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ABSTRACT
This work describes a full Bayesian analysis of the Nearby Universe as traced by galaxies of
the 2M++ survey. The analysis is run in two sequential steps. The first step self-consistently
derives the luminosity-dependent galaxy biases, the power spectrum of matter fluctuations
and matter density fields within a Gaussian statistic approximation. The second step makes a
detailed analysis of the three-dimensional large-scale structures, assuming a fixed bias model
and a fixed cosmology. This second step allows for the reconstruction of both the final density
field and the initial conditions at z = 1000 assuming a fixed bias model. From these, we
derive fields that self-consistently extrapolate the observed large-scale structures. We give two
examples of these extrapolation and their utility for the detection of structures: the visibility
of the Sloan Great Wall, and the detection and characterization of the Local Void using DIVA,
a Lagrangian based technique to classify structures.

Key words: methods: data analysis – methods: statistical – galaxies: statistics – large-scale
structure of Universe.

1 IN T RO D U C T I O N

Over the last decades, the wealth of galaxy redshift catalogues has
stupendously increased. Nowadays millions of galaxies with pre-
cision positioning on the sky and accurate redshifts are available
and have to be handled and processed on a routinely basis. For ex-
ample the Sloan Digital Sky Survey (SDSS; e.g. York et al. 2000;
Abazajian et al. 2009; Ahn et al. 2014) provides millions of galaxy
redshifts and the Six Degree Field Galaxy Redshift Survey (6dF-
GRS; Jones et al. 2009), covering the southern sky, contains nearly
70 000 galaxies with accurate redshift measurements. While the
amount of data has steadily increased, progress in the development
of modern data analysis techniques has only been made in recent
years. These advances are particularly crucial to interpret evermore
complex data sets where time evolution of objects (e.g. star for-
mation rate), non-linear dynamics (e.g. galaxy cluster formation),
foreground subtraction as well as systematic selection effects be-
come increasingly important.

Inferring 3d density fields in a formal and rigorous Bayesian
framework has several advantages. The first and foremost advan-
tage is that all observational aspects are treated self-consistently
yielding inferred 3d density fields that do not require any post-
analysis correction. The second advantage is that the model yields
more information on the density field than what is readily us-
able in catalogues. For example the tidal field created by visible

� E-mail: lavaux@iap.fr

large-scale structures may trigger the collapse in other unobserved
area of the Universe. This can raise the interesting possibility of
predicting where structures (such as walls, filaments, clusters and
voids) form. The actual presence of such inferred structures can then
be tested via dedicated observations a posteriori. Specifically, this
work focuses on developing a probabilistic structure predictor. We
will concentrate on the void aspect in difficult unobserved regions
like the Galactic plane. To characterize these voids we will make
use of the previously presented DIVA framework (Lavaux & Wandelt
2010).

Particularly successful approaches to solving such ill-posed in-
verse problems rely on the Bayesian formulation of parameter in-
ference. We define a forward data model that indicates how a con-
tinuous three-dimensional density field is transformed into a set of
predicted observables which are then directly compared to data. In
our case the observable is the number density of galaxies in co-
moving space. Conversely, given the position of galaxies we may
infer this density field provided it is decomposed on an adequate
finite basis. In this context, the data model should include every-
thing that may happen between the density field to the detection
of a galaxy by an observer, which includes for example photon
detection, galaxy detection efficiency. The full problem cannot be
solved in its entirety but for sufficiently well-constructed samples
only basic selection criterion, such as flux limitation and overall
redshift completeness, are important.

Even in this optimistic context, the parameter inference problem
is daunting: for typical inferences we need to treat on the order
of 106–107 highly degenerate parameters comprised typically of
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Table 1. Bias parameters corresponding to the power-law bias model, as described in the text, for six galaxy sub-
samples, sub-divided according both to their absolute K2M++-band magnitudes and their apparent magnitudes.
The sub-sample 2 is taken as fiducial with a bias set to one.

Sample selection Identifier α� Ñ�

−25.00 < MK
2M++ < −23.67 0 1.74 (1.04 ± 0.01) × 10−2

12.5 < K2M++ ≤ 12.5 and −23.67 < MK
2M++ < −22.33 1 1.21 (8.6 ± 0.1) × 10−2

−22.33 < MK
2M++ < −21.00 2 1.00 (1.37 ± 0.03) × 10−1

−25.00 < MK
2M++ < −23.67 3 1.70 (1.12 ± 0.01) × 10−2

K2M++ ≤ 11.5 and −23.67 < MK
2M++ < −22.33 4 1.20 (8.60 ± 0.07) × 10−2

−22.33 < MK
2M++ < −21.00 5 1.15 (1.24 ± 0.02) × 10−1

density per volume elements and power-spectrum values. There ex-
ists a wealth of literature on the derivation of power spectra and cor-
relation functions from noisy and incomplete data (see e.g. Landy
& Szalay 1993; Tegmark et al. 2004; Percival 2005). However, they
never fully grasp the complexity of the posterior of a blind anal-
ysis of power spectra in data. More recent developments, notably
stimulated by the requirement of the cosmic microwave background
community (see e.g. Eriksen et al. 2004; Jewell, Levin & Anderson
2004; Wandelt, Larson & Lakshminarayanan 2004), have pushed
the limits of density and power-spectrum reconstruction for galaxy
redshift catalogue (Jasche et al. 2010a; Jasche & Kitaura 2010;
Jasche & Lavaux 2015).

