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Key Points:13

• The North American Multi-Model Ensemble predicts July-September Sahel-wide14

precipitation as skillfully in February/March as in June.15

• Skill comes from the ability to predict tropical Pacific and North Atlantic surface16

temperatures, attributable to 2 models in particular.17

• Skill in predicting the spatial average is significantly higher than the spatial av-18

erage of local/gridpoint skill.19
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Abstract20

We assess the deterministic skill in seasonal climate predictions of Sahel rainfall21

made with the North American Multi-Model Ensemble (NMME). We find that skill for22

a regionally averaged rainfall index is essentially the same for forecasts for the July-September23

target season made as early as February/March and as late as June. The two dominant24

influences on the climate of the Sahel, the North Atlantic and the global tropical oceans,25

shape this predictability. Multi-model ensemble skill hinges on the combination of skill-26

ful predictions of the El Niño-Southern Oscillation made with one model (CMC2-CanCM4)27

with those of North Atlantic sea surface temperatures made with another (NASA-GEOSS2S).28

Plain Language Summary29

The seasonal climate outlook forum for the Sudano-Sahelian region of West Africa30

convenes in mid/late-April at the earliest, because the statistical models currently in use31

to make predictions for the July-September rainy season have little skill before then. Here32

we show that the North American Multi-Model Ensemble (NMME), a seasonal climate33

prediction system based on dynamical models, predicts Sahel-wide July-September rain-34

fall anomalies in February/March with essentially the same skill as in June. An earlier,35

by 2-3 months, outlook is consequential to decisions that can exploit it for better pre-36

paredness, such as purchasing, stocking and distributing adapted seed varieties, or trig-37

gering humanitarian intervention to prevent regional food insecurity.38

The NMME prediction system owes its skill to the correct characterization of oceanic39

influence on Sahel rainfall, which is achieved by combining output from two models par-40

ticularly skillful at predicting North Atlantic and tropical Pacific sea surface tempera-41

ture anomalies respectively. Recognition that the oceanic source of predictability is the42

same for the entire region means that whether the forecast for the regional average holds43

in a given year, at a specific location, largely depends on the strength of oceanic influ-44

ence in that year, rather than on any local condition or consideration.45

Keywords: Sahel, precipitation, seasonal climate prediction, PRESA-SS, El Niño-Southern46

Oscillation, climate services.47
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1 Introduction48

Rainfall in the Sahel, the semi-arid southern edge of the Sahara, is characterized49

by high spatio-temporal variability. Variability in time is evident in Figure 1, an update50

of Ali and Lebel’s (2009) analysis, in the multi-decadal swings between the anomalously51

wet 1950s and 1960s and the anomalously dry 1970s and 1980s. Interannual variability52

is particularly marked in the current epoch, which has been labelled a partial recovery53

(Nicholson 2005; AGRHYMET 2010). Variability in space is an intrinsic property of con-54

vective precipitation (Le Barbé and Lebel 1997; Rio et al. 2019). Despite this apparent55

complexity, seasonal and sub-continental anomalies are coherent. The strength of ob-56

served regionally averaged precipitation anomalies is proportional to the area character-57

ized by anomalies of consistent sign, that is to say, that the larger the anomaly in the58

regional average, the more extensive the area of anomaly of the same sign (Ali and Lebel59

2009). A leading Empirical Orthogonal Function of sub-Saharan African rainfall vari-60

ability defines the Sahel as the poleward edge of the northern hemisphere summer mon-61

soon (Giannini et al. 2005). In models, this pattern is present in atmospheric simula-62

tions run over climatological sea surface temperature (SST), and amplified in the pres-63

ence of observed SST variability.64

For societies where a large fraction of the population finds employment in the agri-65

cultural sector, skillful seasonal prediction is a valuable tool to manage crop risk related66

to climate variation (Tall et al. 2018; Ouedraogo et al. 2018). Indeed, the West African67

climate outlook forum has met annually since 1998 to produce consensus forecasts (Ogallo68

et al. 2000; Traoré et al. 2014). Initially a single forum, referred to as PRESAO from69

the French acronym for Prévisions Saisonnières en Afrique de l’Ouest (Seasonal Predic-70

tions in West Africa), the process has recently split into two, PRESA-GG and PRESA-71

SS, involving the Gulf of Guinea and Sudano-Sahelian countries, respectively, in recog-72

nition of di↵erences in seasonality. The original prediction methodology was statistical,73

and exploited multi-linear regression to relate the predictand, that is, precipitation at74

broad subnational scales, with predictors chosen among a small set of SST indices (e.g.,75

Folland et al. 1991; Ward et al. 1993; Baddour 1998). In current practice, during the76

pre-forum experts from the National Meteorological Services present their predictions,77

still largely statistical in nature. Discussions combining these quantitative assessments78

with the qualitative assessment of predictions made by research and operational centers79

worldwide are distilled into a consensus forecast, which is communicated to stakehold-80

ers in the forum.81

Globally, seasonal prediction has evolved from a 2-tier to a 1-tier approach. In the82

