Magnetic and Rotational Evolution of ρ CrB from Asteroseismology with TESS - INSU - Institut national des sciences de l'Univers Access content directly
Journal Articles The Astrophysical Journal Year : 2021

Magnetic and Rotational Evolution of ρ CrB from Asteroseismology with TESS

Travis S. Metcalfe
  • Function : Author
Jennifer L. van Saders
  • Function : Author
Sarbani Basu
  • Function : Author
Derek Buzasi
  • Function : Author
Jeremy J. Drake
  • Function : Author
Ricky Egeland
  • Function : Author
Daniel Huber
  • Function : Author
Steven H. Saar
  • Function : Author
Keivan G. Stassun
  • Function : Author
Warrick H. Ball
  • Function : Author
Tiago L. Campante
  • Function : Author
Oleg Kochukhov
  • Function : Author
Savita Mathur
  • Function : Author
Timo Reinhold
  • Function : Author
Victor See
  • Function : Author
Sallie Baliunas
  • Function : Author
Willie Soon
  • Function : Author

Abstract

During the first half of main-sequence lifetimes, the evolution of rotation and magnetic activity in solar-type stars appears to be strongly coupled. Recent observations suggest that rotation rates evolve much more slowly beyond middle age, while stellar activity continues to decline. We aim to characterize this midlife transition by combining archival stellar activity data from the Mount Wilson Observatory with asteroseismology from the Transiting Exoplanet Survey Satellite (TESS). For two stars on opposite sides of the transition (88 Leo and ρ CrB), we independently assess the mean activity levels and rotation periods previously reported in the literature. For the less active star (ρ CrB), we detect solar-like oscillations from TESS photometry, and we obtain precise stellar properties from asteroseismic modeling. We derive updated X-ray luminosities for both stars to estimate their mass-loss rates, and we use previously published constraints on magnetic morphology to model the evolutionary change in magnetic braking torque. We then attempt to match the observations with rotational evolution models, assuming either standard spin-down or weakened magnetic braking. We conclude that the asteroseismic age of ρ CrB is consistent with the expected evolution of its mean activity level and that weakened braking models can more readily explain its relatively fast rotation rate. Future spectropolarimetric observations across a range of spectral types promise to further characterize the shift in magnetic morphology that apparently drives this midlife transition in solar-type stars.

Dates and versions

insu-03745695 , version 1 (04-08-2022)

Identifiers

Cite

Travis S. Metcalfe, Jennifer L. van Saders, Sarbani Basu, Derek Buzasi, Jeremy J. Drake, et al.. Magnetic and Rotational Evolution of ρ CrB from Asteroseismology with TESS. The Astrophysical Journal, 2021, 921, ⟨10.3847/1538-4357/ac1f19⟩. ⟨insu-03745695⟩
3 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More