All the aforementioned techniques still require a good knowl-
edge on how tracers have been selected. To have the largest, deep-
est and cleanest galaxy redshift compilation we propose to use
the 2M++ (Lavaux & Hudson 2011) galaxy compilation. This
survey offers a near full sky coverage at a magnitude K2M++ ≤
11.5 and above 50 per cent coverage for K2M++ ≤ 12.5. Evo-
lutionary effects of galaxies were corrected in average and the
selection is done for a consistent population of galaxy. Finally,
redshift completeness maps are provided for the two magnitude
selections.

The data application presented in this works builds upon our pre-
viously developed Bayesian data analysis algorithms ARES (Algo-
rithm for REconstruction and Sampling; Jasche & Wandelt 2013b)
and BORG (Bayesian Origin Reconstruction from Galaxies; Jasche
& Wandelt 2013a). Both these algorithms perform a Bayesian anal-
ysis of the 3d distribution of galaxies albeit with different assump-
tions on the noise and on the dynamics of the tracers. This work
is structured as follows. In Section 2, we give a description of the
2M++ galaxy compilation which is the data that we are aiming at
modelling. Then in Section 3, we present the pipeline and give a
reminder on the working of the ARES and BORG models and algo-
rithms. In Section 4, we present the setup and the convergence tests
of the Bayesian inference. In Section 5, we analyse the results in
the context of cosmography and structure classification. Finally, in
Section 6 we conclude.

2 T H E 2 M++ SURV EY

In this work, we follow a similar procedure as described in Jasche
et al. (2010b) and more recently in Jasche, Leclercq & Wandelt
(2015), by applying the BORG algorithm to the 2M++ galaxy com-
pilation (Lavaux & Hudson 2011). The 2M++ is a superset of
the 2MASS Redshift Survey (2MRS; Huchra et al. 2012), with a
greater depth and a higher sampling than the IRAS Point Source
Catalogue Redshift Survey (Saunders et al. 2000). The photometry
is based primarily on the Two-Micron-All-Sky-Survey (2MASS)

Extended Source Catalogue (2MASS-XSC; Skrutskie et al. 2006),
an all-sky survey in the J, H and KS bands. Redshifts in the KS

band of the 2MRS are supplemented by those from the SDSS Data
Release Seven (DR7; Abazajian et al. 2009), and the 6dFGRS Data
Release Three (Jones et al. 2009). Data from SDSS were matched
to that of 2MASS-XSC using the NYU-VAGC catalogue (Blanton
et al. 2005). As the 2M++ draws from multiple surveys, galaxy
magnitudes from all sources were first recomputed by measuring
the apparent magnitude in the KS band within a circular isophote
at 20 mag arcsec2. Following a prescription described in Lavaux
& Hudson (2011), magnitudes were then corrected for Galactic
extinction, cosmological surface brightness dimming and stellar
evolution. After corrections, the sample was limited to K2M++ ≤
11.5 in regions not covered by the 6dFGRS or the SDSS, and lim-
ited to K2M++ ≤ 12.5 elsewhere. Other relevant corrections which
were made to this catalogue include accounting for incompleteness
due to fibre collisions in 6dF and SDSS, as well as treatment of the
zone of avoidance (ZoA). Incompleteness due to fibre collisions was
treated by cloning redshifts of nearby galaxies within each survey
region as described in Lavaux & Hudson (2011).

The treatment of the ZoA in the 2M++ will be ignored for
this work as the Bayesian machinery naturally and self-consistently
accounts for incomplete observations. The galactic plane will thus
be simply obscured, the objects marked as cloned removed from the
catalogue and the completeness set to zero in that region. The ZoA
is defined in the 2M++ as the region delimited by |b| ≤ 5◦ for l >

30◦ and l < 330◦, and |b| ≤ 10◦ for l ≤ 30◦ or l ≥ 330◦.
The galaxy distribution on the sky and the corresponding selec-

tion at K2M++ ≤ 11.5 and 11.5 < K2M++ ≤ 12.5 are given in Fig.
1. The top row shows the data used in our analysis. The lower
row shows the redshift incompleteness, i.e. the number of acquired
redshifts versus the number of targets, for the two apparent mag-
nitude bins. We note that the galactic plane clearly stands out and
that the incompleteness is evidently inhomogeneous and strongly
structured.

In addition to the target magnitude incompleteness, and the red-
shift angular incompleteness, one may also worry about the depen-
dence of the completeness with redshift. This is not a problem for
the lower K2M++ ≤ 11.5 which is essentially 100 per cent complete.
We do not expect much effect in the fainter magnitude bins as the
spectroscopic data come from SDSS and 6dFGRS which have both
an homogeneous sampling and have fainter magnitude limits as the
2M++.

We account for radial selection functions using a standard lu-
minosity function �(L) proposed by Schechter (1976). Using
this function, we can deduce the expected number of galaxies in
the absolute magnitude range, observed within the apparent mag-
nitude range of the sample at a given redshift. The α and M∗
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Figure 1. We show here the 2M++ galaxy compilation. All plots uses a Galactic coordinate system. Top row: the 69081 galaxies that we used in the ARES
and BORG analysis. Each galaxy is colour coded according to its apparent redshift. Bottom row: redshift incompleteness mask for the two magnitude cuts
K2M++ ≤ 11.5 and 11.5 < K2M++ ≤ 12.5. Blue corresponds to zero completeness, which is equivalent in our scheme to be masked out.

parameters are given for the KS band in the line labelled ‘|b| >

10, K < 11.5’ of the table 2 of Lavaux & Hudson (2011), i.e.
α = −0.94, M∗ = −23.28. The target selection completeness of a
voxel, indexed by p, is then

ct
p =

∫
Vp

d3x
∫ Lmax

Lapp(|x|) �(L)dL

Vp

∫ Lmax

Lmin
�(L)dL

, (1)

where Vp the comoving coordinate set spanned by the voxel, and
Vp = ∫

Vp
d3x. The full completeness of the catalogue is derived

from the product of ct and the map corresponding to the considered
apparent magnitude cut given in the bottom row of the Fig. 1 after
its extrusion in three dimensions.