2-tier approach of the mid-1990s, SSTs were predicted first, usually with a combination83

of statistical and dynamical models, and used as boundary conditions for atmospheric84

models (e.g., Barnston et al. 2003). In the current 1-tier approach, a coupled ocean-atmosphere85

model is used to simultaneously predict SST and atmospheric variables of interest, typ-86

ically temperature and precipitation. Operational centers, labeled Global Producing Cen-87

tres of Long-range Forecasts by the World Meteorological Organization, make predic-88

tions with dynamical models. In fact, current prediction systems combine repeated simulations—89

termed ensembles, made up of members started from slightly di↵erent initial conditions—90

with di↵erent coupled models into a Multi-Model Ensemble (MME). These e↵orts started91

with the “Development of a European Multimodel Ensemble system for seasonal to in-92

TERannual prediction” (DEMETER), a European project (Palmer et al. 2004). E↵orts93

to increase access to the output from dynamical forecasts are more recent. The North94

American Multi-Model Ensemble (NMME; Kirtman et al. 2014), the prediction system95

exploited here, is one such system. It started sharing real-time forecasts in 2011. These96

are updated monthly and are openly accessible through the IRI Data Library (see Sup-97

porting Information for a brief tutorial).98

To facilitate the production of national forecasts at PRESAO, IRI developed the99

Climate Predictability Tool (CPT; Mason and Tippett 2017). Using dynamical model100
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output as the predictor field, Ndiaye et al. (2008) demonstrated the improvement in skill101

when using the 925 hPa wind field for Sahel rainfall instead of rainfall itself. The use of102

a dynamical prediction system over a statistical one is advantageous, because once a ro-103

bust model-output-statistics (MOS) routine is put in place, such routine is independent104

of lead time. In contrast, because there is no guarantee that the predictors extracted from105

observations for a given lead time be the same for all lead times, development of statis-106

tical routines requires that a model be developed for each lead time. To illustrate this107

di↵erence, let’s presume that predictability in our region of interest is defined by ENSO.108

The skill of a statistical prediction system is constrained by the ability to identify the109

signature associated with ENSO evolution in observations at the desired lead time. In110

contrast, a dynamical prediction system relies on the system’s ability to predict ENSO111

with the desired lead time. Ndiaye et al. (2011) first demonstrated the potential for in-112

creasing forecast lead time in the Sahel using dynamical models, highlighting the abil-113

ity of the NCEP Climate Forecast System (CFS) to capture the El Niño-Southern Os-114

cillation (ENSO). Sheen et al. (2017) showed skill in forecasts initialized in November115

for the following June-August season in the UK Met O�ce forecast system DePreSys.116

Because it still relies primarily on statistical schemes, the PRESAO process does117

not attempt predictions earlier than April or May for the June-August and July-September118

seasons in the Sudano-Sahel. Here we report on the breakthrough in increased lead time119

of a skillful prediction for Sahel precipitation, which is made all the more robust by ex-120

ploitation of a multi-model ensemble, the NMME. Secondly, we reflect on the spatio-temporal121

nature of predictability, specifically, its oceanic origin and implications for the provision122

of local information typically demanded by real-world decisions.123

2 Data and Methods124

Predictors are derived from the precipitation fields output by 5 models in the North125

American Multi-Model Ensemble (NMME), one per modeling group (Environment Canada,126

NASA/Goddard Space Flight Center/Global Modeling and Assimilation O�ce, NCAR/Center127

for Ocean-Land-Atmosphere Studies/Rosenstiel School for Marine and Atmospheric Sci-128

ences, NOAA/Geophysical Fluid Dynamics Laboratory, and NOAA/National Centers129

for Environmental Prediction/Climate Prediction Center). The model versions selected130

were current as of the 2018 PRESA-SS, which was held in Abidjan, Côte d’Ivoire from131

April 30 to May 4. Details of the simulations are reported in Table S1 in Supporting In-132

formation. The predictors are:133

1. regional rainfall averages, over two domains of extremely di↵erent size: a sub-continental134

