Skip to Main content Skip to Navigation
Journal articles

The physics of climate variability and climate change

Abstract : The climate is a forced, dissipative, nonlinear, complex, and heterogeneous system that is out of thermodynamic equilibrium. The system exhibits natural variability on many scales of motion, in time as well as space, and it is subject to various external forcings, natural as well as anthropogenic. This review covers the observational evidence on climate phenomena and the governing equations of planetary-scale flow and presents the key concept of a hierarchy of models for use in the climate sciences. Recent advances in the application of dynamical systems theory, on the one hand, and nonequilibrium statistical physics, on the other hand, are brought together for the first time and shown to complement each other in helping understand and predict the system's behavior. These complementary points of view permit a self-consistent handling of subgrid-scale phenomena as stochastic processes, as well as a unified handling of natural climate variability and forced climate change, along with a treatment of the crucial issues of climate sensitivity, response, and predictability.
Document type :
Journal articles
Complete list of metadata
Contributor : Nathalie POTHIER Connect in order to contact the contributor
Submitted on : Tuesday, July 19, 2022 - 8:12:25 AM
Last modification on : Tuesday, August 2, 2022 - 4:03:32 AM

Links full text



Michael Ghil, Valerio Lucarini. The physics of climate variability and climate change. Reviews of Modern Physics, 2020, 92, ⟨10.1103/RevModPhys.92.035002⟩. ⟨insu-03726977⟩



Record views