089 0.014

Table 4. Relative deviation from recon-
structed coefficients for different model of the
perturbators potential.

Model df0
dθ

f1

Isothermal 0.68 0.75
Point mass 0.36 0.32
NFW 0.26 0.3

Figure 12. The fit of a Sérsic profile for the F475W band. The corresponding
index of the Sérsic profile is 0.38. The base line represents the zero level in
flux. Note the scatter in the data points due to the presence of the arc near
the position r

rE
� 1.

Figure 13. The fit of a Sérsic profile for the F675W band. The corresponding
index of the Sérsic profile is 0.36. The base line represents the zero level in
flux. Note the scatter in the data points due to the presence of the arc near
the position r

rE
� 1.

Figure 14. The fit of a Sérsic profile for the F875W band. The corresponding
index of the Sérsic profile is 0.31. The base line represents the zero level in
flux. Note the scatter in the data points due to the presence of the arc near
the position r

rE
� 1.

Figure 15. The difference between the Fourier coefficients obtained in the
F475W band and the F875W band (red cross), overplotted with the difference
between the F475W and F875W band (blue cross). The difference between
the Fourier coefficients for two different PSF models is also represented, for
the F875W band (red triangles), and for the F675W band (blue triangles).
The two horizontal lines represent the 3σ limit.

an a priori simple lens system it is useful to apply the perturbative
method since this method could reveal unexpected complex con-
tributions. Essentially in the same way that the contribution of the
group was discovered without making any initial hypothesis about
the presence of the group.
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