Sahel (10-20�N, 20�W-40�E), and a rectangular domain encompassing a single coun-135

try (Senegal: 13-16�N, 17-12�W)136

2. the full precipitation fields over the same domains specified in (1).137

Predictands are derived from CHIRPS (University of California, Santa Barbara’s Cli-138

mate Hazards group InfraRed Precipitation with Station data; Funk et al. 2015). They139

mirror the two types of predictors defined above, that is, spatial average or explicit gridpoint-140

by-gridpoint field. Specifically, in the left and middle columns of the rows in Figure 2,141

discussed in the Results section, predictor and predictand quantities are the same. In142

addition, to measure the spatial coherence of predictions, we consider a third type of pre-143

dictand:144

3. the fraction of area characterized by abundant rains, that is, the portion of grid-145

points in a region with rainfall anomalies greater than 0.5 times the local stan-146

dard deviation.147
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We assess predictions at two di↵erent spatial scales, namely, sub-continental and148

country-wide, in part to highlight the large-scale nature of predictability of Sahelian cli-149

mate, in part to give a sense of how such predictability is a↵ected when national per-150

spectives are taken into account. The specific choice of Senegal is relevant to discussions151

of the heterogeneity of climatic variations between the western and central Sahel (Lamptey152

2008; Lebel and Ali 2009; Biasutti 2013; Salack et al. 2014; Panthou et al. 2018). We153

provide recipes to download predictor fields from the IRI Data Library in Supporting154

Information.155

We are interested in seasonal prediction of precipitation accumulation for the core156

monsoon season, that is, July-September (JAS). We refer to the shortest lead time, that157

of a prediction for JAS made at the beginning of June, as a 1-month lead, and to the158

longest lead time, that of a prediction made for the same JAS target at the beginning159

of January, as a 6-month lead. For each model we compute the average of all available160

ensemble members, with ensemble size varying with model and/or between hindcasts (1981-161

2010) and real-time forecasts (2011-2016) as reported in Table S1. Single model ensem-162

ble means are weighed equally when averaged into the multi-model mean. We use de-163

terministic measures of skill, that is, both Pearson and Spearman correlations (Becker164

et al. 2014; Barnston et al. 2017), meaning that we only take into consideration infor-165

mation derived from the ensemble mean, not from the ensemble spread.166

3 Results167

The top panel of Figure 2 shows time series of NMME predictions of Sahel-wide168

rainfall anomaly at di↵erent lead times, in color, and compares them to observations, in169

black. Qualitatively, it is possible to associate successes in prediction with the recurrence170

of La Niña events and abundant rainfall, for example, in 1988, 1998-99 and 2010, and171

of El Niño events and deficient rainfall, for example in 1987, 1997 and 2009. It is also172

possible to identify calamitous forecast failures, most notably, in 1984, the driest year173

in the 20th century.174

3.1 Prediction skill as a function of lead time and spatial extent175

Panels in the lower portion of Figure 2 quantify skill dependence on forecast start176

date. Skill is measured by correlation between predictions and observations of rainfall177

over the 35-year period of study (1982-2016: the 5% significance level with 33 degrees178

of freedom is 0.33, plotted in the thick grey dotted line). In each panel, the forecast made179

for the shortest lead time, at the beginning of June, is on the left, with lead time increas-180

ing to the right. Panels on the top of two rows in Figure 2 are for the sub-continental181

Sahel, panels on the bottom of two rows, for a box including Senegal. In each panel, solid182

lines denote Spearman correlation, dashed lines Pearson correlation, in the thick red line183

for the multi-model mean, and in thinner lines of di↵erent color for the single models.184

The panels in the left column of the rows in Figure 2 represent correlations of re-185

gional averages, that is, the skill in predicting the spatially averaged anomaly in accu-186

mulation for the region under consideration. Predictor and predictand are the same. For187

the sub-continental Sahelian average (top row, left) multi-model mean values are remark-188

ably consistent across lead times, varying between 0.5 and 0.6. Two models show skill189

comparable to the multi-model mean, those in the orange and turquoise lines. Orange190

model correlations are lowest for forecasts with start dates in January and February, and191

increase as lead time decreases. Turquoise model correlations are lowest for forecasts with192

an April start date. When Senegal-average rainfall is used to predict itself (bottom row,193

left) the situation is more unstable: (i) values are overall lower, (ii) the multi-model mean194

is surpassed by two models, in purple and especially in orange, and (iii) there is greater195

variation with start date, with a tendency for skill to increase as lead time decreases (with196

the notable exception of the orange model).197

–5–



manuscript submitted to Geophysical Research Letters

The panels in the middle column of the two rows in Figure 2 represent anomaly198

correlation as defined in Becker et al. (2014): correlations in time between the ensemble-199

mean predicted and observed fields, regridded to the same 1�x 1�grid in longitude and200

latitude, are first computed locally, at each gridpoint, then averaged over all gridpoints201

in the domain, again for the entire sub-continental Sahel in the top row, and for Sene-202

gal in the bottom row. Again, predictor and predictand are the same. The loss of skill203

when comparing gridpoint value (middle column) and regional average (left column) pre-204

dictions is large. The average of local correlation values varies around 0.3 for the multi-205

model mean of sub-continental Sahel rainfall, against values between 0.5 and 0.6 for the206

regional average, and is consistently lower for single-model forecasts. The loss of skill is207

