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Abstract Many global atmospheric models have too little precipitation variability in the tropics on
daily to weekly time scales and also a poor representation of tropical precipitation extremes associated
with intense convection. Stochastic parameterizations have the potential to mitigate this problem by
representing unpredictable subgrid variability that is left out of deterministic models. We evaluate
the impact on the statistics of tropical rainfall of two stochastic schemes: the stochastically perturbed
parameterization tendency scheme (SPPT) and stochastic kinetic energy backscatter scheme (SKEBS),
in three climate models: EC-Earth, the Met O�ce Uni“ed Model, and the Community Atmosphere Model,
version 4. The schemes generally improve the statistics of simulated tropical rainfall variability, particularly
by increasing the frequency of heavy rainfall events, reducing its persistence and increasing the
high-frequency component of its variability. There is a large range in the size of the impact between
models, with EC-Earth showing the largest improvements. The improvements are greater than those
obtained by increasing horizontal resolution to� 20 km. Stochastic physics also strongly a�ects projections
of future changes in the frequency of extreme tropical rainfall in EC-Earth. This indicates that small-scale
variability that is unresolved and unpredictable in these models has an important role in determining
tropical climate variability statistics. Using these schemes, and improved schemes currently under
development, is therefore likely to be important for producing good simulations of tropical variability
and extremes in the present day and future.

Plain Language Summary Simulations from climate models have been found to lack day-to-day
variability in tropical rainfall, with there being too many rainy days and not enough days with very heavy
rainfall. A possible contributor to this problem is that the schemes the models use to predict rainfall try to
predict the average rainfall that would be expected for given large-scale conditions. In reality, unpredictable
small-scale features like eddies and gravity waves may contribute to the formation of severe storms or
prevent them from developing. We test whether using stochastic methods to represent the e�ectively
random impact of these small-scale features improves the variability of tropical rainfall simulated by
three climate models. We “nd evidence that it does, and this indicates that treating the prediction
of tropical rainfall probabilistically rather than deterministically will give improvements in
climate simulations.

1. Introduction

Variability of tropical rainfall on daily to weekly time scales is a highly important aspect of climate. The occur-
rence of heavy rain events in the tropics can reduce crop yields, cause ”ooding, and increase the incidence
of disease, and changes in tropical variability are expected to contribute to the damage of climate change
[Intergovernmental Panel on Climate Change, 2014]. Simulating tropical rainfall well is crucial for activities like
estimating ”ood risks [Ward et al., 2015]. It is therefore important that climate models have a realistic repre-
sentation of the statistics of this variability on these time scales on relevant length scales, such as those of
river drainage basins.
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Numerous studies have found that many climate models do not simulate tropical variability well on daily to
weekly time scales, as discussed in the review byWestraetal.[2014]. For example,Stephensetal.[2010] showed
that tropical locations had too many rainy days in a selection of models, and the rainfall was therefore typically
too light. Lin et al.[2006] presented space-time spectra of tropical rainfall in Coupled Model Intercomparison
Project Phase 3 (CMIP3) models and showed that generally they have too little spectral power associated with
rainfall events lasting a few days or less, andHung et al.[2013] found that there was not much improvement
in CMIP5 models.Crétat et al.[2014] showed that most CMIP5 models have much less frequent intense daily
mean rainfall over Africa than in satellite observations. Some models do produce intense rain in individual
time steps, however [Klingaman et al., 2017].

These model errors can a�ect other aspects of the simulations. Tropical convective systems can a�ect weather
and climate at higher latitudes by acting as sources of Rossby waves [Branstator, 2014]. Additionally, inaccu-
racy in simulating tropical rainfall variability causes errors in simulating the amount of moisture that leaves the
land surface as runo� and as evaporation [Qianetal., 2006]. This a�ects coupling of the land surface and atmo-
sphere, withSaeed et al.[2013] “nding that the simulated tropical variability can a�ect the sign of projections
of changes in mean rainfall due to climate change.

In the tropics, parameterizations of unresolved processes like deep convection have a very important role in
climate models. One reason for the problems in simulating tropical rainfall variability in climate models may
be that in the parameterizations, it is assumed that the impacts of small-scale phenomena like tropical con-
vective systems on resolved scales can be represented by deterministic functions of variables averaged over a
model grid box. In reality, a given grid box-average state may be associated with many possible realizations of
the small-scale phenomena [e.g.,Daviesetal., 2013;Petersetal., 2013]. For example, two grid box-sized regions
in a similar convective-equilibrium state could have di�erent numbers of convective clouds [Cohen and Craig,
2006]. Therefore, more realistic statistics of the e�ects of subgrid phenomena can be obtained by modeling
them as random samples from probability distributions conditioned on the grid box-scale state, rather than
just the mean e�ect across all possible realizations, so that the e�ects of these di�erent individual realizations
are included in the simulations [Palmer, 2001, 2012]. This would be expected to increase the variability in the
simulation of parameterized processes, potentially giving more realistic intermittency and extremes of quan-
tities like rainfall on resolved scales. Also, due to nonlinearities in the dynamics, improving the representation
of subgrid variability may also improve a model•s mean state through feedbacks [e.g.,Sardeshmukhetal., 2003;
Williams, 2012;Weisheimer et al., 2014]. This may indirectly lead to improvements in the simulated variability,
which can depend on the mean state.

In recent years, much e�ort has been put into developing stochastic parameterizations. Such parameteriza-
tions have been used in several numerical weather prediction models, including some run operationally, and
have been found to improve forecast skill by both increasing the spread of ensemble forecasts and reducing
the size of errors of the ensemble mean forecasts [e.g.,Buizza et al., 1999;Palmer et al., 2009;Reynolds et al.,
2011;Yonehara and M. Ujiie, 2011;Bouttier et al., 2012;Su•elj et al., 2014;Berner et al., 2015;Sanchez et al., 2016].
There are also numerous other promising schemes that have been or are being developed [e.g.,Plant and
Craig, 2008;Khouider et al., 2010;Bengtsson et al., 2013;Rochetin et al., 2014;Kober et al., 2015;Shutts, 2015;
Dorrestijn et al., 2016;Sakradzija et al., 2016;Ollinaho et al., 2017;Peters et al., 2017].

Several recent studies have found that adding stochasticity to atmospheric parameterization schemes
improves aspects of the climate simulated in models, indicating that the stochasticity is indeed improving
the representation of unresolved processes, as reviewed byBerner et al.[2017]. This includes improvements to
simulated tropical climate. For example,Berner et al.[2008] andWeisheimer et al.[2014] showed that stochas-
tic parameterizations applied in the European Centre for Medium-Range Weather Forecasts (ECMWF) coupled
atmosphere-ocean model reduce biases in tropical mean rainfall, andSanchez et al.[2016] found a similar
result in the Met O�ce atmospheric model. Lin and Neelin[2000, 2002] showed that including stochasticity
in the convection parameterization of intermediate complexity general circulation models (GCMs) improves
aspects of the tropical variability, andLin and Neelin[2003] also showed this in the National Center for
Atmospheric Research (NCAR) Community Climate Model.Davini et al.[2017] showed that stochastic param-
eterizations in EC-Earth improve the simulation of tropical rainfall rate distributions and the Madden-Julian
Oscillation, andWang et al.[2016] found that the scheme ofPlant and Craig[2008] improves the simulated
tropical rainfall rate distribution in the NCAR Community Atmosphere Model as well.Dorrestijn et al.[2016],
Goswami et al.[2016], andPeters et al.[2017] showed that variants of the stochastic multicloud model of
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Khouider et al.[2010] improved aspects of tropical variability simulated in di�erent GCMs, andFrenkel et al.
[2012] showed similar results in a single-column model context.Christensen et al.[2017] also found that
stochastic physics greatly reduced excessive El Niño variability in the NCAR Community Atmosphere Model,
version 4 (CAM4).

The stochastic physics schemes evaluated here are variants of the stochastically perturbed parameterization
tendencies scheme (SPPT) [Buizza et al., 1999;Palmer et al., 2009] and the stochastic kinetic energy backscatter
scheme (SKEBS) [Shutts, 2005;Berner et al., 2009]. We focus on these schemes because they have been tested
extensively at ECMWF and the Met O�ce and have been shown to improve weather forecast skill [Palmer
et al., 2009;Sanchez et al., 2016], and therefore, they are good candidates for being implemented into climate
models at this time.

SPPT treats the total parameterized tendencies in prognostic model variables, such as temperature, humidity,
and wind that are produced by the subgrid parameterizations as uncertain quantities. The tendencies are mul-
tiplied by a random number that scales them up or down. The random number is typically correlated in space
and time, to account for the fact that parameterizationerrors are spatially and temporally correlated. Rainfall
is not directly perturbed, but perturbations to atmospheric tendencies will a�ect rainfall at subsequent time
steps. For example, if convective heating is increased, this will result in greater stabilization of the atmospheric
column, possibly reducing precipitation at the next time step.

SKEBS provides a representation of errors resulting from energy dissipation by subgrid-scale processes a�ect-
ing larger scales„a process that is not parameterized in deterministic atmospheric models. The atmospheric
stream function tendency is perturbed at each grid point and time step by a random pattern with a speci“ed
amplitude, spatial power spectrum, and temporal autocorrelation. The temperature may also be perturbed,
depending on the implementation. The amplitude of the perturbations may depend on dissipative processes
acting at each location associated with the model numerics and subgrid-scale processes such as convection.
These perturbations to the model state will in”uence the behavior of subgrid parameterization schemes and
hence a�ect precipitation.

