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Abstract

On the main sequence, low-mass and solar-like stars are observed to spin down over time, and magnetized stellar
winds are thought to be predominantly responsible for this signi� cant angular momentum loss. Previous studies
have demonstrated that the wind torque can be predicted via formulations dependent on stellar properties, such as
magnetic� eld strength and geometry, stellar radius and mass, wind mass-loss rate, and stellar rotation rate.
Although these stars are observed to experience surface differential rotation, torque formulations so far have
assumed solid-body rotation. Surface differential rotation is expected to affect the rotation of the wind and thus the
angular momentum loss. To investigate how differential rotation affects the torque, we use the PLUTO code to
perform 2.5D magnetohydrodynamic, axisymmetric simulations of stellar winds, using a colatitude-dependent
surface differential rotation pro� le that is solar-like(i.e., rotation is slower at the poles than the equator). We
demonstrate that the torque is determined by the average rotation rate in the wind so that the net torque is less than
that predicted by assuming solid-body rotation at the equatorial rate. The magnitude of the effect is essentially
proportional to the magnitude of the surface differential rotation, for example, resulting in a torque for the Sun that
is � 20% smaller than predicted by the solid-body assumption. We derive and� t a semianalytic formulation that
predicts the torque as a function of the equatorial spin rate, magnitude of differential rotation, and wind
magnetization(depending on the dipolar magnetic� eld strength and mass-loss rate, combined).

Uni� ed Astronomy Thesaurus concepts:Stellar winds(1636); Stellar evolution(1599); Stellar magnetic� elds
(1610); Stellar rotation(1629); Magnetohydrodynamical simulations(1966); Main sequence stars(1000); Low
mass stars(2050); Solar mass(1506)

1. Introduction

The evolution of rotation rates of low-mass and solar-like stars
on the main sequence(MS) is a complex function of their mass
and age, as illustrated, for example, by rotation-period–mass
diagrams from observations of large stellar clusters(see, e.g.,
Barnes2003; Irwin & Bouvier 2009; Meibom et al.2011;
Bouvier et al. 2014, pp. 433–450; Stauffer et al.2016;
Davenport2017). Generally, these stars are observed to spin
down with time (Skumanich1972), due to the extraction of
angular momentum by magnetized stellar winds(Parker1958;
Schatzman1962; Weber & Davis1967; Mestel1968). Models
for this rotational evolution(e.g., Kawaler1988; MacGregor &
Brenner1991; Bouvier et al.1997; Bouvier2008; Denissenkov
et al.2010; Matt et al.2012; Reiners & Mohanty2012; Gallet &
Bouvier 2015; van Saders & Pinsonneault2013; Gallet &
Bouvier 2013; Lanzafame & Spada2015; Matt et al. 2015;
Blackman & Owen2016; Gondoin2017; Garraffo et al.2018;
Amard et al.2019; Breimann et al.2021) rely on theoretical
formulations for stellar-wind torques, which depend on a variety
of stellar properties, such as masses and radii, magnetic� eld
strengths and topology, coronal temperatures, and mass-loss
rates. Due to the importance of magnetized stellar winds for
understanding MS rotational evolution, there is a need for the

development of formulations that predict the torque and include
all of the important physical processes in stellar winds.

Early and analytic models of stellar winds and angular
momentum loss(e.g., Parker1958; Schatzman1962; Parker1965;
Weber & Davis1967; Mestel1968; Kawaler1988; Sauty et al.
2011) studied thermal-pressure-driven winds in the presence of
magnetic� elds, demonstrating that initially subsonic stellar winds
accelerate beyond the sound speed and beyond the magnetic
Alfvén wave speed(at the Alfvén radius). The angular momentum
loss is enhanced by the presence of a magnetic� eld, and
magnetocentrifugal processes in rapid rotators can even enhance
the overall wind speed. Weber & Davis(1967) also demonstrated
that the stellar-wind torque depends on the square of the Alfvén
radius, which by mechanical analogy is often referred to as the
“magnetic lever arm” length. More recently, stellar-wind
dynamics have been studied numerically via magnetohydro-
dynamic (MHD) simulations, allowing for the comparison
between self-consistently computed values of stellar-wind torque
and those predicted via parameterizations of the Alfvén radius.
Matt & Pudritz (2008) investigated how the torque depends on
magnetic dipole� eld strength and mass-loss rate around slow
rotators(see also Washimi & Shibata1993; Cohen & Drake2014).
Subsequent works explored how the torques depend on
magnetocentrifugal effects around fast rotators(Matt et al.
2012), magnetic� elds with more complex magnetic geometries
(Matt & Pudritz2008; Réville et al.2015; Garraffo et al.2016;
Finley & Matt 2017, 2018), coronal temperature(Pantolmos &
Matt 2017), and magnetic cycle variations(Finley et al.2018;
Perri et al.2018; Finley et al.2019). So far, studies that have been
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used to derive formulations for stellar-wind torques have assumed
that the stellar surface(or more speci� cally, the base of the wind-
emitting region) rotates as a solid body.

Stars behave as rotating� uids, and so the surface rotation rate
of a star is not always uniform, but instead can vary as a function
of colatitude(see, e.g., Kitchatinov & Rüdiger1999; Küker et al.
2011). Common trackers of surface differential rotation for the
Sun include sunspots and Doppler measurements(see, e.g.,
Beck 2000 for further discussion and comparison between
measurements). Typical measured values show the poles to be
spinning � 30% slower than the equator(Snodgrass &
Ulrich 1990). For other F, G, and K MS stars, the surface
differential rotation has been inferred from, for example, Doppler
imaging (see, e.g., Collier Cameron et al.2002), spectral line
Fourier transforms(see, e.g., Reiners & Schmitt2002a), and
photometric measurements of stellar periods(see, e.g., Reinhold
et al. 2013). A commonly used prescription to describe the
surface rotation rate as a function of colatitude,� , is

�ƒ( ) (1 cos,eq
2� R � B�R� 8 � � � 8 � �), where� å,eq is the angular rotation

rate at the equator, and the relative differential rotation rate is
de� ned as� = �� / � å,eq� (� å,eqŠ � å,pole)/ � å,eq, where� å,pole
is the angular rotation rate at the poles. Thus, for the Sun,� � 0.3.
This relative differential rotation rate is observed to be
approximately correlated withrotation period, with the vast
majority of F, G, and K MS stars having� < 0.3, and most
observed samples of rapidly rotating stars(that rotate
faster, on average, than the Sun) showing � � 0 (see, e.g.,
Collier Cameron2002; Reiners & Schmitt2002b; Barnes et al.
2005; Reiners 2006; Collier Cameron 2007; Balona &
Abedigamba2016). Most stars appear to be undergoing solar-
like rotation, where the equator spins faster than the poles(� > 0).
However, it is possible that somestars are undergoing antisolar
rotation, where the poles are faster than the equator(� < 0), or
more complex pro� les such as cylindrical-banded rotation, which
consists of alternating zonal jets(see, e.g., Brun et al.2017and
references therein for a discussion of solar-like and antisolar
differential rotation).