smaller in the case of Senegal, where it was lower to begin with.208

To further characterize the nature of local predictability, the panels in the right col-209

umn in the rows in Figure 2 depict the skill in predicting measures of spatial coherence210

using the Sahel regional average as predictor. In the top row, right column, Sahel av-211

erage accumulation is used to predict the fraction of Sahelian domain covered by a pos-212

itive anomaly 0.5 times the local standard deviation or greater. Ali and Lebel (2009) found213

consistency in the relationship between the magnitude of a regionally averaged anomaly214

and its spatial coherence, that is, the spatial extent of anomalies of the same sign. We215

interpret the comparison of skill in predicting the area with significant positive precip-216

itation, in the top row, right column of Figure 2, with that in predicting the regional av-217

erage, in the top row, left column, consistently with Ali and Lebel (2009). The regional218

average is a good measure of the strength of the signal: the stronger the signal, the larger219

the number of points behaving consistently with it. However, the loss of skill in the top220

row, middle column implies that exactly which points or locations will behave as pre-221

dicted, and which will deviate from prediction, is unpredictable. In the bottom row, right222

column, Sahel average accumulation is used to predict Senegal average accumulation.223

Comparison of the bottom row, left and right columns in Figure 2 shows that the Sa-224

hel average is a better predictor of Senegal-average rainfall than the Senegal average it-225

self, and that, once more, the orange model is more skillful than the multi-model mean.226

3.2 Oceanic sources of predictability227

To characterize the oceanic origin of NMME predictability, we regress predictions228

of sub-continental July-September average Sahel rainfall onto the simultaneous SST field.229

In Figure 3, the predicted rainfall index is regressed against predicted SST fields. In Fig-230

ure S1 in Supporting Information, the same predicted rainfall index is regressed against231

observed SST fields. Panels in each row of Figure 3 (and Figure S1 in Supporting In-232

formation) are ordered by forecast start date, with the shortest lead, June, on the left,233

and the longest, January, on the right. The single row at the top of Figure 3 (and Fig-234

ure S1) represents the multi-model mean. The following 5 rows represents each model’s235

ensemble mean.236

ENSO is the strongest source of predictability (Ndiaye et al. 2011). As expected,237

above-average Sahel rainfall is associated with the negative phase of ENSO, or La Niña238

conditions in the tropical Pacific (Janicot et al. 1996; Ward 1998; Giannini et al. 2003).239

The ENSO signature is present in the multi-model mean and in most models at all lead240

times. The long-lead skill in ENSO prediction of CMC2-CanCM4, the turquoise model241

in the rows in Figure 2 and the third row in the bottom of Figure 3, is well known (e.g.,242

Gonzalez and Goddard 2016). This model’s skill in predicting Sahel rainfall rivals that243

of the multi-model mean for all start dates except April, as noted in the previous sub-244

section. This loss of skill in predicting Sahel rainfall in view of the model’s skill in pre-245

dicting ENSO can be interpreted as a relic of the spring predictability barrier.246

The North Atlantic Ocean is a complementary source of predictability. Its contri-247

bution is best captured in two models, in the middle and especially in the bottom of two248
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rows in Figure 3, which shape the multi-model mean picture. These correspond to the249

turquoise and orange lines in the rows in Figure 2, respectively. In the turquoise model,250

CMC2-CanCM4, the North Atlantic warming that is positively correlated with Sahel rain-251

fall is extratropical in winter, and propagates, for lack of a better word, along the east-252

ern boundary toward the tropics as the Sahelian rainy season approaches. In the orange253

model, NASA-GEOSS2S, the 5% statistical significance of positive regression values col-254

ors the entire North Atlantic basin starting in January, with largest values in extratrop-255

ical latitudes, between 30 and 60�N. Regression values in the tropical North Atlantic weaken256

in March-May, and strengthen in June, while regression values with ENSO strengthen,257

peaking in May. In the multi-model mean, the fact that extra-tropical North Atlantic258

Ocean anomalies are strongest in winter (January and February start dates) supports259

relating these to wintertime North Atlantic Oscillation (NAO) forcing of SST anoma-260

lies. The late-spring strengthening of tropical North Atlantic anomalies is suggestive of261

re-emergence mediated by the response of trade winds to higher latitude SST anoma-262

lies (Seager et al. 2000; Chiang et al. 2003; Czaja et al. 2002; Clement et al. 2015), and263

is worthy of more detailed research.264

3.3 Translating insights into practice at PRESA-SS265

Finally, to relate directly to the practice of making seasonal predictions at PRESA-266

SS, we run CPT to test our insights about the spatio-temporal predictability of Sahel267

rainfall. As an illustration, we consider predictions made at the beginning of April, the268

start date most closely preceding the current PRESA-SS calendar. The predictor field269

is NMME multi-model mean precipitation in the 10-20�N, 20�W-40�E region. The pre-270

dictand field is CHIRPS precipitation in the same region. To filter out spatial noise, when271

running Canonical Correlation Analysis (CCA; Bretherton et al. 1992), CPT extracts272

the dominant spatio-temporal pattern(s) applying Principal Component Analysis (PCA;273