Note that SPPT and SKEBS represent only part of the uncertainty in parameterized processes„for example,
uncertainty in whether convection is present in a grid box is not represented.

One simple conceptual model for how SPPT and SKEBS perturbations a�ect tropical precipitation variability,
hereafter referred to as the •No FeedbacksŽ model, is that it is purely a result of the direct e�ect of the per-
turbations on a GCM•s prognostic variables, from which precipitation is diagnosed. More precisely, letX be
the prognostic variables in the deterministic con“guration of the GCM, such as the grid-scale temperatures
and winds, and letP = P(X) be the precipitation diagnosed by the parameterization schemes. LetX� be the
prognostic variables in a stochastic con“guration, with stochastic schemes adding perturbations� to this in a
single model time step before precipitationP� = P(X� + � ) is diagnosed. Assume that the stochastic perturba-
tions do not a�ect the climatological statistical properties of the prognostic variables, so that the properties
of X� equal those ofX. Then the di�erences between the statistics ofP� and P are only due directly to the
statistics of� . Subramanian et al.[2017] demonstrated that this would typically cause the frequency of the
heaviest and lightest rain rates to increase and that of rates in between to decrease. It would also be expected
to reduce the temporal autocorrelation of precipitation, if the perturbations have a smaller autocorrelation
than X, and increase the precipitation•s standard deviation. Deviations from these predictions indicate that
feedbacks from changes in the statistics of resolved variables are important. Consistency with the predictions
does not imply that feedbacks from resolved variables are necessarily unimportant, however. Note that the
mean precipitation could potentially change even if the mean of� is zero without there being feedbacks,
sincePis a nonlinear function ofX.

In this paper we extend upon previous work investigating the impact of SPPT and SKEBS on models• climate
statistics, focusing on tropical rainfall variability on daily to weekly time scales in three di�erent atmospheric
models. We evaluate whether stochastic physics causes any improvements, which helps to indicate how real-
istically SPPT and SKEBS model the statistics of parameterization errors. Our analysis shows how important
it is to re“ne the way stochasticity is included in parameterizations for simulating tropical variability well,
on top of improving the deterministic aspects of schemes. Our results also indicate which diagnostics are
sensitive to using stochastic physics and are therefore good targets to use when evaluating new stochastic
schemes„statistics of tropical rainfall that have previously been used for this purpose have been shown not
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to be sensitive to the way stochastic physics is implemented [Watson et al., 2015]. We also compare the impact
of increasing model resolution with using stochastic physics in two models, to test if stochastic physics can
give similar or greater bene“ts, as investigated previously in the context of midlatitude dynamics [Dawson
and Palmer, 2015]. We evaluate to what extent the results are consistent with the No Feedbacks conceptual
model as well.

While previous studies on the impact of stochastic physics on model climate have examined the impact in
individual models, the use of multiple models in our work allows evaluation of the sensitivity of the impact to
the deterministic model being used and the details of the stochastic schemes. This may help to inform model
developers about what impacts SPPT and SKEBS implemented in a new model can be expected to have and
which impacts are sensitive to the details of the deterministic model and stochastic scheme.

2. Data Sets and Methods

We use precipitation data from two observational and three atmospheric model data sets, taking approxi-
mately 10 years of data from each. We use data between 1998 and 2007 for the observational data sets, which
is the closest available decade to the periods covered in our model data sets. For the models, we use approxi-
mately 10 years of data that are the closest to this period, as speci“ed in section 2.2. These periods are not the
same for the di�erent models. We have veri“ed that our results are similar in separate subsamples of these
periods, indicating that this has not had a large e�ect on the results. This included testing sensitivity to using
just the 1993…1996 period in the Met O�ce Uni“ed Model (UM) and CAM4 data to exclude any impact of the
El Niño events that occurred shortly before and after this period.

The precipitation is conservatively interpolated to a 2.5� × 2.5� grid. We use daily mean precipitation for
diagnostics of precipitation variability. We have veri“ed that our results do not change qualitatively if data
interpolated to a 1� × 1� grid is used.

2.1. Observational Data
In order to estimate biases in annual mean precipitation in the atmospheric models in section 3.1, we use
monthly mean observational estimates from the Version-2.2 Global Precipitation Climatology Project Monthly
Precipitation Analysis product [Hu�man et al., 1997;Adler et al., 2003, hereafter •GPCP-MonŽ]. This combines
satellite-based estimates of rainfall from microwave imagers, cloud top temperatures, and rain gauges. For
each model, we estimate the biases using the same 10 year period of these observations as we used for the
given model (see section 2.2).

For diagnostics of precipitation variability, we use estimates of daily mean rainfall from the Global Precipitation
Climatology Project One-Degree Daily (1DD) product [Hu�man et al., 2001, hereafter •GPCPŽ] and the Tropical
Rainfall Measuring Mission Multisatellite Precipitation Analysis 3B42 version 7 [Hu�man et al., 2007, here-
after •TRMMŽ]. Both products are derived by combining satellite-based estimates of rainfall from microwave
imagers and cloud top temperatures and scaled so their monthly means match those of GPCP-Mon.

We have found that while the daily precipitation values in the GPCP and TRMM data sets are very well corre-
lated, the estimated magnitude of the precipitationcan di�er signi“cantly, with TRMM generally indicating
a larger rainfall amount in heavy rainfall events, particularly over oceanic regions. This is discussed in more
detail in Appendix A. We do not attempt to determine which data set is more realistic here and treat the dif-
ference between the data sets as an estimate of observational uncertainty. We discuss alongside the results
(section 3) where this observational uncertainty is too large for it to be clear what the model biases are and
whether stochastic physics is making an improvement.

2.2. Model Data
We use data from experiments using three atmosphere-only general circulation models. All of the models
include parameterizations of small-scale atmospheric processes such as convection, cloud processes, and
gravity wave drag and a representation of land surface dynamics. Observational estimates of sea surface tem-
peratures (SSTs) and sea ice concentrations(SICs) are used as boundary conditions. The models use historical
atmospheric composition, except that after 2005 in the EC-Earth experiments the composition is taken from
the CMIP5 Representative Concentration Pathway 8.5 scenario [Moss et al., 2010].

The model data sets and their stochastic physics schemes are described in the following sections and
summarized in Table 1.
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Table 1. Summary of Model Con“gurations Evaluated and Their Abbreviated Names

Base Model Con“guration Resolution (at Equator) Short Name

EC-Earth Deterministic low resolution T255 (� 80 km) EC Det Low

Stochastic low resolution T255 (� 80 km) EC Stoch Low

Deterministic high resolution T1279 (� 16 km) EC Det High

Uni“ed model Deterministic low resolution 1.25� × 1.875� (� 140 km× 210 km) UM Det Low

Stochastic low resolution 1.25� × 1.875� (� 140 km× 210 km) UM Stoch Low

Deterministic high resolution 0.23� × 0.35� (� 25 km× 40 km) UM Det High

CAM4 Deterministic 0.9� × 1.25� (� 100 km× 140 km) CAM4 Det

SPPT 0.9� × 1.25� (� 100 km× 140 km) CAM4 SPPT

SKEBS 0.9� × 1.25� (� 100 km× 140 km) CAM4 SKEBS

2.2.1. EC-Earth (EC)
We used atmosphere-only integrations of EC-Earth version 3.1, as performed and documented byDavini
et al.[2017]. The atmospheric component is based on the ECMWF Integrated Forecast System (IFS) cycle 36r4
in the •System 4Ž seasonal forecast model con“guration [Molteni et al., 2011]. It uses a bulk mass ”ux con-
vection scheme based on the work ofTiedtke[1989], described in detail in the IFS Cy37r2 documentation
at http://www.ecmwf.int. The model has been adapted and tuned for performing climate simulations. The
•low-resolutionŽ con“gurations used here have spectral atmospheric resolution T255, with model physics
calculated on a reduced Gaussian grid with a grid spacing of approximately 80 km globally. We consider
deterministic and stochastic con“gurations at this resolution (•EC Det LowŽ and •EC Stoch LowŽ). We also
compare these with a •high-resolutionŽ deterministic con“guration (•EC Det HighŽ), with spectral resolution
T1279, corresponding to an approximate grid spacing of 16 km. Each con“guration has 91 atmospheric levels.
Radiative ”uxes were tuned in the low-resolution deterministic con“guration, and the model parameters
were kept the same in each con“guration except for small changes in the convection and nonorographic
gravity wave drag schemes made in the high-resolution con“guration. We use data between 1998 and 2007,
which matches the period of the observational data (section 2.1). Ten ensemble members were used for each
low-resolution con“guration and one member for the high-resolution con“guration. SSTs and SICs are spec-
i“ed according to the HadISST (Hadley Centre Sea Ice and Sea Surface Temperature) data set, version 2.1.1
[Titchner and Rayner, 2014].

In the stochastic model con“guration, schemes very similar to the ECMWF SPPT scheme and SKEBS are
activated [Berner et al., 2009;Palmer et al., 2009; IFS cycle 37r2 documentation Part V, available at http://
www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model/ifs-documentation]. In
the SPPT scheme, the total physics tendencies of temperature, humidity, and winds are perturbed. The
random number pattern that is multiplied against the tendencies is a sum of three independent random
patterns with horizontal correlation scales of 500 km, 1000 km, and 2000 km, correlation time scales 6 h,
3 days, and 30 days and standard deviations 0.52, 0.18, and 0.06, respectively. The random number pattern
is the same between the boundary layer and the stratosphere and is tapered in the vertical at the top and
bottom of this region. The same random number pattern is used for each variable.