We expect a priori that differential rotation will in� uence the
rotation of the wind, hence the stellar torque. In order to quantify
and be able to predict the effects of differential rotation on the
torque, we perform 74 2.5D axisymmetric stellar-wind simula-
tions, changing� å,eq, � (restricted to solar-like cases), and the
dipolar magnetic� eld strength. We show that the stellar-wind
torque is simply predicted in terms of the average(“effective”)
rotation rate of the wind material. Because the wind emanates
from a region surrounding the poles, the“effective” rotation rate
is slower than that of the stellar equator, and so the net torque is
smaller than would be predicted assuming a solid-body rotation
at the rate of the equator. We� nd a formulation for predicting
this“effective” rotation rate(and thus the torque) as a function of
the differential rotation rate, and other stellar and wind
parameters. In this study, we purely investigate how differential
rotation can modify the rotation rate at the base of the wind and
how this affects global angular momentum loss. We are
concerned only about the rotation rate of open magnetic� eld
lines, independent of the effects on the coronal dynamics and
small-scale magnetic� eld structure.

In Section 2, we describe the numerical setup for our
simulations, the initial conditions and� nal solutions, boundary
conditions, normalizations, and parameter space explored in this
study. In Section3, we list our simulations, present their
qualitative behavior, and introduce the global quantities we use,

such as the mass� ow rate, the torque, and the unsigned magnetic
� ux. In Section4, we introduce a torque formulation for the stellar
wind that accounts for the differential rotation pro� le investigated
in this parameter study. In Section5, we discuss and conclude our
� ndings.

2. Numerical Method

2.1. Numerical Setup

The simulations in this study are solved numerically
governed by the following MHD equations:
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which represent the mass continuity, momentum, energy, and
magnetic induction equation, respectively. Here,� represents the
mass density,v the velocity� eld, p the thermal pressure,B the
magnetic� eld,I the identity matrix, and �ƒ( ) �g RGM R2� � � � the
gravitational acceleration(G is the gravitational constant,Må is
the stellar mass, andR is the spherical radius). The total energy
density is written as

· ·
( )

v v B B
E u

2 8
, 2� S � S

�Q
� � � � � �

whereu is speci� c internal energy(per unit mass). We use a
polytropic wind, with an equation of state of the form� u = p/
(� Š 1), where� is the adiabatic index. We numerically solve
Equations(1)–(2) using the PLUTO code(Mignone et al.
2007, 2012), using a� nite-volume Godunov scheme and a
linearized ROE Riemann solver(Roe 1981). We use the
constrained transport method to control the divergence-free
constraint� · B = 0 (see Tóth et al.2005).

All simulations are 2.5D(2D computational domain, with
3D vector components) and adopt the(R, � ) spherical
coordinate system. Axisymmetry is assumed about the stellar
rotation axis. We de� ne the cylindrical radius using
r Rsin�R�� , where R is the spherical radius. We use a
logarithmic grid for the radial direction, consisting of 256 grid
cells and covering[1, 60]Rå, whereRå is the stellar radius. We
use a uniform grid for the� direction, consisting of 512 grid
cells and covering[0, � ].

2.2. Initial Conditions and Final Solutions

We initialize the computational domain with a stellar corona
and a magnetic� eld con� guration. The stellar corona is initialized
with a 1D spherically symmetric,isotropic, polytropic Parker
wind solution, which is de� ned by the ratio of the stellar surface
sound speed �ƒ �ƒ �ƒ( )c ps,

1 2� H � S�� to the stellar surface escape
velocity � ƒ � ƒ( )v GM R2esc

1 2�� , wherepå and� å are pressure and
density at the stellar surface, respectively. We set� = 1.05 (near
isothermal), so the wind is heated during expansion without
requiring explicit heating terms in the energy equation from
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Equation(1) (see the discussion in Finley & Matt2018 and
references therein). The magnetic� eld con� guration is initially
purely dipolar and aligned with the axis of rotation. TheR and�
components are described by

�
�

�
�

�ƒ
�ƒ( ) ( )B R B

R
R

, cos 3R

3

� R � R��

and

�
�

�
�

�ƒ
�ƒ( ) ( )B R B

R
R

,
1
2

sin , 4
3

� R � R���R

respectively, whereBå represents the polar stellar surface
magnetic� eld strength.

We run each simulation until it reaches a steady state or, in
some cases, an oscillating state(as described in Pantolmos &
Matt 2017), which we regard as the� nal wind solution. The
winds are characterized by a continuous and ubiquitous� ow from
the lower radial boundary(the“star”), through the grid, and out of
the outer radial boundary, at speeds that exceed all information-
carrying-wave speeds. Thus, the� nal solutions are insensitive to
the initial conditions but are instead essentially entirely determined
by the lower radial boundary conditions(and somewhat
in� uenced by the axial boundary, at� = 0 and� ), described in
the following section.

2.3. Boundary Conditions

The computational domain is enclosed by a boundary� lled with
ghost cells, allowing for the implementation of boundary
conditions. At the inner boundary, the density and thermal-pressure
pro� les from the Parker wind solution are kept� xed. TheR
magnetic� eld component is kept� xed to conserve the total stellar
� ux, but the� / f magnetic� eld components are free to change via a
linear extrapolation. The poloidal velocityvp is imposed to be
parallel to the poloidal magnetic� eld Bp, as well as the continuity
of the mass� ux per magnetic� ux (an axisymmetric MHD
invariant),

·

� �
( )

v B

B
, 5p p

p
2

�L
�S

��

along magnetic� eld lines, which ensures smooth in� ow of the
stellar wind (see, e.g., Ustyugova et al.1999; Keppens &
Goedbloed2000). The stellar rotation at the inner boundary is
set via the toroidal velocity,

�ƒ( ) ( )v r v
B

B
, 6p

p
�R� � � 8 � ��G

�G

where� å(� ) is the stellar rotation rate at a given colatitude� .
By using Equation(6), we impose the differential rotation to
the rate of rotation of the magnetic surfaces. The toroidal speed
of the plasma(which determines, e.g., the Doppler shifts)
slightly deviates from this and therefore actually contains some
very small degree of differential rotation(even for a solid
rotator). On the other hand, becausevp (the injection speed of
the wind) is smaller thanr� å (at least for faster rotators) and
Bf / Bp should be also reasonably small, the two speeds(plasma
and � eld) almost coincide. We adopt the following simple
differential rotation pro� le for the stellar surface rotation rate:

� ƒ � ƒ( ) ( ) ( )1 cos , 7,eq
2� R � B � R� 8 � � � 8 � �

where� å,eq is the angular rotation rate at the stellar equator,
and � = �� / � å,eq� (� å,eqŠ � å,pole)/ � å,eq, where � å,pole is
the angular rotation rate at the poles. This rotation pro� le is
kept � xed throughout the computation. At the outer boundary,
all quantities have vanishing derivatives, e.g.,dvR/ dR= 0,
allowing them to� ow outward from the computational domain.

2.4. Simulation Parameters

We investigate a parameter space where we systematically
vary the following quantities:

1. Surface polar magnetic� eld strength,Bå; in practice, this
is controlled via the input parametervA/ vesc, i.e., the ratio
of the surface polar Alfvén velocity �ƒ �ƒ( )v B 4A

1 2�Q�S��
and the stellar escape velocity � ƒ � ƒ( )v GM R2esc

1 2�� .
2. Stellar equatorial rotation rate, expressed as a fraction of

the breakup rate,feq= � å,eqRå/ vK,å.
3. Relative differential rotation rate,� = (� å,eqŠ � å,pole)/ � å,eq.

Where � å,eq and � å,pole are the equatorial and polar stellar
rotation rates, respectively. We� x � = 1.05 and the stellar-
wind sound speed at the stellar surface tocs,å = 0.25vescfor all
simulations.