Finally, we note that our analysis accounts for luminosity-
dependent galaxy biases by following the approach as described
in Jasche et al. (2015). In order to do so, the galaxy sample is sub-
divided into three equidistant bins in absolute K-band magnitude in
the range −25 < K2M++ < −21. The galaxy sample is further split
into two sub-sets depending on the apparent magnitude: if K2M++ ≤
11.5 it belongs to the sample one, otherwise, 11.5 < K2M++ ≤ 12.5
it belongs to the sample two. The bias in each of these bins is kept
constant to greatly reduce the time complexity burden, at the cost
of losing a full marginalization according to these parameters. The
determination of these values is left to ARES. The mean density of
tracers, and thus the Poisson noise amplitude, in each of these bins
is sampled.

As will be described in more detail below, splitting the galaxy
sample permits us to treat each of these sub-samples as an individual
data set, with its respective selection effects, biases and noise levels.

3 M E T H O D O L O G Y

In this section, we give a brief introduction to the Bayesian inference
framework BORG.

3.1 The ARES framework

The ARES framework is a full Bayesian large-scale structure infer-
ence method targeted at precision recovery of cosmological power
spectra from three-dimensional galaxy redshift surveys. Specif-
ically, it performs joint inferences of three-dimensional density
fields, cosmological power spectra as well as luminosity-dependent
galaxy biases and corresponding noise levels for different galaxy
populations in the survey (Jasche et al. 2010a; Jasche & Wandelt
2013b).

The complete problem solved by ARES has many parameters.
In the case of a single population, the data model implemented in
ARES corresponds to the following:

Ni = N̄Ri(1 + bDiδi) + εi, (2)

with Ni the number of galaxies in the voxel i, N̄ the mean density
of the galaxy population, Ri the overall linear response operator
of the survey (i.e. the redshift and the target completeness), b the
population bias, Di the density growth factor in the voxel i, δi

the linear density at a reference redshift in the voxel i and εi a
random instrumental noise. The noise is assumed to be Poissonian
but approximated by a Gaussian distribution and neglecting the
influence of the density fluctuations themselves. Thus, we have

〈εiεj 〉 = N̄Riδ
K
i,j , (3)
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3172 G. Lavaux and J. Jasche

with δK
i,j = 1 is one for i = j and zero otherwise. Finally, we add

an isotropic Gaussian prior to δi. All the details of the general
model and the posterior formulation are given in Jasche & Wandelt
(2013b). The linear bias model should be generally adequate to
model the largest scale density fluctuations. In that regime, through
Taylor expansion, all bias models are equivalent. However, this is
not the case at the smallest scales considered here (∼2.3 h−1 Mpc )
though we think that we should not be strongly biased by this
assumption. Effectively, we expect the signal to noise to ratio of
the measurement of density modes to peak at intermediate scales
(∼10 h−1 Mpc ) and decreasing sharply both at small (for Poisson
sampling reasons) and large (for selection reasons) scales. Thus, the
measured bias should actually represent the one at this typical scale.
We finally note that the final confirmation that the bias model is not
causing problems is the a posteriori confirmation that the recovered
power spectrum is in agreement on large scales.

To summarize the posterior from which we want to draw samples
is

logP(δi, N̄, b, P (k)|Ni) = C −
∑

i

(N̄Ri(1 + bDiδi) − Ni)2

2N̄Ri

+M log N̄ −
∑

k

(
|δ̂k|2
2Pk

− 1

2
log Pk

)
, (4)

with M the number of free voxels with non-vanishing selection Ri,
and Pk the discrete power spectrum of the density field. Such a
posterior probability is too complex to analyse directly. In order
to provide full Bayesian uncertainty quantification, the algorithm
explores the joint posterior distribution of all these quantities via an
efficient implementation of high-dimensional Markov Chain Monte
Carlo methods in a block sampling scheme. In particular, the sam-
pling consists in generating from a Wiener posterior random re-
alizations of three-dimensional density fields {δi} constrained by
data {Ni}. Following each generation, we produce conditioned ran-
dom realizations of the power spectrum {Pk}, galaxy biases {bq}
and noise levels {N̄q} through several sampling steps. Iteration of
these sampling steps correctly yields random realizations from the
joint posterior distribution. In this fashion, the ARES algorithm ac-
counts for all joint and correlated uncertainties between all inferred
quantities and allows for accurate inferences from galaxy surveys
with non-trivial survey geometries. Classes of galaxies with differ-
ent biases are treated as separate sub-samples, allowing even for
combined analyses of more than one galaxy survey.