SKEBS perturbs vorticity tendencies by adding a random pattern that varies in all three spatial dimensions
with a 7 h autocorrelation time scale. The spatial power spectrum of the perturbations follows a power law,
with larger perturbations made to larger scales. At each point the perturbation is drawn from a distribu-
tion with a standard deviation that increases with increasing local total dissipation by the model numerics,
orographic drag, and deep convection.

The only di�erence between the EC-Earth and ECMWF stochastic schemes is that in EC-Earth,Davini et al.
[2017] implemented a “x in SPPT so that it conserves the global mean tendencies, which they found to be
particularly important for conserving water and energy in long simulations.

Weisheimer et al.[2014] found that in the ECMWF seasonal forecasting model, which has a very similar atmo-
spheric component to the EC-Earth model used here, SKEBS had little e�ect on the mean state compared to
SPPT. We have con“rmed, using the same data, that the impact of SPPT and SKEBS on the statistics of tropical
rainfall variability that we present below is quite similar to that in EC-Earth (not shown). SKEBS also has a much
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smaller impact than SPPT. Therefore, it seems reasonable to assume that SKEBS is also having little e�ect on
these statistics in EC-Earth, and the e�ects we present are mostly due to SPPT.

Subramanian et al.[2017] tested the impact of amplifying perturbations associated with the 500 km-6 h
scale in SPPT and of removing the perturbations associated with each of the other scales in the ECMWF
seasonal forecasting model. Using the same data, we found that for the diagnostics of precipitation variabil-
ity that we use, amplifying the 500 km-6 h scale perturbations increases the impact of SPPT, removing the
1000 km-3 day scale slightly reduces the impact and removing the 2000 km-30 day scale has little e�ect (not
shown). Therefore, most of the impact of SPPT seems to be associated with the 500 km-6 h scale.

We also used coupled atmosphere ocean con“gurations of EC-Earth [Davini et al., 2017] to examine the
e�ect of stochastic physics on the simulated impact of increasing greenhouse gases on tropical variability
(section 3.6). These use the same atmospheric component as the atmosphere-only con“gurations, cou-
pled to the NEMO 3.3.1 ocean model [Madec, 2008] and the Louvain-la-Neuve sea ice model version 3
[Vancoppenolle et al., 2012]. The atmospheric component has •lowŽ spectral resolution T255 and the ocean
model has 1� resolution in middle latitudes and higher resolution near the equator. We used periods
1980…2009 and 2070…2099 to represent •present-dayŽ and •futureŽ conditions, respectively.
2.2.2. Met O�ce Uni“ed Model (UM)
Atmosphere-only integrations of the Met O�ce Uni“ed Model Global Atmosphere 6.0 con“guration [Walters
et al., 2017] were used, performed bySanchez et al.[2016]. The model uses a bulk mass ”ux deep convec-
tion scheme based on the work ofGregory and Rowntree[1990]. We use •low-resolutionŽ 1.25� × 1.875�

(� 140 km× 210 km at the equator) deterministic and stochastic con“gurations (•UM Det LowŽ and •UM Stoch
LowŽ) and a high-resolution 0.23� × 0.35� (� 25 km× 40 km at the equator) deterministic con“guration (•UM
Det HighŽ). Each con“guration has 85 atmospheric levels and uses the same parameter settings except for
a small change in one gravity wave drag parameter. We mostly use the “nal 10 years of the low-resolution
runs (1992…2001) and the full 9 year and 7 month duration of the high-resolution run (December 1981 to
June 1991). When comparing the annual mean precipitation between UM Det High and UM Det Low and
GPCP-Mon in section 3.1, we use the December 1981 to June 1991 period for each. A single model run was
used for each con“guration. SSTs and SICs are speci“ed according to the method ofReynolds et al.[2007].

Similarly to the EC-Earth and ECMWF models, the stochastic con“guration has versions of the SPPT scheme
and SKEBS activated [Sanchez et al., 2016]. There are several notable di�erences between the SPPT schemes in
the UM and EC-Earth. In the UM, the random pattern follows a Gaussian power law, so that it has greater power
at large scales relative to small scales than in EC-Earth, and it has a single autocorrelation time of 6 h. Clear-sky
radiation is not perturbed, and water and moist static energy are conserved column by column rather than
globally. The standard deviation of the random pattern is 0.5, similar to that in the ECMWF scheme, except
for gravity wave drag, for which the perturbations have standard deviation 0.42. The SKEBS implementation
also di�ers in some details compared with that used in EC-Earth. For example, only wave numbers between
20 and 60 are perturbed, orographic drag is not taken into account in calculating the perturbations• stan-
dard deviations, the magnitude of the perturbations is reduced in the boundary layer, and stratosphere and
perturbations are also added to the velocity potential.
2.2.3. NCAR Community Atmosphere Model, Version 4 (CAM4)
We used atmosphere-only integrations of CAM4 [Gent et al., 2011], with details inChristensen et al.[2017].
The model uses a bulk mass ”ux deep convection parameterization based on the work ofZhang and
McFarlane[1995]. We use a deterministic con“guration (•CAM4 DetŽ), a con“guration with a variant of SPPT
activated (•CAM4 SPPTŽ) and a con“guration with a variant of SKEBS activated (•CAM4 SKEBSŽ). The model
con“gurations all use the “nite volume dynamical core and have a horizontal resolution of 0.9� × 1.25�

(� 100 km× 140 km at the equator) with 26 vertical levels, and all use the same parameters in the determin-
istic parameterization schemes. We use the “nal 10 years of the common period of each run (1991…2000),
using a single model run for each con“guration. SSTs and SICs are speci“ed according to the data set of
Hurrell et al.[2008].

The SPPT scheme is similar to that in EC-Earth but uses a random pattern with a horizontal decorrelation
scale of 500 km and a decorrelation time of 6 h, so the large-scale and slowly varying parts of the pattern
used in the ECMWF scheme are not present. However, it was noted in section 2.2.1 that most of the impact
of stochastic physics in EC-Earth seems likely to be due to the 500 km-6 h scale in SPPT, so the important
part of the stochastic schemes in EC-Earth is similar to the CAM4 SPPT scheme. The SKEBS implementation
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works in a similar way to that in the ECMWF model, but potential temperature is perturbed as well as the
streamfunction and the dissipation is assumed to be spatially and temporally constant and therefore so is the
standard deviation of the perturbations. The standard deviation of the perturbations was made as large as it
could be without changing the slopes of the potential and kinetic energy spectra of the stream function and
potential temperature except for very high wave numbers.

2.3. Statistical Signi“cance Assessment
For most of the diagnostics shown here, it has been veri“ed that they generally vary little if they are plotted
for the “rst and second halves of the time periods covered by each data set separately, by much less than
would be required for our conclusions to be a�ected. Additionally, for the low-resolution EC-Earth data sets,
it was checked that the results are similar to those shown for individual ensemble members. Therefore, for
these diagnostics it is concluded that sampling variability is generally small compared to the signals seen in
the data.

Diagnostics for which sampling uncertainty was found to be substantial were the di�erences in the mean
precipitation between the stochastic and deterministic low-resolution model con“gurations (section 3.1) and
ratios of rain rate frequency distributions instochastic and high-resolution model con“gurations to those in
the deterministic low-resolution con“gurations (section 3.2). The methods for assessing sampling uncertainty
for those diagnostics are explained in the sections where the results are presented.

3. Results
3.1. Mean Precipitation
We “rst present the impact of stochastic physics on the time mean precipitation. Figures 1a, 1d, and 1g show
the biases in annual mean precipitation of the low-resolution deterministic con“gurations of EC-Earth, the UM
and CAM4 with respect to GPCP-Mon. Figures 1b, 1c, 1e, 1f, 1h, and 1i show the impacts of using stochastic
physics and increasing the resolution in these models. With the exception of SKEBS in CAM4, the impact of
using stochastic physics is a lot smaller than the biases of the deterministic models, so the stochasticity is not
greatly changing this aspect of the models• behaviors.

Stippling in Figure 1 shows where di�erences are statistically signi“cantly di�erent from zero above the 95%
level according to a Monte Carlo permutation test [Efron and Tibshirani, 1994]. For each pair of stochastic and
deterministic model con“gurations, for each grid point separately, the combined set of annual mean precipi-
tation values from both members of the pair was randomly separated into surrogate halves, and the di�erence
between the means for each half was calculated. This was repeated 1000 times to calculate the probability that
the magnitude of this di�erence would exceed the magnitude of the di�erence between the actual stochastic
and deterministic model runs. Di�erences are deemed statistically signi“cant at the 95% level if 5% or fewer
of the di�erences between the surrogate halves of data are larger than the actual di�erences.

Figure 1b shows that in EC-Earth, stochastic physics increases mean precipitation in the tropical West Paci“c
and across southeastern Asia and decreases mean precipitation over the Maritime Continent. The e�ects in
the tropical West Paci“c are similar to those shown in the ECMWF seasonal forecasting system [Weisheimer
et al., 2014], as may be expected since the two models have similar atmospheric components, though the
e�ects in EC-Earth are smaller. However, the impacts in other regions, such as the slight drying of Africa and
wettening of tropical South America, are not very similar overall to those in the ECMWF model. The global
mean root-mean-square error (RMSE) of time-averaged precipitation is increased slightly from 0.78 mm/d to
0.80 mm/d. Increasing the horizontal resolution has a larger impact but does not reduce the biases overall,
with the RMSE increasing to 0.90 mm/d (Figure 1c).