Preisendorfer 1988) to the predictor and predictand fields. The resulting leading pat-274

terns of variability in each field are correlated in CCA to predict the best correlated pat-275

tern(s). CPT conveniently automates this routine, and provides cross-validated measures276

of skill. One such summary measure is the goodness index, defined as the spatial aver-277

age of Kendall’s tau rank correlation (Alfaro et al. 2018; Wilks 2011). CPT computes278

this index for all combinations of predictor and predictand Principal Components (PCs)279

and retains as the predictive model the one associated with the highest goodness index.280

In our case, when we test retaining a maximum of 10 PCs of the predictor and pre-281

dictand fields to predict a single precipitation pattern, the best model is composed of282

all 10 predictor and only 1, the first, predictand PCs. These retain respectively 96% of283

the total variance of the predictor field, and 46% of the predictand field. This model es-284

sentially predicts Sahel-wide rainfall. The goodness index varies between 0.247 and 0.359,285

when 1 and 10 predictor PCs are retained respectively. In comparison, when we use the286

Sahel-wide precipitation average as the single predictor, CPT computes a goodness skill287

of 0.226. These values are consistent with the multi-model mean anomaly correlation val-288

ues plotted in Figure 2, in the top row, middle column, varying between 0.25 and 0.35.289

As a cross-check, to see whether we missed any potential sources of predictability, we ex-290

tract the 10 predictor (precipitation) PCs from CPT and correlate them with predictions291

of precipitation and SST in the NMME multi-model mean. The first 5 patterns are shown292

in Figure 4. The first is a Sahelian pattern. Not surprisingly, over the 1982-2016 period293

it correlates strongly with ENSO. The second is a Gulf of Guinea pattern which strongly294

correlates with local SSTs, but has no projection on the Sahel (Giannini et al. 2003, 2005).295

Despite the intriguing SST patterns of PCs 3 and 4 in the North Atlantic, the projec-296

tion onto Sahel rainfall of the remaining patterns is non-existent. This behavior raises297

the concern that a model that essentially takes as many predictor PCs as are available298

may be contaminated with artificial skill—statistical skill that has no physical counterpart—299

and strengthens our conclusion that the predictability is all in a Sahel-wide pattern.300
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4 Conclusions301

We assessed the deterministic skill of the North American multi-model ensemble302

(NMME), an operational, state-of-the-art seasonal climate prediction system, in predict-303

ing July-September precipitation over the Sahel. We found skill in predicting regionally304

and seasonally averaged rainfall anomalies as early as February/March. Skill in the multi-305

model mean is the combination of skillful predictions of ENSO in one model, and of North306

Atlantic sea surface temperatures in another. That such distinct behaviors simply add307

up to shape multi-model mean skill is exemplary of the value of multi-model ensemble308

prediction systems. Interestingly, the skill of a system composed of only these two best309

models, which correspond to the turquoise and orange lines in the rows in Figure 2, is310

more variable: it is higher in some instances, lower in others, than the skill of the sys-311

tem based on all models considered here (see Figure S2 in Supporting Information). At312

the smaller scale of Senegal, the greater skill of the model that best predicts North At-313

lantic temperatures is indicative of the greater relative influence of the adjacent basin314

on the westernmost portion of the Sahel. This behavior points to east-west di↵erences315

in sub-regional dynamics that merit following up.316

We emphasize that this level of skill, consistent with the large-scale, oceanic ori-317

gin of predictability, is achieved at the very largest spatial scales, that is, the sub-continental318

scale of the entire Sahel. As illustrated in the rows in Figure 2, the skill in regionally av-319

eraged precipitation (in the left column) is di↵erent from, and significantly larger than320

the regional average of local skill (in the middle column). Further, the stronger the pre-321

dictable signal, captured in SST anomalies, the greater the spatial coherence of the out-322

come. A local forecast scheme could be envisioned that calculated probabilities based323

solely on the regionally averaged signal weighted by its strength.324

The skill at lead times of 3-4 months on the start of the rainy season that is de-325

scribed here is a significant advancement. Its practical implications are profound, con-326

sidering that the current regional climate outlook forum process, largely based on sta-327

tistical prediction models, convenes in May, or April at the earliest. Awaiting a further328

quantitative assessment, this level of skill should be su�cient for the timely communi-329

cation of an early qualitative outlook. This may be relevant for national governments330

to assure timely approval of the budget items supporting the agricultural sector, in the331

form of purchasing and stocking for inputs that are best adapted to the predicted char-332

acter of the upcoming season. It may be even more relevant for institutions concerned333

with regional food security, such as the CILSS (Comité Permanent Inter-États de Lutte334

contre la Sécheresse dans le Sahel, or Permanent Interstate Committee for Drought Con-335

trol in the Sahel) and its global partners, including the UN World Food Programme, the336