This methodology has also been demonstrated to correctly treat
anti-correlations between bias amplitudes and power spectrum,
which are not taken into account in traditional approaches to power-
spectrum estimation, a 20 per cent effect across large ranges in
Fourier space (Jasche & Wandelt 2013b). In this work, we use an up-
graded version of the ARES which employs the messenger method
discussed in Elsner & Wandelt (2013). This particular implemen-
tation of the Wiener posterior sampling has been demonstrated to
improve upon the statistical efficiency of previous implementations
(Jasche & Lavaux 2015). In this work, we use the ARES algorithm
to infer and calibrate luminosity-dependent galaxy biases for the
2M++ galaxy survey.

3.2 The BORG algorithm

In addition to ARES, this work also capitalizes on the BORG (Jasche
& Wandelt 2013a) algorithm to perform a chrono-cosmographical
analysis of the 2M++ galaxy survey. The BORG algorithm is a fully
probabilistic inference machinery aiming at the analysis of linear

and mildly non-linear matter density fields in galaxy observations.
The algorithm incorporates a physical model for gravitational struc-
ture formation, which translates the traditional task of reconstruct-
ing the 3d density field into the task of inferring corresponding
initial conditions at an earlier epoch from present cosmological
observations. This results in a highly non-trivial Bayesian inverse
problem, requiring to explore the very high-dimensional and non-
linear space of possible solutions to the initial conditions problem
from incomplete observations. These parameter spaces typically
consist in 106–107 parameters, corresponding to the discretized
volume elements of the observed domain.

As for ARES, the BORG algorithm is assuming a specific data
model to interpret the galaxy redshift catalogue and infer the three-
dimensional density field. We do not describe here the full problem
solved by BORG as such details are already described in Jasche
& Wandelt (2013a) and Jasche, Leclercq & Wandelt (2015). We
remind here none the less the basic assumptions. BORG assumes
that the distribution of galaxies, after binning in volumetric ele-
ments, are Poisson distributed according to some expectation. This
expectation, λi, of the galaxy distribution in the voxel i is modelled
as

λi = N̄RiA(1 + δ
f
i [δi])α, (5)

with N̄ the mean galaxy density, Ri the linear response operator
including the effects of redshift and target completeness at the voxel
i, A and α the bias model parameter and δ

f
i the non-linear density

field at the voxel which functionally depends on the initial density
field δi. The power-law bias model is behaving like the linear bias
model when δ

f
i is small compared to one. In this work, the relation

between δf and δi is given by the 2LPT. As indicated above, in
addition to the data model, we put a Gaussian prior on the initial
conditions, with a cosmological power spectrum. This Gaussian
prior does not enforce Gaussianity of initial conditions. The prior
only enforces that without access to data a Gaussian statistics should
be followed. But intrinsically, non-Gaussian defects in the data
would not be erased under this assumption.

Our algorithm explores the posterior distribution of the Fourier
modes of δi and the meta-parameter N̄ . As pointed out previously,
the 2LPT describes the one-, two- and three-point statistics correctly
and represents higher order statistics very well (see e.g. Moutarde
et al. 1991; Buchert, Melott & Weiss 1994; Bouchet et al. 1995;
Scoccimarro 2000; Scoccimarro & Sheth 2002). Consequently, the
BORG algorithm naturally accounts for features of the cosmic web,
such as filaments, that are typically associated to higher order
statistics induced by non-linear gravitational structure formation
processes. Besides higher order statistics of the density field, this
posterior distribution also accounts for survey geometries, selection
effects and noise, inherent to any cosmological observation. The
BORG algorithm provides full Bayesian uncertainty quantification
by exploring this highly non-Gaussian and non-linear posterior dis-
tribution via an efficient Hamiltonian Markov Chain Monte Carlo
sampling algorithm (see Duane et al. 1987; Jasche & Wandelt 2013a,
for details). As it incorporates an approximate model of large-scale
dynamics, it automatically and fully self-consistently infers the dy-
namical evolution of the large-scale structure from observations. In
this fashion, the algorithm provides dynamical structure formation
histories compatible with both data and model. In order to account
for luminosity-dependent galaxy bias and to make use of automatic
noise calibration, we will further use modifications introduced to
the original BORG algorithm by Jasche et al. (2015).

MNRAS 455, 3169–3179 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/455/3/3169/2892571 by C
N

R
S - ISTO

 user on 08 August 2022



Unmasking the masked Universe 3173

4 TH E BAY E S I A N A NA LY S I S

The analysis of the 2M++ galaxy sample has been performed on
a cubic Cartesian domain with a side length of 600 h−1 Mpc con-
sisting of 2563 equidistant grid nodes, resulting in ∼1.6 × 107