Figures 1e and 1f show that the UM Stoch Low and UM Det High con“gurations have mean precipitation
mostly within 2 mm/d of that of UM Det Low, with the di�erences not generally being statistically signi“cantly
di�erent from zero above the 95% level. Stochastic physics reduces the precipitationRMSE from 1.23 mm/d
to 1.20 mm/d, and in UM Det High it is 1.13 mm/d (although note the UM Det HighRMSE is calculated over a
di�erent time period, as given in section 2.2.2). CAM4 SPPT also only exhibits small di�erences in precipitation
compared to CAM4 Det, with theRMSE increased from 1.02 mm/d to 1.05 mm/d (Figure 1h).

The lack of statistical signi“cance of the di�erences at individual grid points may be because only one ensem-
ble member is available for these runs. For the EC-Earth data sets, the impact of stochastic physics estimated
from ensemble members chosen at random is similar to that estimated from all ensemble members and
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Figure 1. (a) The bias in annual mean precipitation in EC Det Low relative to GPCP-Mon. (b and c) The di�erence caused
by using stochastic physics and increasing the resolution in EC-Earth. (d…f) Similar plots for the UM. (g) The bias in
annual mean precipitation in CAM4 Det and (h and i) the di�erence produced by using SPPT and SKEBS in CAM4.
Stippling shows where di�erences are statistically signi“cant at the 95% level. The impact of stochastic physics and
increasing resolution on the mean precipitation is generally less than 2 mm/d, except that of SKEBS in CAM4 which has
a larger impact, and the impact varies between the models.
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dissimilar overall to that in UM Stoch Low and CAM4 SPPT. This indicates that the di�erences between the
diagnosed impacts in the di�erent models cannot be explained by sampling variability and that the impacts
of the stochastic physics schemes are actually di�erent between EC-Earth and the UM and CAM4.

Figure 1i shows that SKEBS in CAM4 has a stronger impact than SPPT, causing changes in the mean pre-
cipitation by more than 3 mm/d in some locations, with increases over southern and eastern Asia and the
southwestern tropical Paci“c and decreases over the Maritime Continent and in the eastern tropical Paci“c.
This increases the size of model biases in some regions (e.g., southern Asia and the eastern Indian Ocean) and
decreases them in others (e.g., the central and eastern tropical Paci“c), without a clear overall improvement
or deterioration globally (comparing Figures 1g and 1i). The precipitationRMSE is increased to 1.14 mm/d.
The split between the precipitation maxima in the West Paci“c Intertropical Convergence Zone is reduced by
SKEBS (not shown).

Most of the changes in mean tropical precipitation are associated with convective precipitation (not
shown). Of the stochastic schemes, only SKEBS in CAM4 substantially changes the grid-scale component of
precipitation.

Therefore, the impact of stochastic physics schemes on the mean precipitation has signi“cant dependence
on the model and scheme used and varies between di�erent regions. The following sections show that there
are several impacts of stochastic physics on the precipitation variability that are found in di�erent models
and regions, and these therefore seem to be fairly independent of the impact of stochastic physics on the
mean state.

3.2. Precipitation Rate Frequency Distributions
Here we examine the impact that stochastic physics has on the models• abilities to simulate realistic frequen-
cies of rainfall of di�erent intensities. Figures 2a, 2d, and 2g show the frequency distribution of di�erent daily
mean precipitation rates between 10� S and 10� N in GPCP, TRMM, and the di�erent con“gurations of each
model. Each row shows data for the di�erent con“gurations of EC-Earth, the UM, and CAM4, respectively. We
consider the 10� S…10� N equatorial band because this is a region where intense convection is important, and
results are similar for individual latitudes in this range. Results for the wider tropical (23� S…23� N) band (not
shown) are qualitatively similar but show some quantitative di�erences due to aggregating together regions
where model biases and the impacts of the stochastic schemes are more di�erent than those in the 10� S…10� N
band, so the interpretation of the results is more complicated. (Note that these data for EC-Earth were also
shown byDavini et al.[2017] and are included here for completeness, with this section being an expansion of
their investigation.)

Figures 2b, 2e, and 2h show the frequencies of di�erent rain rates in each model data set in the 10� S…10� N
band as a fraction of those in GPCP. Figures 2c, 2f, and 2i show frequencies in the stochastic model con-
“gurations, and high-resolution con“gurations whereapplicable, as a fraction of those of the deterministic
low-resolution con“guration of each respective base model, to show the impact of stochastic physics and
increasing model resolution.

Sampling variability was found to be substantial for the estimates of rainfall rate frequencies as a fraction of
those in the deterministic low-resolution model con“gurations (Figures 2c, 2f, and 2i). Therefore, 95% con“-
dence intervals were also calculated and plotted. These were calculated using a bootstrap method. First, for
each data set, individual years of data were randomly sampledwith replacement to create a surrogate data
set. Then the ratios of rain rate frequencies between the relevant pair of surrogate data sets were calculated.
This was repeated 1000 times to give an estimate of the distribution of the ratios associated with sampling
uncertainty, and the con“dence intervals were derived from these.

We discuss “rst the results pertaining to EC-Earth. Between 10� S and 10� N, the EC Det Low con“guration has
a frequency of relatively light precipitation rates below 15 mm/d that is too high by� 50% and has a too low
frequency of moderate rates between 20 and 30 mm/d, by� 50% in the 25…30 mm/d interval (green curve
in Figure 2b). For relatively heavy precipitation rates, higher than 30 mm/d, TRMM indicates much higher
frequencies than GPCP, so the true frequencies are uncertain. EC Det Low has a frequency of rates above
30 mm/d that is only� 40% of that in GPCP and far below that in TRMM, however (Figure 2b), which is indicative
of the simulated frequency being too low.

Stochastic physics has the e�ect of increasing the frequency of the lightest rain rates, decreasing the
frequency of relatively moderate rain rates, and increasing the frequency of relatively heavy rain rates
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Figure 2. (a, d, and g) The frequency distributions of daily mean precipitation rates in the satellite and model data sets.
Each row shows model data for a di�erent family of model con“gurations. The precipitation has been averaged over
2.5� × 2.5� grid boxes, and data are aggregated for all grid boxes between 10� S and 10� N. Frequencies are shown for
each 5 mm/d interval, excluding rates less than 0.1 mm/d. (b, e, and h) The frequencies of rain rates in the model data
sets as a fraction of those in GPCP. (c, f, and i) The frequency as a fraction of that in the deterministic low-resolution
model in each family of con“gurations. Vertical bars in Figures 2c, 2f, and 2i show the 95% con“dence interval.
Horizontal dashed lines show a ratio of 1. Note that the vertical axes in Figures 2a, 2b, 2d, 2e, 2g, and 2h are logarithmic
and they have di�erent ranges in Figures 2c, 2f, and 2i. Stochastic physics substantially raises the frequency of heavy
precipitation events in all of the models, except for the SKEBS scheme in CAM4.
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(red curves in Figures 2b and 2c). This matches the pattern expected from purely adding random perturba-
tions to the precipitation [Subramanian et al., 2017] as in the No Feedbacks conceptual model. The biases are
mostly reduced„the frequency of rates between 5 and 15 mm/d is reduced by� 10% and the negative biases
between 20 and 40 mm/d are approximately halved with respect to GPCP. Frequencies of heavier rain rates
are increased by up to a factor of� 2…4 at the highest precipitation rates (Figures 2b and 2c), so that they are
more in line with the observational estimates. The bias at light rain rates between 0.1 and 5 mm/d is slightly
greater by� 5%, however. For comparison, increasing the resolution of the deterministic con“gurations gives
a smaller improvement in the biases at rates between 5 and 40 mm/d and a similar increase in the frequency
at higher rates (blue curves in Figures 2b and 2c).

Figure 3 shows similar diagnostics in a box over northern South America (10� S…5� N and 50� …75� W; shown in
Figures A1a and A1b). In this region, the discrepancy between GPCP and TRMM is smaller (Appendix A), so it
seems more clear here what the model biases are and whether the stochastic physics schemes are improving
the model simulations. Note, however, that the observational uncertainty can be considerably larger than the
di�erence between the GPCP and TRMM estimates. Part of the reason that the data sets agree better here
may be that rain gauge data are used to calibrate their monthly means, but the estimates of daily totals are
still made using di�erent methods.

Figures 3b and 3c show that in this region, EC Det Low has a too high frequency of relatively light precipi-
tation rates up to 20 mm/d, by� 40% between rates 10 and 15 mm/d. The simulated frequency of relatively
heavy precipitation rates is much lower than that observed, by over 90% at rates above 30 mm/d. Stochastic
physics has a large bene“cial e�ect on these biases, approximately halving the excess of relatively light
events between 5 and 15 mm/d (Figure 3b) and increasing the frequency of heavier precipitation rates above
20 mm/d from between a factor of� 2 and a factor of� 10…40 at the highest rates (Figure 3c). The stochastic
physics schemes do not increase the frequency of rates above� 25 mm/d by enough to match those observed,
however.

Conversely, increasing the resolution actually increases the biases in this region up to precipitation rates of
35 mm/d (compare the green and blue curves in Figure 3b). The frequencies of precipitation rates higher than
this are bene“cially increased by increasing the resolution, though by less than is achieved by using stochastic
physics (Figure 3c).