2.5. Units and Normalization

We perform simulations in dimensionless units; here, we list
normalization factors required toconvert quantities into physical
units representative of different types of stars. We express length in
units ofRå, density in units of its value at the base of the corona� å,
and velocities in units of the stellar surface Keplerian velocity,

� ƒ � ƒ � ƒ( )v GM RK,
1 2�� (where Må is the stellar mass). The

following normalizations can then be derived from the aforemen-
tioned base dimensionalizations: time in units oft0 = Rå/ vK,å,
magnetic� eld strength in units of �ƒ �ƒ( )B v40 K,

2 1 2�Q�S�� , mass� ow
rate in units of �ƒ �ƒ �ƒ��M R v0

2
K,�S�� , torque in units of �ƒ � ƒ � ƒ

��J R v0
3

K,
2�S�� ,

and magnetic� ux in units of �ƒ � ƒ � ƒ( )R v40
4

K,
2 1 2�Q�S� ' � � .

By adopting solar values for radius,Re = 6.96× 1010cm,
massMe = 1.99× 1033 g, and density at the base of the corona
� e = 2.46× 10Š16 g cmŠ3 (see section3), we can make direct
comparisons with main-sequence solar-like and low-mass stars
using the following normalizations:
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Furthermore, assuming the solar fraction of the equatorial
breakup ratefe ,eq= 4.73× 10Š3 (using a typical measured
value of the solar equatorial sidereal rotation period, 24.47
days; Snodgrass & Ulrich1990), the equatorial stellar rotation
period(På,eq= 2� / � å,eq� 2� Rå/ ( feqvK,å)) can be expressed as


 � 
 �
�
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eq
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3. Simulations of Stellar Winds

This study consists of 74 simulations in total, exploring the
parameter space outlined in Section2.4. Each simulation is ran
for a period roughly corresponding to 16 stellar rotation periods
for feq= 0.05(t0 = 2000). Typically, this corresponds to weeks
or months in simulated time, where changes in the stellar
rotation rate are negligible, justifying our use of� xed feq. All
simulations evolve to a quasi-steady state in this simulation
time period. Simulation input and output parameters can be
found in Table1.

In Table 2, we make direct comparisons between our
simulations and examples of solar-like and low-mass stars by
dimensionalizing our numerical simulation units using normal-
izations shown in Section2.5. For Må/ Me = (0.10, 0.25, 0.50,
1.00), we list the range of surface magnetic� eld strengths and
stellar rotation periods that are covered by our parameter space.
For each stellar mass, we also list the ranges of mass-loss rate,
torque, and open magnetic� ux that result from these
simulations. The stellar radius for each mass is taken from
the grid of low-mass stellar models produced by Amard et al.
(2019) (at 5 Gyr). For theMå = Me case, we pick a value of� å
so that the mass-loss rate of model 1(the closest to a
representative solar case) is � � � ��:M M 1.78 10 14� � � x � q�� Me
yrŠ1, which is a reasonable value for the Sun.4 For Må =
0.1Me , we pick a value of� å so that the range ofBå in our
simulations ranges from 100–800 G, which is within the range
bracketed by Zeeman-Doppler magnetogram observations(see,
e.g., Morin et al.2010; See et al.2019a, 2019b).5 For the
intermediate masses,Må = 0.25–0.50 Me , we choose inter-
polated values of� å assuming�ƒ �ƒM 3�S �r�_

�� (given the three orders
of magnitude decrease in� å for one order of magnitude
increase in stellar mass) for simplicity.

There are relatively few observational constraints on the
mass-loss rate of low-mass and solar-like stars. However, for
example, Wood et al.(2021) show that stars within our mass
range in Table2 have mass-loss rates of the order of the solar
value, with a potential scatter of a few orders of magnitude. We
� nd that the range of��M shown in Table2 is bracketed by the
observational range suggested by Wood et al.(2021).
Regarding the rotation rates, we chose a range to cover a
parameter space that is well within the slowly rotating regime
and also pushing into the rapidly rotating regime. Conse-
quently, the range of rotation periods in Table2 for the solar
case includes the range typically observed(see, e.g., Bouvier
et al. 2014, pp. 433–450) but it also extends to much longer
periods than what is applicable for solar-like stars. On the other

hand, for the low-mass star cases, our parameter space includes
the relatively fast-rotation side of the observed rotation rate
distributions, but it does not extend to rotational periods as long
as observed in the oldest stars(Bouvier et al.2014). However,
stars with longer rotation periods than those covered by our
parameter space should still be compatible with our torque
formulations because they are in they are in the slowly rotating
regime, where changes in angular momentum are linear with
stellar rotation rate.

3.1. Morphology of Stellar-wind Systems

In this section, we demonstrate the qualitative properties of
these stellar-wind simulations, focusing on the effects differ-
ential rotation have on the dynamical behavior of the stellar
wind. Figure1 shows the poloidal velocity distribution for the
computational domains of three stellar-wind simulations:
model 46( feq= 0.05, � = 0), model 14( feq= 0.001, � = 0),
and model 34( feq= 0.05, � = 0.75). These are taken at
simulation times corresponding to the middle of their
respective time-median domains. The� gures show the
magnetic� eld lines(white), the ejection of stellar wind(green)
along open� eld lines, the sonic Mach surface(black), and the
Alfvén Mach surface(blue). For the rapid solid-body rotator
(model 46), centrifugal effects become increasingly noticeable
in the stellar wind, enhancing wind speeds at mid-to-high
colatitudes and causing the wind to self-collimate and bend
toward the poles; this results in an elongated Alfvén surface
(see, e.g., Sakurai1985; Washimi & Shibata1993; Matt &
Balick 2004). For the slow solid-body rotator(model 14),
centrifugal effects are negligible, therefore the dynamics of the
wind are predominantly determined by the stellar� eld strength
and the mass-loss rate in the wind; this results in a more
spherical Alfvén surface. For the differential rotator(model
34), even though the equator rotates as quickly as the rapid
solid-body case, the rotation of the wind itself(originating from
low colatitudes) is much slower, reducing centrifugal effects
and resulting in dynamical behavior similar to that of the slow
solid-body case.

In addition, we probe differences in the rotation of the wind
between solid-body and differential rotation models, by
calculating the effective rotation rate across the computational
domain:


 �
�
�

�
�

( )
R

v
B1

sin
. 10eff

�R

�L

�S
� 8 � � � ��G

�G

In order to calculate accurate stellar torque values, this quantity
is required to be conserved within some tolerance along
magnetic� eld lines(as shown in Zanni & Ferreira2009). In
practice, we check its convergence by calculating� eff in each
grid cell and tracing the� eld line at this point back to its
footpoint on the stellar surface. We then compare this quantity to
the stellar surface rotation rate at that given footpoint’s
colatitude,� f, i.e., � å(� f); full conservation of this quantity is
satis� ed when� eff(R, � ) = � å(� f). In Figure 2, we plot � eff

(normalized by the equatorial spin rate,� å,eq) as a function of
the angle on the stellar surface between the footprint colatitude
and its closest pole, for the same rapid solid-body(model 46)
and differential rotation(model 34) cases from Figure1. We plot
the differential rotation pro� le (expressed in Equation(7)) as a
function of � f (normalized by� å,eq) for comparison, where the

4 This solar mass-loss rate is the mean of 27 day averages via measurements
of the solar-wind speed and density from the Advanced Composition Explorer
(ACE) spacecraft(see Finley et al.2018).
5 See et al.(2019b) give a range of dipolar� eld strengths averaged over the
stellar surface,�Bd� ; therefore, values ofBå are likely to be within a factor of 2.
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Table 1
Variable Input Parameters and Outputted Global Variables for All Simulations

