Skip to Main content Skip to Navigation
Journal articles

Reconstruction of high-frequency methane atmospheric concentration peaks from measurements using metal oxide low-cost sensors

Abstract : Detecting and quantifying CH 4 gas emissions at industrial facilities is important goal for being able to reduce these emissions. The nature of CH 4 emissions through 'leaks' is episodic and spatially variable, making their monitoring a complex task, being partly addressed by atmospheric surveys with various types of instruments. Continuous records are preferable to snapshot surveys for monitoring a site, and one solution would be to deploy a permanent network of sensors. Deploying such a network with research-level instruments being expensive, low-cost and low-power sensors could be a good alternative. However, low cost entails usually lower accuracy and the existence of sensors drifts and cross-sensitivity to other gases and environmental parameters. Here we present four tests conducted with two types of Figaro TGS sensors on a laboratory experiment. The sensors were exposed to ambient air and peaks of CH 4 concentrations. We assembled four chambers, each containing one TGS sensor of each type. The first test consisted in comparing parametric and non-parametric models to reconstruct the CH 4 peaks signal from observations of the voltage variations of TGS sensors. The obtained relative accuracy is higher than 10% to reconstruct the maximum amplitude of peaks (RMSE ≤ 2 ppm). Polynomial regression and multilayer perceptron (MLP) models gave the highest performances for one type of sensor (TGS 2611C, RMSE = 0.9 ppm) and for the combination of two sensors (TGS 2611C + TGS 2611E, RMSE = 0.8 ppm) with a training set size of 70% of the total observations. In the second test, we compared the performance of the same models with a reduced training set. To reduce the size of the training set, we have employed a stratification of the data into clusters of peaks that allowed us to keep the same model performances with only 25% of the data to train the models. The third test consisted of detecting the effects of age in the sensors after six months of continuous measurements. We observed performance degradation through our models, of between 0.6 and 0.8 ppm. In the final test, we assessed the capability of a model to be transferred between chambers on the same type of sensor, and found that it is possible to transfer models only if the target range of variation of CH 4 is similar to the one on which the model was trained.
Document type :
Journal articles
Complete list of metadata

https://hal-insu.archives-ouvertes.fr/insu-03740953
Contributor : Catherine Cardon Connect in order to contact the contributor
Submitted on : Saturday, July 30, 2022 - 6:45:25 PM
Last modification on : Wednesday, August 3, 2022 - 3:58:09 AM

File

amt-2022-200.pdf
Publisher files allowed on an open archive

Licence


Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Identifiers

Citation

Rodrigo Andres Rivera Martinez, Diego Santaren, Olivier Laurent, Gregoire Broquet, Ford Cropley, et al.. Reconstruction of high-frequency methane atmospheric concentration peaks from measurements using metal oxide low-cost sensors. Atmospheric Measurement Techniques Discussions, Copernicus Publications / European Geosciences Union 2022, pp.(Discussions). ⟨10.5194/amt-2022-200⟩. ⟨insu-03740953⟩

Share

Metrics

Record views

0

Files downloads

0