The UM Det Low and CAM4 Det con“gurations have smaller positive biases between 10� S and 10� N in the
frequency of relatively light precipitation rates below 15 mm/d and much more frequent heavy precipitation
events, above 20 mm/d, than EC-Earth (Figures 2d, 2e, 2g, and 2h). In northern South America, the posi-
tive biases at rates below 15 mm/d are similar to those in EC-Earth and the frequencies of higher rates are
again greater than in EC-Earth (Figures 3d, 3e, 3g, and 3h). The frequencies of high precipitation rates (above
35 mm/d) across all grid points between 10� S and 10� N are between those in GPCP and TRMM (Figures 2d, 2e,
2g, and 2h). In northern South America, however, the frequencies of high precipitation rates (above 25 mm/d)
are much lower than observed, in common with EC-Earth, by up to� 80% and� 50% between rates 40 and
50 mm/d in the UM and CAM4, respectively.

In the UM, between 10� S…10� N stochastic physics increases the frequency of light precipitation rates below
10 mm/d by about 5%, decreases frequencies of relatively moderate rates between 15 and 55 mm/d by up
to � 20% and increases the frequency of heavy rates between 60 and 80 mm/d by up to� 60% (Figure 2f).
The pattern of there being an increase in the frequency of light rain rates, a decrease in the frequency of
relatively moderate rain rates, and an increase in the frequency of heavy rain rates is similar to the impact
in EC-Earth. This is also consistent with the No Feedbacks conceptual model. However, the range of rates
whose frequencies are decreased is wider. The positive frequency bias increases at light rates between 0.1
and 10 mm/d and decreases at relatively moderate rates between 20 and 40 mm/d relative to that in the
low-resolution deterministic con“guration. Since the simulated distribution for rates above 40 mm/d for both
the deterministic and stochastic low-resolution models is between that of GPCP and TRMM, it is not clear if
stochastic physics is improving the distribution at these rates.

In northern South America, the stochastic physics in the UM has a qualitatively similar e�ect to that in EC-Earth,
reducing the frequency of relatively moderate rain rates between 10 and 25 mm/d and increasing the fre-
quencies of relatively heavy rates above� 25 mm/d, by more than� 40% at rates above 40 mm/d (Figure 3f).
This substantially improves the simulated precipitation distribution in this region.
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Figure 3. (a…i) As in Figure 2 but for grid boxes in the northern South America region (10� S…5� N and 50� …75� W) where
the GPCP and TRMM data are in closer agreement. Note again that the vertical axes in Figures 3a, 3b, 3d, 3e, 3g, and 3h
are logarithmic and they have di�erent ranges in Figures 3b, 3e, and 3h and 3c, 3f, and 3i. Stochastic physics greatly
increases the frequency of heavy precipitation events in all of the models, making the rain rate distribution more
realistic in every case.

Unlike in EC-Earth, in the UM the impact of increasing horizontal resolution is not very similar to that of
stochastic physics (compare the red and blue curves in Figures 2f and 3f). Stochastic physics performs better
at reducing the de“cit of high rain rates in northern South America (Figures 3e and 3f).

In CAM4, between 10� S…10� N, SPPT increases the frequency of moderate and heavy precipitation rates above
15 mm/d, by up to � 15% at rates above 60 mm/d (Figure 2i). This slightly reduces the negative frequency bias
at relatively moderate rates between 20 and 30 mm/d. Conversely, SKEBS decreases frequencies for all rates
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above 5 mm/d, by over 20% for rates above 60 mm/d„this may be associated with it decreasing the mean
rainfall averaged between 10� S…10� N (Figure 1i). This shows that simply adding stochastic perturbations does
not always increase the frequency of heavy precipitation events. The biases are reduced for rates between
5 and 15 mm/d and increased between 20 and 35 mm/d. The biases are also increased at the lowest rates,
between 0.1 and 5 mm/d, since SKEBS increases the frequency by 6%.

In northern South America, the impact of SPPT in CAM4 is again to increase the frequencies of high rain rates,
which reduces the model bias (Figures 3h and 3i), but by a larger amount than in the 10� S…10� N band, in
common with the impact of stochastic physics in the other models. SKEBS does increase the frequency of
heavy precipitation rates in this region, by a lesser amount than SPPT, in contrast to its impact in the whole
10� S…10� N band, showing that its impact is regionally variable.

It is also important to consider how similar results for the 10� S…10� N band are to those for equatorial regions
at di�erent longitudes. In EC-Earth, the impact of stochastic physics is similar at most longitudes (not shown).
In the UM, its impact is also similar at most longitudes except over equatorial Africa and the tropical Atlantic,
where frequencies of nearly all rain rates above 0.1 mm/d are increased, reducing model biases there. In
CAM4, SPPT has a similar impact at all longitudes, with the strongest impacts being over the equatorial South
American and African land areas. SKEBS in CAM4 increases the frequencies of most rain rates over equato-
rial South America, equatorial Africa, and in the tropical West Paci“c and decreases frequencies of rain rates
above � 5 mm/d elsewhere„these regional di�erences are perhaps associated with large changes in the
mean rainfall in di�erent regions caused by SKEBS (section 3.1).

In all of the models, there is a much smaller frequency of dry days (with less than 0.1 mm of precipitation)
than in GPCP and TRMM, as in the models studied byStephens et al.[2010]. This is not greatly improved by
using stochastic physics or increasing the horizontal resolution in any case (not shown). Dry days make up
33% and 29% of the days in GPCP and TRMM, respectively, across all grid points between 10� S…10� N but
only 8% of days in the EC Det Low and CAM4 Det con“gurations and 24% in UM Det Low. Stochastic physics
causes absolute changes that are smaller than 2%. The stochastic schemes used in these models do not treat
the triggering of convection as stochastic, and it could be interesting to test whether this diagnostic could be
improved by using a scheme that did so [e.g.,Rochetin et al., 2014;Peters et al., 2017].

To summarize, the stochastic physics schemes in EC-Earth and the UM slightly increase the frequency of the
lightest rain rates, reduce the frequency of moderate rain rates, and increase that of heavy rain rates in most
regions, consistent with the No Feedbacks conceptual model [Subramanian et al., 2017]. In CAM4, the SPPT
scheme increases the frequencies of all but the lowest rain rates, while the impact of SKEBS is regionally vari-
able, which may be associated with its regionally variable impact on the mean precipitation (Figure 1i). Thus,
feedbacks from changes in the statistics of the resolved variables seem important for the CAM4 results. In
all of the models stochastic physics probably improves the rain rate distribution in northern South America,
where GPCP and TRMM agree quite well on the distribution. In the whole 10� S…10� N zonal band, stochastic
physics improves the simulated frequency of rain rates between 5 and 30 mm/d in EC-Earth and to a lesser
extent that between 20 and 30 mm/d in the UM and CAM4. Observational uncertainty makes it di�cult to
determine if stochastic physics causes an improvement at higher rain rates, but it is more likely than not to
cause an improvement in EC-Earth, which greatly underestimates the frequency of high rain rates compared
to both GPCP and TRMM in its low-resolution deterministic con“guration. The positive frequency bias at light
rain rates is slightly increased in EC-Earth and the UM. There are large quantitative di�erences between the
impact of stochastic physics in each model, however. Stochastic physics gives a larger improvement in the
rain rate distributions in northern South America in EC-Earth and the UM than does increasing horizontal res-
olution, indicating that SPPT and SKEBS are representing important variability that is still not resolved even at
a horizontal resolution of� 20…40 km.

3.3. Precipitation Autocorrelation
Another important aspect of tropical rainfall is its persistence, diagnosed here using the autocorrelation func-
tion. Figure 4 shows this averaged over all grid points between 10� S and 10� N in GPCP, TRMM, and the
model data sets. In all model con“guration families, the deterministic low-resolution model (green dashed
curves) has a higher autocorrelation than that in GPCP and TRMM. In the cases of EC-Earth and the UM,
the autocorrelation in the deterministic low-resolution model is greater than that in GPCP and TRMM by an
amount considerably larger than the di�erence between GPCP and TRMM, and therefore, in these models the
autocorrelation is likely to be too large.
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Figure 4. The mean autocorrelation between 10� S…10� N of daily mean precipitation averaged over 2.5� × 2.5� grid
boxes in the satellite and model data sets. (a…c) Data for each family of model con“gurations along with TRMM and
GPCP data. Most of the stochastic physics schemes reduce the autocorrelation, the exception being SPPT in CAM4, and
this is very likely to be an improvement in EC-Earth (EC) and the UM.

Stochastic physics is very e�ective at reducing the autocorrelation in EC-Earth (Figure 4a) to values closer to
those observed, and it has a more modest bene“cial impact in the UM (Figure 4b). In CAM4, SKEBS reduces the
autocorrelation slightly, while the SPPT scheme has very little e�ect (Figure 4c). The reduction in the autocorre-
lation is consistent with the No Feedbacks conceptual model, so there is not clear evidence of the importance
of large-scale feedbacks from this diagnostic.

In EC-Earth and the UM, increasing the horizontal resolution has very little impact (Figures 4a and 4b), indicat-
ing again that stochastic physics is aiding with simulating the e�ects of variability that are not well resolved
even at the high horizontal resolutions in these con“gurations.

The results are generally similar for di�erent tropical regions (not shown). In each low-resolution deterministic
model, the biases are typically larger over land. The lag 1 day autocorrelations in each model are positively
biased everywhere, except over some parts of the tropical Paci“c and Indian Oceans in CAM4 Det, where the
autocorrelations are between those in GPCP and TRMM. Stochastic physics improves biases everywhere in
EC-Earth and the UM. SKEBS in CAM4 improves biases except in places in the tropical Paci“c where the sign
of the bias is uncertain, where the changes are within the range spanned by the GPCP and TRMM data sets.
SPPT in CAM4 has little e�ect anywhere.