Model feq �
v

v
A

esc
�ƒB

B0

a
��
��
M
M0

��
��
J
J0

open

0

�'

�' �ƒ

r

R
A,eq� ˜ � §

� å � emp Model feq �
v

v
A

esc
�ƒB

B0

a
��
��
M
M0

��
��
J
J0

open

0

�'

�' �ƒ

r

R
A,eq� ˜ � §

� å � emp

(10Š2) (10Š2) (104) (10Š2) (10Š2) (104)

1 0.001 0 1 1.41 2.15 0.102 2.87 6.89 0.26 0.946 38 0.05 0.25 2 2.83 2.1 8.95 5.2 9.23 1.06 0.827
2 0.001 0 2 2.83 1.67 0.184 4.44 10.5 1.34 0.943 39 0.05 0.25 4 5.66 1.69 17.1 8.3 14.2 5.3 0.859
3 0.001 0 4 5.66 1.21 0.321 6.44 16.3 7.41 0.946 40 0.05 0.25 8 11.3 1.43 32.3 13.1 21.3 25 0.865
4 0.001 0 8 11.3 0.886 0.628 9.72 26.6 40.3 1.05 41 0.05 0.5 1 1.41 2.37 3.36 3.07 5.33 0.236 0.598
5 0.001 0.25 1 1.41 2.15 0.0816 2.87 6.16 0.26 0.757 42 0.05 0.5 2 2.83 1.95 6.36 4.97 8.07 1.14 0.607
6 0.001 0.25 2 2.83 1.67 0.145 4.44 9.32 1.34 0.744 43 0.05 0.5 4 5.66 1.49 11.5 7.68 12.4 5.99 0.609
7 0.001 0.25 4 5.66 1.21 0.25 6.44 14.4 7.41 0.736 44 0.05 0.5 8 11.3 1.23 22.4 12.2 19.1 29.1 0.642
8 0.001 0.25 8 11.3 0.886 0.484 9.74 23.4 40.3 0.808 45 0.05 0.75 1 1.41 2.27 2.2 2.98 4.41 0.246 0.399
9 0.001 0.5 1 1.41 2.15 0.0612 2.87 5.34 0.26 0.568 46 0.05 0.75 2 2.83 1.82 3.84 4.74 6.49 1.23 0.378
10 0.001 0.5 2 2.83 1.67 0.106 4.44 7.97 1.34 0.544 47 0.05 0.75 4 5.66 1.35 6.47 7.15 9.78 6.62 0.36
11 0.001 0.5 4 5.66 1.21 0.178 6.43 12.2 7.41 0.526 48 0.05 0.75 8 11.3 1.05 11.9 11 15.1 34.2 0.366
12 0.001 0.5 8 11.3 0.886 0.34 9.75 19.6 40.3 0.568 49 0.1 0 1 1.41 4.12 14.6 4.06 5.95 0.135 1.02
13 0.001 0.75 1 1.41 2.15 0.0409 2.87 4.36 0.26 0.38 50 0.1 0 2 2.83 3.75 29.3 6.95 8.84 0.596 1.05
14 0.001 0.75 2 2.83 1.67 0.0671 4.43 6.34 1.34 0.344 51 0.1 0 4 5.66 3.13 53.6 11.1 13.1 2.85 1.03
15 0.001 0.75 4 5.66 1.21 0.107 6.44 9.44 7.41 0.315 52 0.1 0 8 11.3 2.57 90.3 17 18.6 13.9 0.912
16 0.001 0.75 8 11.3 0.885 0.196 9.74 14.9 40.4 0.327 53 0.1 0.25 1 1.41 3.55 11.5 3.85 5.68 0.157 0.856
17 0.01 0 1 1.41 2.17 1.03 2.88 6.88 0.257 0.948 54 0.1 0.25 2 2.83 3.21 23 6.57 8.48 0.696 0.887
18 0.01 0 2 2.83 1.71 1.91 4.53 10.6 1.3 0.969 55 0.1 0.25 4 5.66 2.59 40.5 10.4 12.5 3.46 0.846
19 0.01 0 4 5.66 1.24 3.31 6.58 16.4 7.22 0.961 56 0.1 0.25 8 11.3 2.28 74.4 16.5 18.1 15.7 0.811
20 0.01 0 8 11.3 0.941 6.67 10.2 26.6 38 1.08 57 0.1 0.5 1 1.41 3.04 8.23 3.59 5.2 0.184 0.656
21 0.01 0.25 1 1.41 2.16 0.821 2.88 6.16 0.258 0.76 58 0.1 0.5 2 2.83 2.66 16.1 6.02 7.79 0.839 0.672
22 0.01 0.25 2 2.83 1.71 1.5 4.52 9.39 1.31 0.763 59 0.1 0.5 4 5.66 2.12 28.4 9.43 11.6 4.21 0.643
23 0.01 0.25 4 5.66 1.24 2.65 6.7 14.7 7.22 0.773 60 0.1 0.5 8 11.3 1.82 52.6 15.2 17 19.6 0.63
24 0.01 0.25 8 11.3 0.915 4.94 10 23.4 39 0.82 61 0.1 0.75 1 1.41 2.63 5.25 3.33 4.46 0.213 0.444
25 0.01 0.5 1 1.41 2.16 0.615 2.87 5.34 0.259 0.57 62 0.1 0.75 2 2.83 2.2 9.54 5.41 6.58 1.01 0.431
26 0.01 0.5 2 2.83 1.7 1.1 4.5 8.04 1.32 0.558 63 0.1 0.75 4 5.66 1.73 16.9 8.53 9.87 5.15 0.419
27 0.01 0.5 4 5.66 1.23 1.89 6.67 12.4 7.27 0.551 64 0.1 0.75 8 11.3 1.39 28 13 14.2 25.6 0.376
28 0.01 0.5 8 11.3 0.905 3.45 9.89 19.6 39.5 0.574 65 0.2 0 1 1.41 10.4 42.4 5.52 4.52 0.0538 1.04
29 0.01 0.75 1 1.41 2.15 0.411 2.87 4.37 0.259 0.381 66 0.2 0 2 2.83 9.77 85.9 9.63 6.63 0.229 1.07
30 0.01 0.75 2 2.83 1.68 0.681 4.46 6.37 1.33 0.348 67 0.2 0 4 5.66 7.97 147 15 9.64 1.12 0.978
31 0.01 0.75 4 5.66 1.21 1.11 6.56 9.57 7.39 0.325 68 0.2 0 8 11.3 6.26 238 22.9 13.9 5.71 0.853
32 0.01 0.75 8 11.3 0.892 1.82 9.25 14.3 40 0.302 69 0.2 0.5 1 1.41 6.11 24.9 4.89 4.51 0.0914 0.748
33 0.05 0 1 1.41 2.66 5.85 3.28 6.62 0.21 0.986 70 0.2 0.5 2 2.83 5.5 47.7 8.29 6.59 0.406 0.739
34 0.05 0 2 2.83 2.29 11.8 5.47 10.1 0.974 1.05 71 0.2 0.5 4 5.66 4.2 75.9 12.7 9.53 2.13 0.649
35 0.05 0 4 5.66 1.87 22.7 8.85 15.5 4.76 1.09 72 0.25 0 2 2.83 14.8 126 10.8 5.83 0.151 1.08
36 0.05 0 8 11.3 1.61 42.6 14.1 23 22.2 1.08 73 0.25 0 4 5.66 11.9 211 16.9 8.46 0.749 0.967
37 0.05 0.25 1 1.41 2.5 4.58 3.17 6.05 0.223 0.794 74 0.3 0 4 5.66 17.8 299 18.7 7.54 0.502 1