inference parameters for both the ARES and the BORG runs. Thus,
the inference procedure provides data constrained realizations for
final (and the initial density fields in the case of BORG) at a grid
resolution of about ∼2.3 h−1 Mpc . To integrate the effect of the
growth of large-scale structure and the cosmological Doppler ef-
fects, we assume a fixed standard 	 cold dark matter (	CDM)
cosmology with the following set of cosmological parameters
(
m = 0.3175, 
	 = 0.6825, 
b = 0.049, h = 0.6711, σ 8 =
0.8344, ns = 0.9624) taken from Planck Collaboration XVI (2014).
Additionally, for the BORG runs, cosmological power spectra for
initial density fields were calculated following the prescription pro-
vided by Eisenstein & Hu (1998) and Eisenstein & Hu (1999). For
the ARES runs, the cosmological power spectrum, the bias values
and the mean densities have been left free. Also note that to guaran-
tee a sufficient resolution of the final density field, we oversample
the initial density field by a factor of eight, which requires to eval-
uate the 2LPT model with 5123 particles. The algorithm correctly
accounts for the displacement of matter in the course of structure
formation by inferring initial density fields at their Lagrangian co-
ordinates, while final density fields are recovered at corresponding
final Eulerian coordinates. We note that redshift space distortions
are not modelled in the BORG algorithm and thus are not accounted
for explicitly. In its present formulation, the BORG algorithm in-
terprets features associated to redshift distortions as noise and will
tend to infer isotropic density fields. Isotropy of density fields is
naturally imposed by assuming diagonal covariance matrices for
initial density fields. Adding the treatment of redshift distortions,
both small scale and large scale, is not trivial. The redshift distor-
tions on large scale induces a change in the likelihood where the
initial conditions appears twice (in the density field and the way
it is evaluated). An illustration of the expected important of such
effect is given and discussed in Section 5.2. The distortions on
small scales, dubbed ‘finger-of-god’ (first observationally noted by
Jackson 1972), are even more complicated to model, and causes
spreading of the mass of haloes on a large volume. This effect not
only depends on scale but also depends on the density regime under
consideration. As demonstrated by Leclercq et al. (2015), cosmic
voids reconstructed by the BORG algorithm do not show any sign
of redshift space distortions. With regard to reconstructed haloes
tests on N-body simulations showed a remaining residual of 15 per
cent redshift space distortions at the high-mass end. In total, we
generated 6552 samples data constrained realizations for initial and
final density fields. Generally, the computational costs to generate a
single Markov sample are equivalent to about 200 2LPT model eval-
uations. We measured the typical time to produce a single sample
to be about 1500 s on a Intel Xeon E5-4640 using 16 cores.

5 IN F E R E N C E R E S U LTS

This section describes inference results obtained using our Bayesian
analysis on the 2M++ galaxy compilation. As mentioned in
Section 2, we cannot run a single code to do the entire analysis.
Even though that it is mathematically possible, the time complex-
ity would be too high to obtain results in a timely fashion. So we
rely on a splitted analysis, using an approximate statistical model
(ARES) to derive some of the meta parameters that will be used

Figure 2. Power spectrum measured by ARES. We show here the local of
the maximum posterior for each bin in k space (thick red line), alongside
the 95 per cent probability volume (filled grey area) of the power spectrum
as measured by ARES with the 2M++. The reference power spectrum
computed using the Eisenstein & Hu (1998, 1999) approximation including
wiggles contributions for the cosmology given in Section 4.

in the advanced model (BORG). We first present the relevant results
of the analysis using the ARES code in Section 5.1. Then we de-
scribe the 3d density field obtained by theBORG code in Section 5.2,
along with its convergence properties. In Section 5.3, we present the
cosmography of the final density field as inferred by BORG. Finally,
in Section 5.4, we give a quantitative assessment of the presence of
the Local Void behind Milky Way’s galactic bulge.

5.1 Initialization analysis with ares

As described above, in this work we will use the ARES code to cali-
brate unknown luminosity-dependent galaxy biases followed by an
detailed analysis with the BORG algorithm. To perform this initial
analysis with ARES, we will follow a similar approach as described
in Jasche & Wandelt (2013b). Specifically, we will treat galaxies
selected at K2M++ ≤ 11.5 (sample 1) and 11.5 < K2M++ ≤ 12.5
(sample 2) as two independent data sets with their respective survey
geometry and selection function, as detailed in section 2. In addi-
tion, we sub-divide each of these galaxy samples into three bins of
absolute magnitude in the range −25.00 < MK

2M++ < −21.00 to ac-
count for respective luminosity-dependent galaxy biases and noise
levels. When applied to the 2M++ data, the ARES code generated
4306 joint posterior realizations for the cosmic power spectrum, the
density field, noise levels and luminosity-dependent galaxy biases.1

To demonstrate that the ARES algorithm inference yielded phys-
ically correct results, in Fig. 2 we show the comparison between
the inferred ensemble mean cosmological power spectrum and a
fiducial one, calculated according to the prescription described in
Eisenstein & Hu (1998) and Eisenstein & Hu (1999). As can be seen
ARES has recovered the shape of the cosmological power spectrum
within the corresponding one sigma confidence regions. No par-
ticular sign of bias throughout all modes in Fourier space can be

1 ARES run has been done on a standard workstation Intel Core i7-2600, 8
cores, in a week.
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3174 G. Lavaux and J. Jasche

Figure 3. Bias values from ARES: We show here the bias values inferred
from the 2M++ catalogue assuming a fiducial bias of one for the sub-
sample 2 of Table 1 (11.5 < K2M++ ≤ 12.5, red). In addition, we have the
overplotted the best fit of Westover (2007) readjusted for the magnitude bin
that serves us as a reference (black). The width of the box gives the interval
size of the magnitude bin. Their height gives the 95 per cent confidence limit
of the measurement on bias.

observed. Erroneous treatment of survey geometries, selection ef-
fects and galaxy biases typically yield artefacts of false power in the
power spectrum. The absence of such artefacts in Fig. 2, therefore
indicates that these effects have been accounted for accurately.