Therefore, the persistence of rainfall on daily time scales is made more realistic by the stochastic physics in
EC-Earth and the UM and by SKEBS in CAM4.

3.4. Precipitation Power Spectra
It is also important to know if stochastic physics has bene“cial or detrimental e�ects on variability at di�er-
ent length and time scales. We diagnose this aspect of its e�ects by calculating space-time power spectra
of precipitation following the method of Wheeler and Kiladis[1999] (but considering the absolute, not back-
ground removed, spectra and considering a larger range of wave numbers). Figure 5 shows diagnostics for
the low-resolution con“gurations of the di�erent models of the spectral power of precipitation, as a function
of zonal wave number and frequency, averaged between 15� S…15� N in meridionally symmetric equatorial
wave modes (results for the antisymmetric wave modes are very similar (not shown)).

Figures 5a…5c show the ratio of the power in the deterministic low-resolution con“guration of each model to
that in TRMM. Figures 5d…5f show similar ratios with respect to the power in GPCP. All of the models have less
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Figure 5. Filled contours show ratios between di�erent data sets of the spectral power of precipitation in meridionally
symmetric equatorial wave modes averaged between 15� S…15� N as a function of zonal wave number and frequency.
Results relating (a, d, g, and j) to the low-resolution EC-Earth con“gurations, (b, e, h, and k) to the low-resolution UM
con“gurations, and (c, f, i, and l) to the CAM4 Det and SKEBS con“gurations. Figures 5a…5c show the ratio of power in
the deterministic con“gurations to that in TRMM, Figures 5d…5f the ratio of power in the deterministic con“gurations to
that in GPCP, Figures 5g…5i the ratio of power in the stochastic con“gurations to that in GPCP, and Figures 5j…5l the
ratio of the power in the stochastic con“gurations to that in the deterministic con“gurations. White lines in Figure 5a
indicate theoretical dispersion curves for Kelvin waves (K), wave number 1 inertia gravity waves (IG), and equatorial
Rossby waves (ER) with equivalent depths 12 m and 50 m. Stochastic physics is e�ective at increasing the power and
reducing the model biases at high frequencies in EC-Earth and the UM, with SKEBS in CAM4 having a smaller e�ect.
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power at frequencies above 0.2 per day at most wave numbers than is exhibited by both TRMM and GPCP. In
EC-Earth the power is less than half that in both TRMM and GPCP at these high frequencies between about
wave numbersŠ20 to 40, with smaller biases in the Kelvin wave part of the spectrum (Figures 5a and 5d). The
power de“cit reaches a similar relative size in the UM and CAM4 in some regions of the spectral space, though
the biases are smaller overall (Figures 5b, 5c, 5e, and 5f).

Figures 5g…5i show the ratio of the power in the EC Stoch Low, UM Stoch Low, and CAM4 SKEBS con“gurations
to that in GPCP. Figures 5j…5l show the ratios of the powers in the stochastic and deterministic con“gurations.
In EC-Earth, stochastic physics is e�ective at reducing the biases (Figure 5g), increasing the power at nearly all
frequencies and wave numbers. Its impact increases as frequency increases and it raises the power by over a
factor of 2 for frequencies above� 0.4 per day for most wave numbers betweenŠ10 and 10 (Figure 5j). There-
fore, in this model, stochastic physics reduces the biases most where they are greatest in the deterministic
low-resolution con“guration.

Similarly in the UM, stochastic physics increases the power at high frequencies above� 0.2 per day the most
(Figures 5h and 5k), generally reducing the power de“cit. Stochastic physics actually decreases power at most
low frequencies below� 0.1 per day for wave numbers smaller than� 15, which reduces biases for most of
these wave numbers and frequencies.

In CAM4, SKEBS increases the power at most wave numbers and frequencies, except at low wave numbers
and frequencies like in the UM, but its e�ect is much smaller (Figures 5i and 5l). SPPT in CAM4 also increases
the power at most wave numbers and frequencies, but by less than 20% for the large majority (not shown).

The impact of stochastic physics does not seem to project strongly onto equatorial wave modes in any
model, where the dispersion curves for important wave modes are indicated by white lines in Figure 5a. The
background-removed spectra are also not strongly a�ected (not shown). The impact is not clearly associated
with the space and time scales of the stochastic schemes• random patterns alone. For example, in EC-Earth, the
high-frequency components of the random pattern have decorrelation length scales of 500 km and 1000 km,
corresponding to zonal wave numbers 80 and 40, respectively, whereas stochastic physics causes the biggest
fractional increase in the power at wave numbers smaller than 20 (Figure 5j). If the spectra of the parameter-
ized tendencies were known, it would be interesting to test whether the impact of stochastic physics on the
spectra is similar to that expected in the No Feedbacks conceptual model, but this is not tested here. It seems
notable, though, that there is a substantial increase in power at small wave numbers and high frequencies in
EC-Earth and the UM (Figures 5j and 5k), which is suggestive of feedbacks carrying the in”uence of stochastic
physics to length scales larger than those of weather systems that have similarly short time scales.

Increasing the horizontal resolution in EC-Earth and the UM does not have such bene“cial impacts (not
shown). The deterministic, high-resolution con“guration of EC-Earth actually has less power and larger biases
at high frequencies and also at high wave numbers than the EC Det Low con“guration. UM Det High has
increased power at high wave numbers and decreased power at low wave numbers at all frequencies relative
to UM Det Low, which increases biases of the deterministic, low-resolution con“guration in some parts of the
spectrum and decreases biases in others.

Therefore, stochastic physics is e�ective at reducing the problem of there being too little power at high fre-
quencies in the deterministic low-resolution con“gurations of the models evaluated here and also improves
biases at most low frequencies for low wave numbers. It is more e�ective at reducing the biases than increas-
ing the horizontal resolution in EC-Earth and the UM, though the stochastic con“gurations of the di�erent
models still have less power at high frequencies than in TRMM and GPCP.

3.5. Precipitation Standard Deviation
Another important consideration is how stochastic physics a�ects the total rainfall variability in di�erent
regions. Figure 6 shows diagnostics of the standard deviation of daily mean precipitation. The panels show, on
descending rows, the di�erences in the standard deviation between the deterministic low-resolution con“g-
uration of each model and that in TRMM and GPCP, the di�erences between that in a stochastic low-resolution
con“guration and that in GPCP (again considering justthe CAM4 SKEBS con“guration of the CAM4 model),
and the di�erences between that in the stochastic and deterministic low-resolution con“gurations.

EC Det Low has a lower standard deviation of precipitation in most equatorial regions than both TRMM and
GPCP (Figures 6a and 6d). This bias is generally largest where the mean precipitation is largest (not shown).
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Figure 6. Filled contours show di�erences in the standard deviation (SD) of precipitation between di�erent data sets.
Results relating (a, d, g, and j) to the low-resolution EC-Earth con“gurations, (b, e, h, and k) to the low-resolution UM
con“gurations, and (c, f, i, and l) to the CAM4 Det and SKEBS con“gurations. Figures 6a…6c show di�erences in the
SD between the deterministic con“gurations and TRMM and Figures 6d…6f the di�erences with respect to GPCP.
Figures 6g…6i show the di�erences in the SD between the stochastic con“guration and GPCP and Figures 6j…6l the
di�erences between the stochastic and deterministic con“gurations. Stochastic physics increases the SD and reduces
biases in most equatorial regions in EC-Earth, while stochastic physics in the UM and SKEBS in CAM4 increase the SD
mostly in subtropical regions, which improves some biases and worsens others.

Stochastic physics increases the standard deviation in most equatorial regions, particularly in the tropical West
Paci“c and over land (Figure 6j), generally substantially reducing the standard deviation biases in the equa-
torial regions, though not to zero, with biases of the stochastic con“guration shown in Figure 6g. On average
between 20� S and 20� N, stochastic physics increases the standard deviation by 0.33 mm/d, with the di�erence
from the GPCP value (5.67 mm/d) changed toŠ0.52 mm/d from Š0.85 mm/d. This impact from stochastic
physics is what is expected from the No Feedbacks conceptual model.

UM Det Low has a higher standard deviation of precipitation than both GPCP and TRMM in subtropical Paci“c
regions, in the western Indian Ocean, over southern Africa and central South America (Figures 6b and 6e). It
has a lower standard deviation than both GPCP and TRMM in equatorial land regions and over India. Stochastic
physics reduces the standard deviation in most equatorial oceanic regions and increases it over equatorial
Africa, equatorial South America, and in some subtropical regions, particularly in the West Paci“c (Figure 6k).
These impacts decrease standard deviation biases in some regions, such as in equatorial Africa and South
America, and increase them in others, such as in the subtropical West Paci“c. The substantial de“cit in the
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Figure 7. The ratio of frequencies of rain rates in the northern South
America region (10� S…5� N and 50� …75� W) between future (2070…2099)
and present-day (1980…2009) periods of coupled-ocean low-resolution
EC-Earth integrations. The green and red curves show the ratios for the
deterministic and stochastic model con“gurations, respectively. Vertical
bars show the 95% con“dence intervals. The greenhouse gas forcing
followed the RCP8.5 Intergovernmental Panel on Climate Change scenario.
The inclusion of stochastic physics greatly changes the simulated increase
in the frequency of high precipitation rates in this region.

standard deviation over India is not
much a�ected. The decrease in stan-
dard deviation in many regions near
the equator is inconsistent with the No
Feedbacks conceptual model, indicat-
ing that complex feedbacks from the
resolved model variables are occur-
ring. Stochastic physics decreases the
standard deviation averaged over
20� S…20� N by 0.02 mm/d.