Note.
a Bå is not a fundamental input parameter, but it is simply derived fromvA/ vescand tabulated here, for convenience.
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Table 2
Example Ranges of Global Properties in Physical Units(for Our Parameter Space) for Må = 0.1Š 1 Me (5 Gyr)

Må Rå vK,å � å Bå På,eq ��M ��J � open

(Me ) (Re ) (km sŠ1) (g cmŠ3] (G) (days) (Me yrŠ1) (erg) (Mx)

0.10 0.117 404 2.46× 10Š13 100Š 800 0.0489Š 14.7 9.23× 10Š14 - 1.85× 10Š12 8.84× 1028 - 6.46× 1032 1.35× 1022 - 1.08× 1023

0.25 0.255 432 1.57× 10Š14 27.2Š 218 0.0995Š 29.8 3.02× 10Š14 - 6.06× 10Š13 6.75× 1028 - 4.93× 1032 1.74× 1022 - 1.39× 1023

0.50 0.455 458 1.97× 10Š15 10.2Š 81.5 0.168Š 50.3 1.27× 10Š14 - 2.55× 10Š13 5.37× 1028 - 3.92× 1032 2.07× 1022 - 1.65× 1023

1.00 1.00 437 2.46× 10Š16 3.44Š 27.5 0.386Š 116 7.32× 10Š15 - 1.47× 10Š13 6.48× 1028 - 4.73× 1032 3.37× 1022 - 2.69× 1023
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color map illustrates the divergence of� eff from this pro� le.6 In
both cases, the white area represents the area on the stellar
surface in which the stellar wind is being ejected, i.e., where the
magnetic� eld lines are open. It is evident that the stellar-wind
region decreases with increasing differential rotation. For solid-
body rotation,� eff appears to be well conserved in the region of

the stellar wind(where� eff/ � å(� f) � 1), and the rotation of the
wind is roughly constant. For differential rotation,� eff is also
well conserved in the wind, but the rotation of the wind
decreases with decreasing colatitude(toward the poles).

3.2. Global Flow Quantities and Ef� ciencies

The main aim of this paper is to investigate how the stellar
wind interacts with a star that is undergoing differential
rotation. By integrating over a spherical shell of surfaceS

Figure 1. Poloidal velocity color maps, showing(left) model 46( feq= 0.05, � = 0), (center) model 14( feq= 0.001, � = 0), and(right) model 34( feq= 0.05,
� = 0.75). All simulations above have a surface polar� eld strengthBå/ B0 = 2.83. Magnetic� eld lines(white), velocity vectors normalized byvK,å (green), the sonic
surface(black), and the Alfvén surface(blue) are included. We include a secondary color bar that gives poloidal velocity in physical units(km sŠ1) for the 0.1–1 Me
cases in Table2. As vK,å for these cases only varies by a maximum of� 7% from the mean value� vK,å� = 432.75 km sŠ1, we adopt this to produce a single color bar
that approximately represents the entire mass range.

Figure 2. � eff/ � å,eq as a function of the angle on the stellar surface between the footprint colatitude and its closest pole, showing(left) model 46( feq= 0.05,� = 0)
and(right) model 34( feq= 0.05, � = 0.75). Both simulations have a� eld strengthBå/ B0 = 2.83. The red dotted line shows the stellar differential rotation pro� le
� å(� f) adopted at the inner boundary of the computational domain(equation(7)), normalized by� å,eq. The color map illustrates the divergence of� eff from the stellar
differential rotation pro� le � å(� f). The white(gray) area illustrates the region on the stellar surface in which the magnetic� eld is open(closed).

6 Divergence between� eff and � å(� f) typically occurs at the transition
between open and closed� eld lines, due to increasing numerical diffusion.
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perpendicular to the poloidal� ow at a given radiusR, we
express the radial pro� les of the stellar-wind mass� ow rate,
torque, and unsigned magnetic� ux as

· ( )�� v SM d , 11
S

p�¨ �S��

· ( )�� v SJ d , 12
S

p�¨ �S� � � -

and

� · � ( )B Sd , 13
S�¨� ' � �

respectively, where

�
�

�
�

( )R v
B

sin 14�R
�L

� - � � � ��G
�G

is a quantity related to the angular momentum� ux FAM = � � v.
In practice, we determine global values of��M and ��J for all
simulations by taking the median values over all spherical
shells atR> 7.68Rå (corresponding to the outer half of the
logarithmic radial grid) in order to avoid numerical effects near
the inner boundary. The unsigned magnetic� ux for a system
with dipolar topology initially falls as 1/ R, but reaches a
constant value that represents the open� ux in the stellar wind,
� open, outside the Alfvén surface, i.e., when the thermal and
hydrodynamic wind pressure exceeds the magnetic pressure. In
practice, we determine global values of� open for all
simulations by taking the median values over all spherical
shells at R> 40Rå. Values of ��M, ��J, and � open for all
simulations can be found in Table1.

We de� ne a“wind magnetization” parameter that encapsu-
lates the magnetic and mass-loss stellar-wind properties, based
on properties at the stellar surface:

�ƒ
�ƒ

�ƒ

( )
��R Mv4

, 15
2

2
esc�Q

� ` � �
�'

where �ƒ �ƒ �ƒR B2�B�Q� ' � � is the total stellar� ux (� = 2 for our
dipolar surface con� guration). Values of� å for all simulations
can be found in Table1. In Figure3, we illustrate the extent of
the parameter space explored by our simulations, in terms offeq

and � å. Symbol shapes, colors, and borders demonstrate how
each parameter in our study varies. IncreasingBå noticeably
increases� å (at � xed feq and � ). For slower rotation rates
( feq� 0.01), changes infeqand/ or � have a negligible effect on
� å (at � xed Bå); therefore, simulations with changing� (for
� xed Bå and feq) are seen to overlap in this� gure. For more
rapid rotation( feq� 0.05), increasingfeq and/ or decreasing�
decreases� å (at � xed Bå).

Equation (15) demonstrates that these simulations are
degenerate in�ƒ

��B M2 . This means that for a real star, the range
of � å shown in Figure3 can be taken to represent a range ofBå
for some� xed value of ��M, a range of ��M for some� xedBå, or
for any combination of the two. Table2 shows the range ofBå
and ��M in physical units for a few representative MS star
masses and choices of coronal-density normalization. Simi-
larly, the range offeq shown in Figure3 represents a range of
equatorial rotation periods, where example physical values are
given in Table2.