Famine Early Warning Systems Network, and the Réseau de Prévention des Crises Al-337

imentaires, because it could buy them more time to secure donor funding ahead of a po-338

tential large-scale crisis, such as a repeat drought year.339

Finally, we find confirmation that Sahelian variability is shaped by the interplay340

of independent, North Atlantic and global tropical, sources of predictability, encapsu-341

lated in the North Atlantic Relative Index (Giannini et al. 2013). Indeed, the compe-342

tition in warming between North Atlantic and global tropical oceans under the influence343

of greenhouse gases is one way to interpret the increased interannual variability that is344

qualitatively manifest in any Sahelian rainfall time series since the mid-1990s, includ-345

ing that in Figure 1—behavior which makes seasonal prediction all the more valuable.346
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Figure Captions479

Figure 1 Standardized Sahelian rainfall index from rain gauge observations. Updated from480

and calculated over the same region as Ali and Lebel (2009), covering the countries of481

the CILSS, from the Atlantic coast to Chad included.482

Figure 2 (Top panel) Sahel rainfall time series, the average over the “sub-continental Sa-483

hel” region in 10-20�N, 20�W-40�E, in the multi-model mean of 5 NMME models, in col-484

ors according to prediction start time (see legend insert), and in observations (CHIRPS)485

in black. (Two rows of panels) Skill of NMME predictions for the July-September sea-486

son. Predictions are started from the previous January, on the right in each panel, to487

the June immediately before the season, on the left, corresponding to lead times from488

6 months to 1 month. Skill is measured by Spearman (solid line) and Pearson (dashed489

line) correlations over 1982-2016: the thick, red line is for the multi-model mean, the thin-490

ner lines of di↵erent colors are for single models, with the thick grey dotted line repre-491

senting the 5% significance level. (Top row) Sahel-wide predictions. (Bottom row) pre-492

dictions over Senegal. (Left column) prediction of the spatial average. (Middle column)493

gridpoint prediction, averaged over the area. (Right column) predictions based on Sahel-494

average rainfall of (top row) the fraction of Sahel area under positive rainfall anomaly495

and (bottom row) Senegal average rainfall, based on Sahel-average rainfall.496

Figure 3 Regressions of predicted July-September Sahel rainfall with simultaneously pre-497

dicted sea surface temperatures, for start dates from January on the right to June on498

the left. The separate, top row is for the multi-model mean. Rows below are for single499

models. Values are in degrees Celsius: contour starts at 0.1 degrees and is every 0.2 de-500

grees. Color, red for positive values and blue for negative values, indicates statistical sig-501

nificance of the regression values at the 5% level.502

Figure 4 Correlation maps of the 5 leading NMME precipitation predictor fields in the503

region 10-20�N, 20�W-40�E extracted from CPT with (left) precipitation and (right) SST.504

Predictions are made in April for the July-September season over 1982-2016. Only val-505

ues statistically significant at the 5% level, corresponding to a value of 0.33, are plotted.506

Contour is every 0.2, starting at 0.4.507
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Introduction

This Supplementary Information includes additional Figures and a Table. Figures S1

and S2 are extensions of figures 3 and 2, respectively. Table S1 provides detailed informa-

tion about the model simulations analyzed. It also includes a template recipe to define and

download rainfall predictors from the NMME archive maintained in the IRI Data Library.

Figure S1. The Sahel precipitation index derived from NMME predictions is correlated

with the observed patterns of sea surface temperature (SST). The intent is to compare

these correlation patterns with those that result from correlating the same index with

predicted SSTs, in Figure 3, to gauge the extent to which NMME captures the SST-Sahel

precipitation relationship.

Figure S2. The left panel is repeated from the top row, left column of Figure 2, which

details the skill dependence on lead time for the 5-model ensemble. It is compared to

the same skill for a 2-model ensemble based on the best models, in the right panel. As

discussed in the Conclusions section, while the skill of the smaller ensemble is at times

larger, the skill of the larger ensemble is more stable across lead times.

Table S1. This table contains details about the simulations analyzed, made with the 5

models named in the Data and Methods section of the article.
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Accessing the NMME in the IRI Data Library

The IRI Data Library (IRIDL) maintains a regularly updated archive of NMME model

output, including hindcasts and proper real-time forecasts (see Table S1) at http://

iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/. In this note we document the

steps to (1) select model output, e.g., choose models and variables, and define spatial

domain, start date and lead time, (2) combine models into the multi-model mean, and

(3) download in a format compatible with the Climate Predictability Tool (CPT).