In Fig. 3, we show the value for the bias parameter found in
the different sub-sample, taking the faintest magnitude bin of the
sample 2 with a fiducial value of one. The result are given in red and
blue coloured boxes. The width of those boxes corresponds to the
width of the magnitude interval and their height to the 95 per cent
confidence interval. In addition, the best fit of Westover (2007) have
been plotted in black, alongside its error bar analysis. The best fit
of Westover (2007) is given by

b

b∗
= 0.73 ± 0.07 + (0.24 ± 0.04)

L

L∗
(6)

with L the intrinsic luminosity of the considered galaxy population,
L∗ the reference luminosity which for 2M++ is given by M∗ =
−23.25. We have adjusted the reference so that a bias of one is
given for our reference population (sample 2, faint luminosity bin).
We note the perfect agreement between the two measurement. The
advantage of our procedure is its full automation, the derivation of
an unbiased power spectrum and the alongside matter density field.
Also, we have used a limited number of bins, but nothing prevents
us to increase their number, at the cost of the amplitude of the signal
to noise. The most important result of the ARES analysis for this
work is the derivation of the luminosity-dependent galaxy biases for
the galaxy population selected in 2M++. We use these biases as-is
in the following BORG reconstruction. While the two bias model
are relatively different, in the regime of small density fluctuations
on large scales, they can be rejoined by doing a Taylor expansion:
(1 + δNL)α 
 1 + αδNL and thus b 
 α. Of course this equality is
not exact and is probably leading to some bias in the density field
reconstruction. We expect in the future to be able to jointly infer
the bias parameter in BORG with the density field itself at lesser
computational cost, which will remove any foreseeable problem.

Figure 4. We are showing here the burn-in phase of the power spectrum.
The top panel shows the power spectrum itself, coloured according to the
identifier of the step along the Markov Chain. The bottom panel are the
same power spectra after having divided by the assumed 	CDM initial
linear power spectrum.

5.2 3d density field

Using inferred bias values, as described above, we have run the
BORG algorithm on the 2M++ compilation data. The results are
presented in Figs 4, 5 and 7.

In Fig. 4, we show the sequence of power spectra of the initial
density field as the chain is attached to a locus around the maximum
posterior. The top panel shows the raw power spectra and the bottom
panel are the same power spectra divided by the assumed 	CDM
initial linear power spectrum. We note that after a convergence in
∼ 400 samples, the power spectra starts oscillating on large scales
(k � 0.1 h Mpc−1). This indicates the chain has extracted all the
available information at these scales from observations. Addition-
ally, this indicates the correlation length of the Markov Chain to
be on the order of ∼400 sampling steps. On intermediate scales
(0.1 h Mpc−1� k � 2 h Mpc−1), the power spectrum is strongly
constrained and unbiased compared to our reference power spec-
trum. At very small scale, the noise increases back again because we
reach scales at most of the size of a voxel element. Consequently,
all information is lost. We note that, contrary to Kitaura (2013),
we do not observe any bumps in the power spectra of reconstructed
phases at intermediate scales. Finally, we handle unobserved regions
sufficiently correctly that the power spectra appear unbiased.

In Fig. 5, we show the mean initial density field (top row), the
2LPT evolved mean final density field (middle row) and the input
data (bottom row) for the X, Y and Z plane of the equatorial coordi-
nate system. The edge of the 2M++ survey is clearly visible in the
mean final density field. For these panels, we see clearly defined
structures in the central region, which is close to the observer and
more likely to be fully complete. Towards the boundaries of the
cubic domain structures become increasingly blurry when going
out of the observed volume at a distance of ∼200 h−1 Mpc from
the centre. In the initial condition (top row), these edges are far
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Unmasking the masked Universe 3175

Figure 5. Three slices from different directions through the three-dimensional ensemble posterior means for the initial (upper panels) and final density fields
(middle panels) estimated from 6552 samples. The lower panels depict corresponding slices through the galaxy number counts field of the SDSS main sample.
The direction are, respectively, along the equatorial plane x = 0 (left-hand column), y = 0 (middle column) and z = 0 (right-hand column).

less clear which emphasizes that the information stored in the cur-
rent position of galaxies comes from extended places in Lagrangian
coordinates and that information is distributed differently in initial
and final conditions (Jasche et al. 2015). Finally, we see the visual
improvement obtained from the final density field derived by BORG
compared to the actual distribution of galaxies given in the bottom
row.

In Fig. 6, we show the impact, a posteriori, of the large-scale
component of redshift space distortions. In particular for this test
we assume that inferred density fields have been correctly recov-
ered in real space and add redshift space distortions corresponding
to velocities derived through 2LPT dynamics. The left-hand panel
of Fig. 6 reproduces the real space density field of Fig. 5 (centre col-
umn) as determined by BORG. The middle panel shows the redshift
distortion effects produced by peculiar velocities predicted by the
2LPT dynamics on the density field. The right-hand panel gives the

difference between the middle and the left-hand panel, highlighting
the regions that have moved due to redshift distortions. On top of
the three density fields, we have drawn a red dash–dotted grid with
a spacing of 50 h−1 Mpc . As can be seen large-scale structures
are not moved much by the large-scale component of the peculiar
velocities. The most important effects lead to smearing of filaments
and haloes (middle panel), which already happens when compar-
ing 2LPT dynamics to full non-linear solution since 2LPT does not
capture shell crossing effects very well. Inspection of the right-hand
panel indicates that structures move typically by a few Mpc, which
is of the same order as grid resolution used here (∼2.3 h−1 Mpc ).
Thus, on scales larger than a single voxel size inferred density fields
are not affected much by this effect. We can conclude that for the
purpose of density reconstruction that the fields predicted by BORG
are very close to what they should be if redshift space distortions
were taken into account.
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3176 G. Lavaux and J. Jasche

Figure 6. Impact of the large-scale component of redshift space distortions on the reconstructed density field. The two panels show the ensemble mean final
density fields of the central equatorial slice at y = 0 h−1 Mpc . The left-hand panel gives the real space density field, while the middle panel gives the density
field obtained by applying redshift space distortions assuming 2LPT dynamics. The right-hand panel gives the density difference between the middle panel and
the left-hand panel in the same slice. The horizontal and vertical dashed red lines have been drawn to allow for an easier comparison between the two density
fields.