The standard deviation in the deter-
ministic low-resolution con“guration
of CAM4 is in between that in TRMM
and GPCP in many tropical regions,
though it has a lower standard devi-
ation than in both data sets in the
southern Indian Ocean and in most of
South America, and a higher standard
deviation in southwest Asia and in the
eastern equatorial Paci“c (Figures 6c
and 6f). The SKEBS con“guration has a
substantially larger standard deviation

in southwest Asia and northeast of Australia and reduces it predominantly in the tropical eastern Paci“c and
the equatorial Indian Ocean (Figure 6l). This increases standard deviation biases in the Indian Ocean region
and in the West Paci“c and decreases them in the tropical eastern Paci“c and in the Maritime Continent
(comparing Figures 6f and 6i). The impact has a similar spatial pattern to the impact of SKEBS on the mean
precipitation (Figure 1i), indicating that the e�ect of SKEBS on the precipitation variability is closely associated
with its impact on the mean.

SPPT in CAM4 has a much smaller impact (not shown), increasing the standard deviation in the Maritime Con-
tinent and equatorial South America by up to� 2 mm/d and decreasing it in subtropical regions to the north
and south of the Maritime Continent by a similar amount. SKEBS increases the standard deviation averaged
over 20� S…20� N by 0.06 mm/d and SPPT increases it by only 0.01 mm/d.

These impacts can be contrasted with those of increasing horizontal resolution (not shown). Using high reso-
lution in EC Earth decreases rather than increases the standard deviation of equatorial precipitation compared
to the EC Det Low con“guration, except in the western Paci“c, so it does not help to correct the model standard
deviation bias. The standard deviation is instead increased near southern Asia and in the southern subtropics
between the western Indian Ocean and the eastern Paci“c. In the UM, increasing the resolution decreases the
standard deviation in much of the tropics except over India, central America, Australia, and near Madagascar,
which does help to correct the positive standard deviation biases in the tropical Paci“c and Indian Oceans
shown in Figures 6b and 6d.

Overall, therefore, in EC-Earth stochastic physics has an impact similar to that expected from the No Feed-
backs conceptual model„the standard deviation of precipitation is increased in most tropical regions, which
reduces di�erences from observations. The impact of stochastic physics in the UM and CAM4 is more com-
plex, however, and reduces some biases while increasing others. In EC-Earth and the UM, stochastic physics
has quite a di�erent impact to that of increasing horizontal resolution.

3.6. Impact on Projections of Future Tropical Precipitation Changes
As an example of how stochastic parameterizations may a�ect simulations of future climate change, Figure 7
shows the ratio of frequencies of rain rates in the northern South America region (10� S…5� N and 50� …75� W)
between future (2070…2099) and present-day (1980…2009) time slices of coupled atmosphere-ocean
low-resolution EC-Earth integrations, both for the deterministic and stochastic model con“gurations. The
deterministic and stochastic coupled atmosphere-ocean con“gurations have similar precipitation rate dis-
tributions to those of the corresponding atmosphere-only con“gurations in this region (not shown). Both
coupled models simulate a large fractional increase in the frequency of rain rates above 25 mm/d. This increase
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is much larger in the deterministic model con“guration, by morethan a factor of 3 in the rain rate interval
35…40 mm/d. Vertical bars show the 95% con“dence interval of the ratios, estimated using the same boot-
strap method as in section 3.2, and these do not overlap at high rain rates. The projected changes also di�er
for the 10� S…10� N band, by� 25% at heavy rain rates (not shown). Therefore, the use of stochastic physics
strongly a�ects the simulated climate change response of tropical precipitation extremes and would strongly
a�ect the quantitative attribution of observed extreme precipitation to climate change using this model. This
does not mean that the change simulated by the stochastic model is more likely to be right in this case, since
the climatology it simulates is far from adequate in northern South America (section 3.2), but it indicates that
use of stochastic physics in models may be important for quantifying the impact of climate change on heavy
tropical rainfall events.

4. Conclusions

We have presented analysis of the impacts of stochastic parameterization schemes on the variability of simu-
lated tropical precipitation on daily to weekly time scales in three di�erent atmospheric models: EC-Earth, the
Met O�ce Uni“ed Model (UM), and the Community Atmosphere Model, version 4 (CAM4). The results help to
show the importance of small-scale variability that is not resolved in these models, at horizontal scales below
� 1� , for determining the statistics of tropical precipitation variability at this scale or larger. The stochastic
physics schemes are variants of the stochastically perturbed physical tendencies scheme (SPPT) [Buizza et al.,
1999;Palmer et al., 2009] and the stochastic kinetic energy backscatter scheme (SKEBS) [Shutts, 2005;Berner
et al., 2009]. The impacts of the two schemes were tested separately in CAM4, and they were combined in
EC-Earth and the UM. For the schemes used in EC-Earth, however, results from experiments with the ECMWF
seasonal forecasting model indicate that almost all of the impacts are due to SPPT, with most impact coming
from the scale of the random pattern that matches that used in CAM4 (section 2.2.1).

Several improvements due to these schemes are found to be quite robust, being present in at least three of
the four stochastic model con“gurations considered:

1. The frequency of the heaviest equatorial rainfallevents is substantially increased in all con“gurations using
SPPT (Figures 2c, 2f, and 2i, and 3c, 3f, and 3i). SKEBS in CAM4 increases the frequency of heavy rainfall events
in northern South America, but not on average across the whole 10� S…10� N band, which may be associ-
ated with it substantially reducing the mean rainfall in this region (Figure 1i). Stochastic physics schemes
improve the precipitation rate distribution in every case in northern South America, where observational
uncertainty seems relatively low (Figures 3b, 3e, and 3h). For the 10� S…10� N band, observational uncer-
tainty makes it di�cult to determine if stochastic physics improves the simulated frequency of heavy rain
rates, but it is more likely than not improving the precipitation rate distribution in EC-Earth (Figure 2b).
In both regions, stochastic physics in EC-Earth and the UM reduces the frequency of more moderate rain
rates and increases the frequency of light rain rates as well. In EC-Earth this reduces the positive bias in the
simulated frequency of moderate rain rates between� 5 and 15 mm/d in both regions, by� 10% for the
10� S…10� N band (Figures 2b, 2c, 3b, and 3c).

2. The persistence of daily mean rainfall is reduced, except in the case of SPPT in CAM4 (Figure 4). This makes
the simulated autocorrelation agree better with observational estimates. The improvement is particularly
substantial in EC-Earth, with the bias in the 1 day lag autocorrelation being reduced by about 50% with
respect to the GPCP estimate.

3. Variability is increased most at high frequencies above 0.3 per day, by up to about a factor of 2 in EC-Earth
and the UM (Figures 5j and 5k), by up to� 50% by SKEBS in CAM4 (Figure 5l) and by up to� 20% by SPPT
in CAM4 (not shown). All of the low-resolution deterministic models have less than half the power in both
TRMM and GPCP in at least some wave numbers and frequencies (Figures 5a…5f), and the stochastic physics
schemes reduce the de“cit of spectral power at high frequencies.

Some impacts are less robust. For example, stochastic physics increases the temporal standard deviation of
precipitation in most tropical regions in EC-Earth (Figure 6j), but it decreases the standard deviation in many
tropical regions in the UM and CAM4 (Figures 6k and 6l). Its e�ect on the mean precipitation also depends
strongly on the model and stochastic scheme being used (section 3.1 and Figure 1).

Overall, the stochastic schemes used in the models evaluated here give substantial improvements in some
biases in tropical rainfall variability in all of the models without causing severe deteriorations in any of the
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diagnostics we have used, when considering the tropics as a whole. This provides evidence that these stochas-
tic schemes are performing reasonably at representing the e�ects of unresolved tropical variability and
may also be useful for increasing the realism of tropical rainfall variability statistics in other climate models.
Improvements given by more sophisticated stochastic schemes that are currently in development, men-
tioned in section 1, can be benchmarked against the improvements shown here. The results also indicate
that variability that is unresolved in these models isimportant for determining the tropical rainfall statistics
listed above.

Many of the impacts of stochastic physics di�er in size between the models considered here, despite the
stochastic physics schemes in the di�erent models being quite similar. The impacts on the precipitation rate
distributions, autocorrelation, and spectral power are largest in EC-Earth, with the impacts being considerably
smaller in the UM and CAM4. This could be due to the impacts depending on the deterministic model struc-
ture or to di�erences between the details of the stochastic physics schemes used in each model. In order to
tell how much di�erence each of these factors makes, it would be useful to test the impact of each scheme in
one model or the impact of using exactly the same scheme in several models.

Since SPPT and SKEBS do not directly perturb precipitation, their e�ect on rainfall variability must come indi-
rectly through their e�ect on grid box-scale variables. For example, if SPPT scales up the temperature and
moisture tendencies given by the convection scheme, then the atmosphere will become more stable than
it would have done, possibly resulting in less intense convection and precipitation at the next time step. If
SPPT increased a drying tendency from the parameterization schemes, convection may similarly be subse-
quently inhibited. Conversely, when SPPT has the opposite e�ect, more intense precipitation may follow. This
would have knock-on e�ects at later times and in other locations, making the overall impact of SPPT com-
plex. SKEBS perturbations must a�ect rainfall by “rst a�ecting the large-scale state, which then a�ects the
parameterizations• output.