Working behind the scenes is ingrid (See http://iridl.ldeo.columbia.edu/dochelp/

Documentation/funcindex.html for function documentation), the coding language ger-

mane to the IRIDL, developed to select, analyze and visualize data in a web browser

environment. The coding becomes visible by clicking on the Expert mode tab. This ac-

tion opens a window, to which the lines of code described below, in Courier font, can be

copied and pasted directly. (Clicking on the OK button below the Expert mode window

executes the code.)

Let us start with an NMME model that archives hindcasts and forecasts in the same di-

rectory, and select the precipitation (prec) variable. From http://iridl.ldeo.columbia

.edu/SOURCES/.Models/.NMME/, first select the model, COLA-RSMAS-CCSM4, by clicking

on its name, then the MONTHLY directory, which contains the archive of predictions, and

finally the variable, prec. These actions are explicited in Expert mode as:

SOURCES .Models .NMME .COLA-RSMAS-CCSM4 .MONTHLY .prec

We specify the geographic domain of interest by applying the function RANGEEDGES to the

X and Y grids:
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X -20 40 RANGEEDGES

Y 10 20 RANGEEDGES

where X and Y are typically longitude and latitude respectively. In ingrid longitudes west

of the Greenwich meridian and latitudes south of the Equator are identified by negative

values, longitudes east and latitudes north, by positive values. The ranges set above

correspond to the sub-continental Sahel as defined in this study: 10-20
�
N, 20

�
W-40

�
E.

We average gridpoints in the domain into a regional index with the command line

[X Y] average

Start date and lead time of prediction are typically indicated by S and L respectively.

The following:

S (0000 1 Apr ) VALUES

L (3.5) (5.5) RANGEEDGES

denotes a prediction made on 1 April, with lead times comprised between 3.5 and 5.5

months. Since months are typically identified by the mid-month date, e.g., 16 Jan, 16

Feb, 16 Mar, etc., this combination of selections on S and L identifies the July-September

period. A prediction made on 1 April for the June-August period looks like this:

S (0000 1 Apr) VALUES

L (2.5) (4.5) RANGEEDGES

In addition, M typically denotes ensemble member. Therefore, [M] average denotes the

ensemble mean over all members available.

The combined specifications for the case of a model archiving hindcasts and forecasts in

the same directory, resulting in April predictions for July-September Sahel average rainfall
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over the entire period covered by the NMME (1982 to present), can be copied and pasted

directly to the Expert mode window, where they look like this:

SOURCES .Models .NMME .COLA-RSMAS-CCSM4 .MONTHLY .prec

X -20 40 RANGEEDGES

Y 10 20 RANGEEDGES

S (0000 1 Apr ) VALUES

L (3.5) (5.5) RANGEEDGES

[L] /keepgrids average

[M X Y]average

The same specifications for the case of a model archiving hindcasts and forecasts in

separate directories look like this:

SOURCES .Models .NMME .CMC2-CanCM4 .HINDCAST .MONTHLY .prec

X -20 40 RANGEEDGES Y 10 20 RANGEEDGES

S (0000 1 Apr ) VALUES L (3.5) (5.5) RANGEEDGES

[L] /keepgrids average

[M X Y]average

SOURCES .Models .NMME .CMC2-CanCM4 .FORECAST .MONTHLY .prec

X -20 40 RANGEEDGES Y 10 20 RANGEEDGES

S (0000 1 Apr ) VALUES L (3.5) (5.5) RANGEEDGES

[L] /keepgrids average

[M X Y]average

appendstream

March 27, 2020, 7:18pm



GIANNINI ET AL.: NMME PREDICTIONS OF SAHEL RAINFALL X - 7

In other words, the specifications are repeated for hindcasts and forecasts, and the two

data streams are combined using the function appendstream.

To combine more models into the multi-model mean, models are added together and

divided by their number. Using the two models described thus far:

SOURCES .Models .NMME .CMC2-CanCM4 .HINDCAST .MONTHLY .prec

X -20 40 RANGEEDGES Y 10 20 RANGEEDGES

S (0000 1 Apr ) VALUES L (3.5) (5.5) RANGEEDGES

[L] /keepgrids average [M X Y]average

SOURCES .Models .NMME .CMC2-CanCM4 .FORECAST .MONTHLY .prec

X -20 40 RANGEEDGES Y 10 20 RANGEEDGES

S (0000 1 Apr ) VALUES L (3.5) (5.5) RANGEEDGES

[L] /keepgrids average [M X Y]average

appendstream

SOURCES .Models .NMME .COLA-RSMAS-CCSM4 .MONTHLY .prec

S (0000 1 Apr ) VALUES L (3.5) (5.5) RANGEEDGES

X -20 40 RANGEEDGES Y 10 20 RANGEEDGES

[L] /keepgrids average

[M X Y]average

add 2 div

yields the result sought, with the last line, add 2 div, signifying that the two data streams

are first added up and then divided by 2. Note that in ingrid space and line break are

equivalent.
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Manipulations to consider in order to tailor data selection to user needs include:

• selecting a di↵erent spatial domain. The domain is set using the functions RANGE or

RANGEEDGES operating on the X and Y grids. For example, in the country case investigated

in this study, the rectangular domain comprising Senegal, defined by 13-16
�
N, 17-12

�
W,

is rendered as Y 13 16 RANGE X -17 -12 RANGE;

• including the line [X Y]average computes a regional average. Eliminating it results

in longitude/latitude fields, or maps of the predictor variable;

• start date (S) and lead time (L) need to be adjusted consistently, depending on the

time that the prediction is made, and the period to be predicted.

The end result is an up-to-date time series of Sahel average precipitation predictions,

concatenating hindcasts and forecasts starting in 1982, and using the 5 models analyzed

in this study. In Expert mode it looks like this:

SOURCES .Models .NMME .CMC2-CanCM4 .HINDCAST .MONTHLY .prec

X -20 40 RANGEEDGES Y 10 20 RANGEEDGES

S (0000 1 Apr ) VALUES L (3.5) (5.5) RANGEEDGES

[L] /keepgrids average

[M X Y]average

SOURCES .Models .NMME .CMC2-CanCM4 .FORECAST .MONTHLY .prec

X -20 40 RANGEEDGES Y 10 20 RANGEEDGES

S (0000 1 Apr ) VALUES L (3.5) (5.5) RANGEEDGES

[L] /keepgrids average
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[M X Y]average

appendstream

SOURCES .Models .NMME .NCEP-CFSv2 .HINDCAST .MONTHLY .prec

X -20 40 RANGEEDGES Y 10 20 RANGEEDGES

S (0000 1 Apr ) VALUES L (3.5) (5.5) RANGEEDGES

[L] /keepgrids average

[M X Y]average

SOURCES .Models .NMME .NCEP-CFSv2 .FORECAST .EARLY MONTH SAMPLES .MONTHLY

.prec

X -20 40 RANGEEDGES Y 10 20 RANGEEDGES

S (0000 1 Apr ) VALUES L (3.5) (5.5) RANGEEDGES

[L] /keepgrids average

[M X Y]average

appendstream

add

SOURCES .Models .NMME .NASA-GEOSS2S .HINDCAST .MONTHLY .prec

X -20 40 RANGEEDGES Y 10 20 RANGEEDGES

S (0000 1 Apr ) VALUES L (3.5) (5.5) RANGEEDGES

[L] /keepgrids average

[M X Y]average

SOURCES .Models .NMME .NASA-GEOSS2S .FORECAST .MONTHLY .prec

X -20 40 RANGEEDGES Y 10 20 RANGEEDGES
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S (0000 1 Apr ) VALUES L (3.5) (5.5) RANGEEDGES

[L] /keepgrids average

[M X Y]average

appendstream

add

SOURCES .Models .NMME .GFDL-CM2p1-aer04 .MONTHLY .prec

X -20 40 RANGEEDGES Y 10 20 RANGEEDGES

S (0000 1 Apr ) VALUES L (3.5) (5.5) RANGEEDGES

[L] /keepgrids average

[M X Y]average

add

SOURCES .Models .NMME .COLA-RSMAS-CCSM4 .MONTHLY .prec

X -20 40 RANGEEDGES Y 10 20 RANGEEDGES

S (0000 1 Apr ) VALUES L (3.5) (5.5) RANGEEDGES

[L] /keepgrids average

[M X Y]average

add

5 div

/missing value -999.0 def

SLtoT L removeGRID

March 27, 2020, 7:18pm



GIANNINI ET AL.: NMME PREDICTIONS OF SAHEL RAINFALL X - 11

When needed, forecasts are appended to hindcasts using appendstream, then each model

is added to the previous, using add, and finally, the total sum is divided by the number

of models, in this case 5, using div.

When model output is ready for download, the user clicks first on the Data files tab

above the Expert mode window, then chooses the relevant format on the following web

page. In addition to a format compatible with CPT, frequently used formats include

formats for direct input into NCL or Matlab scripts, and downloads into netCDF files.
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Figure S2. Skill of NMME predictions for the July-September season. Predictions are started from the previous

January, on the right in each panel, to the June immediately before the season, on the left, corresponding to lead times from

6 months to 1 month. Skill is measured by Spearman [solid line] and Pearson [dashed line] correlations over 1982-2016: the

thick, red line is for the multi-model mean, the thinner lines of di↵erent colors are for single models, with the thick grey

dotted line representing the 5% significance level. The left panel is the same as in Figure 2, for the multi-model system of

all 5 NMME models considered in this study. The right panel is for the 2-model system using only the best models.
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