Figure 7. Supergalactic plane, thickness is 20 h−1 Mpc for galaxies, density
is smoothed with a 1 h−1 Mpc Gaussian kernel. The galaxies are shown as
magenta points on top of the coloured matter field.

5.3 Cosmography

In Fig. 7, we show the supergalactic plane as seen from a thin slice
of the final density field (coloured background field) computed by
BORG and a 20 h−1 Mpc -thick slice (20 h−1 Mpc ) extracted directly
from the galaxy data (magenta dots). We have represented the data in
polar coordinates so that the supergalactic longitude can be directly
read from the plot.

Major structures of the Local Universe are clearly visible both
with the galaxies and the final density field. Also, the density field
in the Galactic plane (visible at L = 0◦ and L = 180◦) is smoothly
extrapolated from neighbouring structures. We typically see the
Pisces-Cetus supercluster (L ∼ 305◦, d ∼ 180 h−1 Mpc ; Tully
1986), the Coma cluster (L ∼ 90◦, d ∼ 70 h−1 Mpc ; Wolf 1901;

Hubble & Humason 1931), the Shapley concentration (L ∼ 149◦,
d ∼ 140 h−1 Mpc ; Scaramella et al. 1989; Raychaudhury 1989)
and the Perseus-Pisces supercluster (L ∼ 343, d ∼ 55 h−1 Mpc ;
Jõeveer, Einasto & Tago 1978). We note that a quite prominent
circular filament connected to the Shapley concentration, going
from L ∼ 100◦ to L ∼ 150◦ at d ∼ 140 h−1 Mpc , located just
behind the Bootes void. We are not aware of any name given to this
filament, we name it the Virgo-Bootes-Hercules filament.

As a final remark, we note that the Sloan Great Wall is clearly
visible in the reconstructed density field shown in the middle right
panel of Fig. 5 at x ∼ 225 h−1 Mpc , y ∼ 0 h−1 Mpc . The wall itself is
not clearly visible in the galaxy distribution shown in the panel just
below. We see that the Sloan Great Wall is not as well characterized
as other structures by looking at the amplitude of the mean field,
which is expected given the sparsity of galaxies in the catalogue in
that part of the volume. This structure is a striking example of the
large-scale structure reconstruction achieved by BORG from noisy
data. By representing the galaxies and the reconstructed Sloan Great
Wall on the same sky plot, we see that the Hercules-Aries filament
inters

5.4 Local Void analysis

An interesting feature of non-linear density fields inferred by BORG
is the possibility to uncover unobserved structures. In Fig. 8, we
provide a particular example by looking at the Local Void (also
known as Tully’s void; Tully & Fisher 1987). In the two panels,
we show the mean ‘final density field’ and overplotted by either
the 2M++ galaxies (left-hand panel) or the HI Parkes All Sky
Survey (HIPASS) galaxies (right-hand panel; Meyer et al. 2004).
The 2M++ galaxies are appearing in spite of the galactic plane
cut and the galactic bulge because we represent a 40 h−1 Mpc thick
slice. This void is clearly visible at the Galactic longitude l ∼ 15◦ in
both panels and it visually seems to extend from 10 to 60 h−1 Mpc
in the ensemble mean field.

To illustrate a further application of our reconstruction technique,
we identify and assign a probabilistic value to belonging in a DIVA

(Lavaux & Wandelt 2010) void for voxels located in the galactic
plane. We have used the following procedure.

First we smooth the initial density field of each sample of the
Markov Chain created by BORGwith a Gaussian filter of 5 h−1 Mpc.
The choice of this filter size is motivated by the mass it corresponds
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Unmasking the masked Universe 3177

Figure 8. Galactic plane b = 0, 2M++ left, HICAT right, thickness is 40 h−1 Mpc for galaxy representation, the density is smoothed with a 1 h−1 Mpc
Gaussian kernel.

to in Lagrangian coordinates. For a Universe with 
M = 0.30,
a tophat filter of 5 h−1 Mpc would represent ∼4 × 1013 M�. So
filtering over that scale removes the contribution from groups of
galaxies in the classification of the cosmic web.

Then we run the truncated watershed transform on this field. We
identify particles belonging to the identified voids and propagate
forward in time using 2LPT. We set to one each voxel where a void
particle is found, and we compute the average field. By construction
the average field becomes the marginalized probability for each
voxel to be in a void:

f̄ V
p = 1

C

C∑
i=1

f V
p ({δq,i}) =

C→+∞

∫
{δq }

f V
p ({δq})P (δ|data)dNδq

= P (p is in a void|data), (7)

where C is the length of the Markov Chain, f V
p ({δq}) is set to one if

the voxel p belongs to a void assuming initial density fluctuations
{δq} and zero otherwise, P(δ|data) the conditional marginalized
posterior of the reconstructed initial density fluctuations given the
data. The mean field f̄ V

p is thus equal to the probability that p is in
a void given the observational data.