4. Torque Formulation for Simulations of Stellar Winds

Through dimensional analysis, a general parameterization
for the stellar-wind torque can be written as

( )� � � �J M r , 16wind A
2� � � ˜� 8 � §� ˜ � §

where� � wind� represents an“effective” stellar rotation rate in
the stellar-wind region, and� rA� is a characteristic length scale
that represents the“effective magnetic lever arm” and
quanti� es the ef� ciency of the stellar-wind torque(see, e.g.,
Weber & Davis1967). The Alfvén radius(normalized byRå) is
determined by rearranging Equation(16):


 �
�

�

�

��ƒ �ƒ

( )
��

��
r

R
J

M R
17A

wind
2

1 2
� ˜ � §

��
�˜�8 �§

(following Washimi & Shibata1993; Matt & Pudritz 2008).
However, � � wind� is not known a priori, so we instead
normalize the angular momentum loss in the stellar wind using
the equatorial rotation rate� å,eq, giving
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where we de� ne

�ƒ
( )

f

f
, 19wind

,eq

wind

eq

�X��
�˜�8 �§

�8
�w

� ˜ � §

where� fwind� represents an“effective” stellar breakup fraction
in the stellar wind. Values of� rA,eq� / Rå for all simulations can
be found in Table1. Therefore, we rewrite Equation(16) in
terms of simulation parameters:

�ƒ ( )� � � �J M r , 20,eq A,eq
2� � � 8 � ˜ � §

We adopt the stellar-wind torque formulation developed by
Matt et al.(2012):


 �
�
�

�
��ƒ

�ƒ
�ƒ

�ƒ

�ƒ

( )
r

R
K , 21

m
A

,1
�C

� ˜ � §
��

�`

Figure 3. feq as a function of� å for all simulations. To differentiate between
different input parameters, we use differing symbol styles forfeq, marker colors
for � , and marker edge colors forBå.
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where� å is the“magnetization parameter” of the stellar wind
based on properties at the stellar surface(expressed in
Equation(15)),
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�

�

�

�

�
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1 22eq
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is a “magnetocentrifugal correction” term for the wind
ef� ciency (expressed in the form adopted by Réville et al.
2015), and Kå,1, Kå,2, and må are best-� t dimensionless
parameters. The Alfvén radius is inversely proportional to the
stellar-wind mass-loss rate. Using Equation(18), we rewrite
Equation(21) in terms of� rA,eq� / Rå:
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�
��ƒ

�ƒ
�ƒ

�ƒ

�ƒ
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R
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m
A,eq
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�C
�X

� ˜ � §
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In Figure 4, we plot � rA,eq� / Rå as a function of� å/ � å,
(� xing � = 1 for the � å term). By solely � tting the
solid-body rotating cases, we� nd the best-� t dimen-
sionless parameters to beKå,1 = 0.932, Kå,2 = 0.263, and
må = 0.258. For convenience, all of the best-� t dimension-
less parameters presented in Section4 can be found in
Table3. The cases with solid-body rotation are well� t by
the power law represented by Equation(21), illustrated by
the small amount of scatter of those cases around the best-� t
line. However, the cases with differential rotation exhibit a
systematic deviation of the points toward smaller� rA,eq� / Rå

values for larger amounts of differential rotation(larger� ).
It is clear that any stellar-wind torque formulation that
assumes solid-body rotation(i.e., one that uses the
equatorial rotation rate and assumes� = 1) will increasingly
overestimate the ef� ciency of the stellar-wind torque for
increasing solar-like differential rotation. We can de� ne an
empirical value for the normalized“effective” rotation rate
in the wind, � emp, as being the deviation of the simulated
values from the simple power-law relationship of the solid-
body-rotator case. That is, the“effective” rotation rate in the
wind can be measured using Equation(23) and the � t

parameters(Kå,1, Kå,2, andmå):


 �
�

�

�

�

�ƒ

� ƒ � ƒ � ƒ�ƒ( )
( )

r R

K
. 24

memp
A,eq

,1

2

�X
�C

��
� ˜ � §

�`

Equation(24) is a transcendental equation(due to the� factor
present in� å), therefore, we solve this iteratively. Values of
� emp for all simulations can be found in Table1.

In order to predict the stellar-wind torque as a function of the
stellar surface properties, we must adopt a formulation for� .
The “effective” rotation rate in the wind, as de� ned by� , is a
torque-averaged rotation rate over all open� eld lines carrying
wind material. Because our adopted differential rotation pro� le
is a simple function of colatitude on the stellar surface, we can
de� ne the colatitude on the star that happens to rotate at the
same rate as the“effective” rotation of the wind, � eff.
Equations(7) and(19) thus de� ne the“effective” rotation rate
in terms of this colatitude:

( )1 cos . 25th
2

eff� X � B � R� � � �

Because the rotation rate increases from pole to equator, and
because the integrated torque(and thus“effective” rotation in
the wind) is dominated by� ow from the highest colatitudes, we
expect that� eff will have a similar value and similar scaling to
the maximum colatitude on the stellar surface that emits a wind
(as opposed to the higher colatitudes where there is a dead
zone), which we call � open. In practice, we explored a few
different possible relationships between� eff and � open. Given
the functional form of Equation(25), we found that a relatively
simple form and acceptable� t to the data is obtained by
assuming thatcos2 eff�R is proportional tocos2 open�R , leading to

( )K1 cos , 26th
2

open� X � B � R� � � ��R

whereK� is a best-� t dimensionless parameter. By evaluating
Equation(13) atRå across the average area enclosing the stellar
wind, i.e., for 0� � � � open and(� Š � open) � � � � , using the
dipolar de� nition for BR (Equation(3)), one can write

�ƒ
( )cos 1 , 272

open
open�R � � � �

�'

�'

giving


 �
�
�

�
��ƒ

( )K1 1 28th
open� X � B� � � � � �

�'

�'
�R

for our dipolar con� guration. Therefore, when� � 0, the
“effective” rotation rate of the wind(normalized by the
equatorial stellar rotation rate) is a function of � and the
fraction of open� ux in the stellar wind.

Figure 4. � rA,eq� / Rå as a function of� å/ � å (� xing � = 1) for all simulations.
The black line shows the solid-body� t � ƒ � ƒ � ƒ( )r R 0.932A,eq

0.258�C�˜ � § � � � `(with
Kå,2 = 0.263).

Table 3
Best-� t Dimensionless Parameters from Scaling Laws in Section4

Parameter Value Equations

Kå,1 0.932 (21)
Kå,2 0.263
må 0.258
K� 1.06 (31)
K� ,1 1.16
K� ,2 0.0111
m� Š0.165
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In previous stellar-wind simulations, it has been shown that
the fraction of open� ux increases with the wind mass-loss rate
(at � xed feq/ Bå); more speci� cally, � open/ � å scales inversely
with � å (see, e.g., Réville et al.2015; Finley & Matt2017, 2018;
Pantolmos & Matt2017). Therefore, we parameterize� open/ � å
using the following functional� t:


 �
�
�

�
��ƒ

�ƒ ( )K , 29
m

open
,1

�C

�'

�'
��

�`
�'

�'

�'

where

�
�
�

�

��
�

	

�
�
�

( )
( )

f

K
1

1
30eq

,2

2 1 2

�C
�B

� � � �
��

�'
�'

is the“magnetocentrifugal correction” term for the fraction of
open� ux in the stellar wind, andK� ,1, K� ,2, andm� are best-� t
dimensionless parameters. By solely� tting the solid-body
rotation cases, we� nd the best-� t dimensionless parameters
to be K� ,1 = 1.16, K� ,2 = 0.0111, and m� = Š0.165.7 In
Equation (29), we assume� � (1 Š � ) in the � � term for
simplicity to avoid producing a transcendental equation for the
full parameterization of� ; this approximation gives simulation
points that lie within� 10% of the formulation if� was used.
Therefore, one can rewrite Equation(28) as


 �
�

�
�

�
�

�
�

�

	



�ƒ ( )K K1 1 . 31
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th ,1� X � B
�C
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�`
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�'

We determine the best-� t dimensionless parameterK� = 1.06
by � tting the � emp values with the expression for� th
(equation (31)). Conceptually, given the differential pro� le
used in this study,� open corresponds to the colatitude of the
� eld line with the maximum stellar rotation rate in the stellar
wind. Our value ofK� demonstrates that� � wind� acts along a
� eld line connected at a colatitude that is near, but lower than,
� open. In other words, the location on the stellar surface that
rotates at the same rate as the“effective” rotation rate of the
wind is located within the wind-emitting region and near the
last open� eld line, as expected.