The impacts of stochastic physics in EC-Earth seem quite consistent with the predictions of the No Feedbacks
conceptual model, where stochastic physics is considered to only randomly perturb the resolved variables
from which the precipitation is diagnosed, without giving rise to important feedbacks by otherwise changing
the statistics of resolved variables. This does not necessarily mean that feedbacks do not still have an impor-
tant role, however. The conceptual model is not consistent with all of the impacts of stochastic physics in the
UM and CAM4, particularly the reduction in the precipitation standard deviation in some places (Figures 6k
and 6l), showing that feedbacks due to changes in resolved variables are important in those models.

Stochastic physics produces some improvements that are not attainable by increasing horizontal resolution
to � 16 km in EC-Earth and� 25…40 km in the UM (without changing the parameterizations). Using such high
horizontal resolutions makes little improvement to the simulated precipitation rate distribution in northern
South America (Figures 3b and 3e) or to the autocorrelation of precipitation (Figure 4), and it fails to increase
spectral power at high frequencies (not shown). This provides evidence that stochastic physics can provide
improvements in climate simulations that are not attainable simply by increasing the resolution this far and
that unpredictable variability on smaller scales than these has an important in”uence on variability at larger
scales, with resolutions as high as these still not likely to be used routinely for global climate modeling in the
near future. This goes beyond previous results, relating to simulating midlatitude dynamics, suggesting that
stochastic physics could give improvements that are only similar to those obtained by increasing horizontal
resolution, rather than better [Dawson and Palmer, 2015]. This may be because the realism of parameterized
convection is much more important in the tropics than in middle latitudes. This suggests that high-resolution
regional models used in studies of changing tropical extremes [e.g.,Marengo et al., 2009;Vizy and Cook, 2012;
Crétat et al., 2014] could bene“t from using stochastic parameterizations.

We also showed that the use of stochastic physics a�ects the simulated change of the frequency of extreme
precipitation events in a future climate change scenario using the coupled atmosphere-ocean con“gurations
of EC-Earth (section 3.6 and Figure 7). This suggests that a climate model•s representation of unpredictable
tropical variability will a�ect its projections of tropical climate change and that using stochastic parame-
terizations, based on a process understanding of observations and high-resolution models, could give a
better simulation of the response to a forcing than using deterministic parameterizations. Uncertainty in
how to best construct stochastic schemes should also be accounted for when assessing uncertainty in
these projections.
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The stochastic physics schemes improve certain biases in the deterministic model con“gurations but do not
eliminate them in all models, such as there being too few heavy precipitation events in northern South Amer-
ica (Figures 3b, 3e, and 3h), the persistence of precipitation being too great (particularly in the UM; Figure 4),
the spectral power at high frequencies being too low overall (Figures 5g…5i) and the standard deviation of
tropical precipitation being too low in EC-Earth (Figures 6g). A possible reason for this is that SPPT and SKEBS
are not fully representing the unpredictable component of tendencies in tropical convection, so the variance
of this component is not large enough. This was also indicated byRodwell et al.[2013, 2016] who found evi-
dence using numerical weather prediction diagnostics that ECMWF ensemble weather forecasts, which use
SPPT and SKEBS, do not have a large enough spread in certain convective situations, including in parts of
northern South America.

4.1. Directions for Future Work
Other representations of subgrid-scale variability have been found to be more e�ective than the schemes
tested here at increasing certain aspects of tropical variability. For example, superparameterization and the
convection scheme ofPlantandCraig[2008] were tested in version 5 of CAM (CAM5) byKoopermanetal.[2016]
and Wang et al.[2016], respectively, and produced much larger increases in the frequency of heavy rainfall.
Goswami et al.[2016] andPeters et al.[2017], respectively, show that variants of the stochastic multicloud
model scheme increase the variance and decrease the autocorrelation of tropical precipitation in di�erent
GCMs by more than we found here. One speculative reason for this is that these parameterizations have been
designed to represent the unpredictable component of variability at individual grid points, whereas SPPT and
SKEBS were designed to insert perturbations that would grow rapidly to large scales, which is important for
producing su�cient ensemble spread in weather forecasts. This could be a reason that SPPT and SKEBS do not
wholly represent the unpredictable component of the atmospheric evolution tendency. Including additional
representations of unpredictable variability on small scales may therefore be bene“cial for simulating tropical
variability in climate models. It would be interesting to do a direct comparison between the impacts of the
schemes tested here and of those evaluated byKooperman et al.[2016] andWang et al.[2016]. Of course,
improving the deterministic parts of parameterization schemes [e.g.,Jakob, 2010] is also likely to be important
for improving the representation of precipitation variability.

Stochastic physics was also not found to have much impact on the fraction of days that are dry in any model
(section 3.2). Superparameterization did improve this statistic over land in CAM5 [Kooperman et al., 2016]. It
could be interesting to test if improved stochastic schemes could intermittently suppress convection to give
better agreement with observations, for example, by introducing a stochastic convection trigger that could
represent possible unresolved factors that unpredictably suppress convection.

Gaining a better understanding of the mechanisms by which stochasticity a�ects the rainfall variability is
important for predicting how a given stochastic scheme will a�ect a model•s simulations. A better under-
standing of the impact of SPPT could be found by seeing if perturbing particular variables on their own, such
as speci“c humidity or temperature, can reproduce the e�ect of perturbing all variables together. Systematic
testing in di�erent models of the sensitivity to the correlation length and time scales of the random number
patterns used would be very helpful. Applying the stochastic schemes in a single-column model could help
to show which impacts depend on feedbacks from changes in resolved variables. Changing parameters of
the deterministic schemes may help to reveal how the impacts depend on the climate of the deterministic
con“gurations. Diagnostics of upscale growth of stochastic perturbations [e.g.,Selz and Craig, 2015] may help
with understanding how they a�ect the large-scale climatological state. Potential vorticity and diabatic tracer
schemes [e.g.,Martínez-Alvarado et al., 2016] may be helpful for studying how stochastic perturbations a�ect
particular processes relevant to tropical precipitation, such as the organization of deep convection.

Another topic for further analysis is understanding the impact stochastic physics has on the spatial structure
of tropical precipitation. Visual inspection of snapshots of the tropical precipitation in the horizontal plane
and Hovmöller diagrams in the di�erent models indicates that stochastic physics is not strongly a�ecting the
precipitation•s spatial structure (not shown).Peters et al.[2017] showed a large impact of a stochastic multi-
cloud model on the spatial structure, suggesting that SPPT and SKEBS are not able to reproduce this e�ect. A
more detailed analysis would be useful.

A further implication of our results is that using stochastic physics may a�ect the simulation of wave
”uxes into the tropical stratosphere and hence the simulation of the stratospheric quasi-biennial oscillation.
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The in”uence of the tropics on midlatitude variability could also be a�ected if poleward wave ”uxes into the
extratropics are changed [Branstator, 2014]. These could form topics for future investigations.

Appendix A: Comparison of GPCP and TRMM Tropical Rainfall Estimates

Here the consistency of rainfall estimates in GPCP and TRMM are summarized in order to help to quantify
observational uncertainty of rainfall statistics. Figure A1a shows the correlation between GPCP and TRMM
daily rainfall in the tropics interpolated conservatively to a 2.5� × 2.5� grid. The correlation exceeds 0.8 in
most places, the exceptions being located mostly in the central and eastern Paci“c. The correlation is highest
in northern South America, where it exceeds 0.9 at most points. This shows that GPCP and TRMM generally
agree on which days and at which locations there is rainfall and on its relative intensity.

Figure A1b shows the root-mean-square (RMS) di�erence between GPCP and TRMM divided by the averages
of their time means at each tropical location. The values exceed 1 in many oceanic locations, indicating that
the di�erences between GPCP and TRMM daily rainfall estimates are large compared to their mean rainfall. The
values over land are smaller, indicating better agreement between the estimates, possibly because calibration
against rain gauge data is possible. The largest contiguous region with relatively small values of this quantity
is northern South America, where RMS di�erences are 40…70% of the mean rainfall.

Figure A1c shows GPCP and TRMM time series of rainfall at a location in the tropical West Paci“c that illus-
trate the reasons that the time series have a high correlation and also a large RMS di�erence. The time series
agree well on the timing of rainfall, but TRMM generallyestimates larger rainfall amounts when there is heavy

Figure A1. A comparison of GPCP and TRMM daily mean tropical rainfall data. (a) The correlation between GPCP and
TRMM. (b) The root-mean-square di�erence between GPCP and TRMM divided by the averages of their time means at
each grid point. Data are only shown at points where the average time mean rainfall in GPCP and TRMM exceeds
1.5 mm/d. The rectangles in Figures A1a and A1b show the northern South America region used in sections 3.2 and 3.6.
(c) Time series of GPCP and TRMM rainfall at (158.75� E, 1.25� N), marked as cross •AŽ in Figures A1a and A1b. (d) Similar
time series at (61.25� W, 3.75� S), marked as cross •B.Ž The rainfall data have been conservatively interpolated to a
2.5� × 2.5� grid. The data sets are well correlated, but TRMM typically has greater extremes over ocean points, with the
best agreement being over northern South America.
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rainfall. Figure A1d shows similar time series at a point in northern South America, where the data sets agree
better, consistent with the smaller RMS di�erences shown here in Figure A1b.
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