We show the result of this procedure in the Fig. 9, highlighting
the regions definitely voids (dark blue colour) or not voids (white).
We have overplotted the galaxies of the HIPASS catalogue that
are within 10 h−1 Mpc of the galactic plane. Of course the regions
with a large number of galaxies are more clearly not voids. On
the other hand, there is a filament of galaxies at l ∼ 60◦ that is
marked as belonging to a void with a high probability, i.e. greater
than 90 per cent. We note that the void classification probability
is entirely marginalized according to all the other variables. The
classification here corresponds qualitatively well with the visual
impression of Fig. 8 for which the void-like area located in the
most under-dense region at longitudes between ∼0◦ and ∼30◦.
Most of the voxels to the right of 0◦ are identified as non-void.
Of course this classification is not the full story, and it has been
advocated by Lavaux & Wandelt (2010) that one should use a full
filtering hierarchy to characterize dynamically the cosmic web. It
is however a powerful tool to separate the galaxies according to
their dynamical environment. As it would be beyond the scope of
this paper, we postpone this classification to a future work. We also
note that the DIVA classification of the large-scale structure is not
unique as other prescriptions have been advocated in other work
that rely only on the present gravitational field (such as Hahn et al.

Figure 9. We show here the probability of a voxel of the galactic plane
to belong to a void. The probability goes from ‘certainly void’ (dark blue)
to ‘certainly non-void’ (white). We have overplotted the galaxies from the
HIPASS survey in magenta shade. The galaxies have been selected such that
they are within 10 h−1 Mpc from the galactic plane.

2007). However, the combination of BORG and DIVA allows us to
use the full dynamical history of large-scale structures to make the
classification. Contrary to other techniques, it accounts for the fact
that galaxies may have originally formed in environments different
from their present one.

6 SU M M A RY A N D C O N C L U S I O N S

This work presents a fully Bayesian data analysis pipeline to study
cosmic structures in galaxy redshift catalogues, derive their statis-
tical properties and infer corresponding initial conditions as well as
plausible dynamic structure formation histories. This pipeline con-
sists in the sequential application of two of our Bayesian inference
algorithms.

Specifically, here we have applied this methodology to the 2M++
galaxy compilation (Lavaux & Hudson 2011), spanning the entire
sky at a depth of ∼200 h−1 Mpc . In a first step, we have employed
the ARES (Jasche & Wandelt 2013b) algorithm to infer the cosmo-
logical power spectrum and calibrate luminosity-dependent galaxy
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biases. As demonstrated in Section 5.1, the ARES algorithm accu-
rately recovers the shape of a fiducial cosmological power spec-
trum throughout the entire range of Fourier modes considered in
this work. This result clearly demonstrates that systematics arising
from survey geometries, selection effects and galaxy biases have
been accounted for in our Bayesian inference approach. In particu-
lar, we have determined the bias values of galaxies with luminosi-
ties in three bins for magnitudes going from K2M++ = −25.00 to
K2M++ = −21.00. We note that our results on luminosity-dependent
galaxy biases are consistent with and confirm the previous findings
of Westover (2007).

Based upon these results, we performed a highly detailed analysis
of the mildly non-linear and non-linear large-scale structure in the
2M++ galaxy catalogue via theBORG algorithm (Jasche & Wandelt
2013a). Specifically, we have used the previously inferred galaxy
biases as an input to BORG to infer the large-scale structure of the
Nearby Universe within a comoving equidistant box of a volume of
(600 h−1 Mpc )3 centred on the observer. The grid resolution is ∼2.3
h−1 Mpc , resulting in a total of ∼1.6 × 107 inference parameters
which can be accurately handled by our Bayesian inference frame-
work. The algorithm jointly infers the present non-linear large-scale
structures and their corresponding initial conditions, at a cosmic
scale factor of a ∼ 10−3, from which they originate. In Section 5.2,
we have demonstrated the results for inferred three-dimensional
density fields. These results show highly detailed large-scale struc-
tures at present and in initial conditions. Further we have shown that
our Bayesian inference algorithm permits us to accurately quantify
uncertainties inherent to any cosmological observations. We have
thus successfully reconstructed statistically the initial conditions on
large scales of our Local Universe together with a detailed treatment
of survey geometries, selection effects and tracer biases.

As a particular application of the reconstructed density field and
initial conditions to statistical structure detection, we have focused
on the problem of identifying the Local Void. The Local Void is
typically obscured by the Galaxy and is consequently masked out
in the 2M++ galaxy compilation. To demonstrate the power of our
Bayesian methodology to recover structures in unobserved regions
we have shown that the Local Void is clearly visible in the recon-
structed density field at z = 0 despite the lack of information. To
further quantify the statistical significance of this detection, we have
used the DIVA void classification prescription to generate a density
of probability that a given volume element is part of the Local Void.
These results indicate a high probability for the existence of the
Local Void behind the Galaxy. The validity of our results is further
supported by comparison with data from the HIPASS catalogue.

The results obtained in this work will be subject to more detailed
studies, including further improvement in the dynamical model used
in theBORG tool, of the large-scale structure in the Nearby Universe.

In summary, this work presents a detailed application of our
Bayesian inference framework to data of the 2M++ galaxy cata-
logue. In contrast to state-of-the-art approaches, our algorithm ac-
curately recovers structures in noisy and masked regimes and also
infers the dynamic formation history of individual large-scale struc-
tures. As a result this methodology opens new windows to analyse
and understand the large-scale structures of our Universe.
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