In Figure5, we plot� empas a function of� å/ � � . When the
differential rotation increases, i.e., as� increases, the
“effective” rotation rate in the wind is smaller. For a given
differential rotation pro� le, the trend with� å/ � � illustrates that
the “effective” rotation rate in the wind is sensitive to the
fraction of open� ux in the wind. Speci� cally, if there is more
fractional open� ux (which occurs for smaller� å/ � � ), the
“effective” rotation of the wind is faster because it includes
more � ow from higher colatitudes. We superimpose lines
representing the fully parameterized� th for each� explored in
our study(Equation(31)). The scatter present for� = 0 cases is
solely due to deviations in the relationship between� rA,eq� / Rå
and � å/ � å, whereas for� > 0 cases, the scatter is likely a
combination of this and from our parameterization of� .

In Figure 6, we plot �ƒ( )r RA,eq th
1 2�X� ˜ � §�� as a function of

� å/ � å (using � th in the expression of� å). We � nd all
simulation points to lie within� 10% of the� tting function.
Therefore, our adoption(and parameterization) of � appears to
strongly account for the stellar differential rotation effects on

the ef� ciency of the stellar-wind torque. Finally, by combining
Equations(20), (23), and(31), we express a fully parameter-
ized estimate for the stellar-wind torque, for a wide range of
differential rotation rates and stellar surface� eld strengths:
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5. Discussion and Conclusions

In this work, we perform 74 2.5D axisymmetric MHD
stellar-wind simulations to investigate how the stellar-wind
torque experienced by the star is impacted by differential
rotation and the dipolar stellar surface magnetic� eld strength.
We create a torque formulation that encapsulates these effects,
allowing for the investigation of the rotational evolution of MS
stars using 1D stellar evolution codes. We chose a simpli� ed
setup, including a purely dipolar magnetic� eld, thermal/

Figure 5. � emp as a function of� å/ � � for all simulations. Dotted lines
represent the theoretical solution� th, for a given� .

Figure 6. �ƒ( )r RA,eq th
1 2�X� ˜ � §�� as a function of� å/ � å for all simulations. The

black line shows the� t � ƒ � ƒ � ƒ( ) ( )r R 0.932A,eq th
1 2 0.258� X � C� ˜ � § � � � `�� (with Kå,2 =

0.263).

7 Note,K� ,2 � Kå,2. TheKå,2 term captures the combined effects of the wind
acceleration and the fact that the open� ux is changing, whereasK� ,2 captures
only the latter.
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polytropic wind driving, and a monotonic differential rotation
pro� le.

5.1. How Differential Rotation Affects Stellar-wind Torques

We determine a stellar-wind torque formulation through the
parameterization of the effective Alfvén radius, based on the
formulation employed by Matt et al.(2012). Our solid-
body rotation simulations follow a� rA� –� å–f relationship
(Equation(21)) with a power-law index ofmå = 0.258, which
is comparable to that found in previous stellar-wind studies
(with an initial dipolar con� guration) within systematic
uncertainties(see, e.g., Matt et al.2012; Réville et al.2015;
Finley & Matt 2017; Pantolmos & Matt2017; Pantolmos et al.
2020). In addition, our magnetocentrifugal correction term for
the wind ef� ciency, � å, has a large� tting constant of
Kå,2 = 0.263, suggesting that rotation has an impact on the
wind acceleration only for our most-rapid cases. This value is
slightly larger than that determined by Réville et al.(2015)
(� 0.2), but much larger than that determined by Matt et al.
(2012) (0.07); as discussed in the former, these discrepancies
might be due to differences in boundary conditions.

For cases undergoing surface differential rotation, the
effective Alfvén radius now depends on the“effective” stellar
rotation rate in the wind,� � wind� , which is not known a priori
(Equation(17)). We renormalize the Alfvén radius using the
equatorial stellar rotation rate,� å,eq, introducing the term
� = � � wind� / � å,eq into the formulation(Equation (18)). We
� nd that� decreases with the magnitude of surface differential
rotation (measured via� ). Furthermore,� increases with the
fraction of open � ux in the wind (for a given � ); this
corresponds to the stellar wind occupying a larger area of the
domain, allowing for the inclusion of faster� ow from higher
colatitudes. The fraction of open� ux in the wind itself
inversely scales with the wind magnetization,� å; for rapidly
rotating cases, it is also sensitive to magnetocentrifugal effects
on the wind acceleration and the open� ux combined,� � . Our
simulations follow a� open/ � å–� å–f relationship with a power-
law index of m� = Š0.165, which is again comparable to
previous open� ux stellar-wind studies(see, e.g., Réville et al.
2015; Finley & Matt2017; Pantolmos & Matt2017; Pantolmos
et al. 2020). Our � � term has a proportionality constant of
K� ,2 = 0.0111, suggesting that the open� ux is more sensitive
to rotation compared to the effects on wind acceleration solely
(encapsulated by our� å term).

Overall, for our solar-like differential rotation cases, i.e.,
� < 1, we � nd the rotation in the wind to be decreased
compared to a solid-body case with identical stellar properties
(rotating at� å,eq with a � xed mass-loss rate), decreasing the
stellar-wind torque by approximately a factor of� (ignoring
centrifugal effects).8 We note that the parameterization of�
used in our formulation is speci� c to the differential rotation
pro� le adopted; however, it is likely that one can derive� for
different pro� les and follow the framework of this paper to
predict the torque.

Differential rotation, in general, can shear small-scale
magnetic � eld structures and affect the coronal dynamics
(see, e.g., Lionello et al.2006; Morgan 2011; Lionello et al.
2020). However, in this study, we solely investigate the effects

of differential rotation on the rotation rate at the base of the
wind, and how this affects global angular momentum loss,
independent of coronal dynamics. In this case, we are
concerned only about the rotation rate of open magnetic� eld
lines (i.e., single footprints), rather than connected footprints
undergoing shear. In a 3D domain, differential rotation can
redistribute the open magnetic� ux of a nonaxisymmetric� eld
(e.g., a tilted dipole); hence, the assumed initial magnetic� ux
distribution changes in time and the solution cannot be
stationary. On the other hand, the timescales to establish a
wind solution are much shorter than the differential rotation
and magnetic� eld reorganization timescales. Therefore, our
axisymmetric results represent the solution for a wind in which
the timescale of reorganization is much longer than the time to
establish the(quasi-)steady-state conditions in the wind. We
also note that assuming a dipolar magnetic con� guration is a
simpli� cation, and real solar-like and low-mass stars exhibit
smaller-scale magnetic� eld structures, in addition to their
dipolar components(e.g., Donati & Landstreet2009). How-
ever, various works have suggested that the open� ux, hence
the angular momentum loss, is dominated by the dipolar
magnetic � eld component(Jardine et al.2016; See et al.
2016, 2017; Finley & Matt 2018). Our simulation results
should apply to any real star, under the condition that the
differential rotation of the open� eld lines is similar to the
pro� les we explored. Future studies should consider more
realistic magnetic� eld geometries and differential rotation
pro� les, in order to explore whether magnetic topology, closed-
loop shearing, and other coronal dynamics affect the differ-
ential rotation in the wind.

