The impact of stochastic physics on tropical rainfall variability in global climate models on daily to weekly time scales - Archive ouverte HAL Access content directly
Journal Articles Journal of Geophysical Research: Atmospheres Year : 2017

The impact of stochastic physics on tropical rainfall variability in global climate models on daily to weekly time scales

, , , (1) , , , ,
1
Peter A. G. Watson
  • Function : Author
Judith Berner
  • Function : Author
Susanna Corti
  • Function : Author
Jost von Hardenberg
  • Function : Author
Claudio Sanchez
  • Function : Author
Antje Weisheimer
  • Function : Author
Tim N. Palmer
  • Function : Author

Abstract

Many global atmospheric models have too little precipitation variability in the tropics on daily to weekly time scales and also a poor representation of tropical precipitation extremes associated with intense convection. Stochastic parameterizations have the potential to mitigate this problem by representing unpredictable subgrid variability that is left out of deterministic models. We evaluate the impact on the statistics of tropical rainfall of two stochastic schemes: the stochastically perturbed parameterization tendency scheme (SPPT) and stochastic kinetic energy backscatter scheme (SKEBS), in three climate models: EC-Earth, the Met Office Unified Model, and the Community Atmosphere Model, version 4. The schemes generally improve the statistics of simulated tropical rainfall variability, particularly by increasing the frequency of heavy rainfall events, reducing its persistence and increasing the high-frequency component of its variability. There is a large range in the size of the impact between models, with EC-Earth showing the largest improvements. The improvements are greater than those obtained by increasing horizontal resolution to ∼20 km. Stochastic physics also strongly affects projections of future changes in the frequency of extreme tropical rainfall in EC-Earth. This indicates that small-scale variability that is unresolved and unpredictable in these models has an important role in determining tropical climate variability statistics. Using these schemes, and improved schemes currently under development, is therefore likely to be important for producing good simulations of tropical variability and extremes in the present day and future.
Fichier principal
Vignette du fichier
JGR Atmospheres - 2017 - Watson - The impact of stochastic physics on tropical rainfall variability in global climate.pdf (2.61 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

insu-03727062 , version 1 (22-07-2022)

Licence

Attribution - NonCommercial - ShareAlike - CC BY 4.0

Identifiers

Cite

Peter A. G. Watson, Judith Berner, Susanna Corti, Paolo Davini, Jost von Hardenberg, et al.. The impact of stochastic physics on tropical rainfall variability in global climate models on daily to weekly time scales. Journal of Geophysical Research: Atmospheres, 2017, 122, pp.5738-5762. ⟨10.1002/2016JD026386⟩. ⟨insu-03727062⟩
34 View
6 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More