5.2. Variations during a Solar Magnetic Cycle

We use our modi� ed prescription to illustrate the potential
effect differential rotation could have on predicting the wind
torque of the Sun, using time-varying solar properties(over
solar cycles 23 to 24) calculated in Finley et al.(2018). Dipolar
magnetic� eld strength is calculated using synoptic magneto-
grams of the surface� eld strength(from solar cycles 23 to 24)
from two sources: the Michelson Doppler Imager at the Solar
and Heliospheric Observatory(SOHO/ MDI), and the Helio-
seismic and Magnetic Imager at the Solar Dynamic Observa-
tory (SDO/ HMI). The estimated dipolar� eld strength(at the
pole) varies in the range 0.108–3.14 G(average: 1.54 G). The
mass-loss rate is calculated from 27 day averages via measure-
ments of the solar-wind speed and density from the ACE
spacecraft, i.e., ( ) ( )���:M R v R R4 R

2
27 day� Q � S� � � ˜ � §. The estimated

mass-loss rate varies in the range(0.697Š 4.30) × 10Š14 Me
yrŠ1 (average: 1.78× 10Š14 Me yrŠ1). A typical measured
value of the solar equatorial sidereal rotation period is 24.47
days(Snodgrass & Ulrich1990); this corresponds to a rotation
rate of � e ,eq= 2.97× 10Š6 rad sŠ1, giving fe ,eq= 4.73×
10Š3. We adopt a relative differential rotation rate of� e = 0.3.

Using these observations, we determine corresponding
values of� e (via Equation(31)) as a function of time. In the
top panel of Figure7, we illustrate the“effective” rotation of
the wind’s sensitivity to the stellar-wind area by plotting the
colatitude of the opening� eld line (determined with� e via
Equation(26)) as a function of time for solar cycles 23 and 24
(black line). Gray lines are interpolated values, due to
missing data for these periods. We superimpose a color
map of � e (� open,e = � ) (determined by substituting� into
Equation (26)), which demonstrates the distribution of its

8 For � xed mass-loss rate, one can show � ƒ � ƒ�ƒ( )� � � �J J m
SB ,SB

2� C � C�X�� , where the
subscript“SB” represents the solid-body value. Forfeq= Kå,2, i.e., when
centrifugal effects are negligible,� � � �J JSB �X�x .
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theoretical value for a given colatitude of the opening� eld line.
At the solar minima, where the stellar-wind region is at its
smallest (corresponding to lower opening colatitudes),
� e � 0.8, i.e., the“effective” rotation of the wind is roughly
80% of the equatorial rotation rate. At the most extreme
snapshot of the solar maxima, where the stellar-wind region is
at its largest(corresponding to the highest opening colatitude),
� e � 0.99, i.e., the “effective” rotation of the wind is
determined predominately by the most-rapid� ows close to
the equatorial value.

We determine the change in the predicted solar torque using
our modi� ed prescription, compared to the solid-body predic-
tion. For the solid-body approximation, we adopt the
Carrington sidereal rotation period of 25.4 days, which
corresponds to the period it takes for� xed features on the
solar surface at a colatitude of 64° (typical for sunspots and
other solar activity) to rotate to the same apparent position
when viewed from Earth(Carrington1863, pp. 221, 244); this
corresponds to a rotation rate of� e ,SB= 2.86× 10Š6 rad sŠ1,
giving fe ,SB= 4.56× 10Š3. Using Equation(32) and assuming
magnetocentrifugal effects on the solar-wind ef� ciency are
negligible (� e fe ,eq� fe ,SB= Kå,2), the ratio of our torque
prediction and the solid-body prediction for the solar case can
be interpreted as

( )
��

��
�:

�:

�:

�:
�:

J
J

. 33
,SB

,eq

,SB
�X��

�8

�8

In the bottom panel of Figure7, we plot the percentage change
in the predicted solar torque as a function of time. At the solar
minima, our formulation predicts a solar torque that is roughly
18% smaller than the solid-body prediction. Therefore, for the
majority of the solar cycle, the open magnetic� eld extends
over a region that is rotating slower than the solid-body rotation
rate, resulting in a weaker torque. However, at the most
extreme snapshot of the solar maxima, our formulation actually
predicts a solar torque that is roughly 2.5% larger, but this is

primarily due to the fact that� e ,eq> � e ,SB. In this extreme
case, where a large fraction of surface� eld is opened into the
wind, the open region engulfs surface regions that are rotating
faster than the solid-body value, and thus the torque is
increased.

This analysis makes use of only the axisymmetric dipole
� eld, which may be a reasonable approximation for most of the
solar cycle except for at solar maximum, where global
magnetic� eld con� gurations are often nonaxisymmetric and
multipolar(DeRosa et al.2012). However, this work could be a
foundation for a more detailed analysis in which the average
rotation rate of the open� eld regions is calculated during the
solar cycle, i.e., accounting for nonaxisymmetry and multipolar
magnetic � elds. Some observations and theoretical work
suggest that while the solar photosphere rotates as described,
the solar corona(and thus the base of the solar wind) may in
fact be rotating differently, or even potentially as a solid body
(see, e.g., Insley et al.1995; Giordano & Mancuso2008;
Bagashvili et al.2017; Pinto et al.2021). It is likely that the
rotation of the solar corona determines the rotation rate of the
wind, therefore it is possible that these systems are much more
complex than anticipated by these formulations and that surface
differential rotation may not be noticeably responsible for any
torque discrepancies between observations and theory.

5.3. Signi� cance of Differential Rotation for Main-sequence
Stellar Spin-down

Most F, G, and K MS stars are observed to have a relative
differential rotation rate similar to or smaller than the Sun, i.e.,
� < 0.3, and most rapidly rotating stars are observed to be rotating
almost as a solid body, i.e.,� � 0 (see, e.g., Collier Cameron2002;
Reiners & Schmitt2002b; Barnes et al.2005; Reiners2006;
Collier Cameron2007; Balona & Abedigamba2016). For the
cases similar to the Sun, differential rotation could affect the stellar
torque on the order of tens of percent according to our prescription
(as discussed in Section5.2). The effect of differential rotation on
wind torques is expected to be even smaller for more rapidly
rotating stars, as� is observed to decrease with rotation period. In
the case of antisolar rotation(� < 0), which we did not explicitly
explore in our parameter study, our formulation shows� to be
inversely proportional to the fractional open� ux (i.e., proportional
to � å/ � � ), suggesting that MS antisolar rotators actually spin
down more ef� ciently. Finally, depending on the method used for
determining rotation rates, it is likely that the observed rates are not
generally equal to the maximum/ equatorial rate, but rather to some
intermediate rate. The observedrotation rates can thus be closer to
the“effective” rotation of the wind, which would reduce the error
in using solid-body stellar torque predictions.

Generally, depending on the precision required, models
using solid-body rotation(and indeed using observations of
rotation rates where the colatitude of the rotation rate observed
is not known) are probably acceptable for studying stellar spin-
down, especially because other uncertainties in the modeling
(e.g., knowing the mass-loss rates or magnetic� eld properties)
are likely comparable or larger. However, for stars demonstrat-
ing relative differential rotation comparable to, or stronger than,
that of the Sun, the results presented in this paper should be
considered.

L.G.I. and S.P.M. acknowledge support from the European
Research Council(ERC) under the European Union’s Horizon
2020 research and innovation program(grant agreement

Figure 7. Estimated opening colatitude of the solar wind(top), and estimated
percentage change in predicted solar torque(bottom), as a function of time(in
years) over solar cycles 23 and 24.
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