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Abstract The North Atlantic ocean is key to climate through its role in heat transport and storage.
Climate models suggest that the circulation is weakening but the physical drivers of this change are poorly
constrained. Here, the root mechanisms are revealed with the explicitly transparent machine learning
(ML) method Tracking global Heating with Ocean Regimes (THOR). Addressing the fundamental
question of the existence of dynamical coherent regions, THOR identifies these and their link to distinct
currents and mechanisms such as the formation regions of deep water masses, and the location of the
Gulf Stream and North Atlantic Current. Beyond a black box approach, THOR is engineered to elucidate
its source of predictive skill rooted in physical understanding. A labeled data set is engineered using an
explicitly interpretable equation transform and k-means application to model data, allowing theoretical
inference. A multilayer perceptron is then trained, explaining its skill using a combination of layerwise
relevance propagation and theory. With abrupt CO, quadrupling, the circulation weakens due to a shift
in deep water formation regions, a northward shift of the Gulf Stream and an eastward shift in the North
Atlantic Current. If CO, is increased 1% yearly, similar but weaker patterns emerge influenced by natural
variability. THOR is scalable and applicable to a range of models using only the ocean depth, dynamic sea
level and wind stress, and could accelerate the analysis and dissemination of climate model data. THOR
constitutes a step toward trustworthy ML called for within oceanography and beyond, as its predictions
are physically tractable.

Plain Language Summary The North Atlantic circulation is key to climate through heat
transport and storage, and is projected to weaken under global heating. The mechanisms of change
remain obscure, but are addressed here using a transparent machine learning (ML) method, engineered
combining interpretable and explainable methods to reveal its source of predictive skill. Tackling the
fundamental question of identifying dynamically coherent regimes governing the circulation, the Tracking
global Heating with Ocean Regimes (THOR) method reveals a weakened circulation under abrupt CO,
quadrupling, seeing a shift in deep water formation, the Gulf Stream and North Atlantic Current. If CO,
is increased 1% yearly, similar but weaker patterns emerge. THOR is readily applicable to other models
needing only depth, wind stress and sea surface height fields as input, and could accelerate discovery and
analysis. THOR is a step toward trustworthy ML called for within oceanography and beyond because its
predictions are physically tractable.

1. Introduction

The North Atlantic Meridional Overturning Circulation (AMOC) is defined as a zonally integrated stream
function of meridional volume transport in the Atlantic Basin. AMOC is central to the global climate and
particularly that of northwestern Europe, bringing warm waters north where they become dense and sink
(Lohmann et al., 2014; Lozier et al., 2019; Zhang et al., 2019). Emerging from a myriad of interacting dy-
namics, the AMOC acts as a primary mechanism for North Atlantic storage of heat and carbon (Lohmann
et al., 2014; Marshall & Schott, 1999; Roberts et al., 2004; Tsujino et al., 2020). Due to the complicated and
nonlinearly interacting governing features of the AMOC, in-depth and often unavailable data is necessary

SONNEWALD AND LGUENSAT

1 of 26


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-5136-9604
https://orcid.org/0000-0003-0226-9057
https://doi.org/10.1029/2021MS002496
https://doi.org/10.1029/2021MS002496
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1942-2466.MLAMODEL1
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1942-2466.MLAMODEL1
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2021MS002496&domain=pdf&date_stamp=2021-08-10

Ay

rANIS Journal of Advances in Modeling Earth Systems 10.1029/2021MS002496

ADVANCING EARTH
AND SPACE SCIENCE

to understand potential sources of variability. Here, a transparent Machine learning (ML) method that elu-
cidates the governing mechanisms of AMOC is presented called Tracking global Heating with Ocean Re-
gimes (THOR). THOR is engineered to use only limited and readily available data to predict the governing
mechanisms. Here, “transparent” is defined as having the source of predictive skill not only being retrospec-
tively explainable, but also to be interpretable using established theory. Developing transparent ML is seen
as key toward building trustworthy ML applications for oceanography and beyond. While globally applica-
ble, here the variability of key underpinning dynamics contributing to the AMOC variability are assessed
in a climate model under global heating. THOR addresses the known capability gap of analysis tools for
climate models (Eyring et al., 2019; Reichstein et al., 2019; Schlund et al., 2020), while opening the “black
box” often associated with ML applications.

The AMOC, and indeed the global climate, exhibits an array of changes in response to anthropogenic forc-
ing, with variability poorly constrained by models (Cheng et al., 2013; Larson et al., 2020; Meehl et al., 2000;
Weaver et al., 2012; Weijer et al., 2020; Zhang et al., 2019). To understand likely future changes in the AMOC
and indeed the Earth system, the Coupled Model Intercomparison Project (CMIP) now in its’ sixth phase
is often used (Eyring et al., 2015; Meehl et al., 2000, 2007; Taylor et al., 2012). The CMIP6 ensemble mem-
bers overall show a decline in the AMOC with global heating, but presents the circulation as a bulk metric
leaving specific mechanisms opaque (Weijer et al., 2020). The complexity and size of the CMIP6 model
ensemble can hinders data dissemination and analysis, limiting the ability to discern specific mechanisms
underpinning variability such as the AMOC decline because necessary data is unavailable. This is an ex-
ample of an emerging class of problems in CMIP6 and beyond, where researchers must handle data that is
increasingly large, potentially sparse, and due to logistics of for example dissemination, often unavailable
(Eyring et al., 2019).

The rate and direction of northward transport of warm waters and the density and depth of the south-
ward return flow comprise the AMOC. The formation of North Atlantic Deep Water (NADW) from intense
surface cooling returns dense watermasses south (Boning et al., 2006; Lohmann et al., 2014; Marshall &
Schott, 1999). The Gulf Stream and the North Atlantic Current (also referred to as the North Atlantic Drift
or Trans Atlantic Current) are major sources of warm surface waters through the horizontal gyre circula-
tion. The gyre circulation is coupled to AMOC, modulated by the NADW through bathymetric interactions
(Yeager, 2015; Zhang, 2008; Zhang & Vallis, 2007), and dense deep water can be associated with a vigorous
AMOC. Three locations are mainly seen as NADW source regions; the Labrador Sea deep water (LSDW)
from the basin between Canada and Greenland, the Denmark Strait Overflow Water (DSOW) entering the
Atlantic from the area between Greenland and Iceland and the Iceland-Scotland Overflow Water (ISOW)
coming from the east of the Reykjanes ridge. The Reykjanes Ridge, stretching south and into the mid At-
lantic Ridge from Iceland, forms an obstacle for the deep waters that largely flow counterclockwise to head
south at depth. Due to its higher characteristic temperature deep water from the LSDW is lighter. On dec-
adal timescales, a northward shift in the Gulf Stream signals a weaker AMOC. After leaving the western
boundary of the continental US around the Grand Banks, the flow is referred to as the North Atlantic Cur-
rent, which shifts eastwards under a weaker AMOC (Joyce & Zhang, 2010; Nye et al., 2011; Sanchez-Franks
& Zhang, 2015; Yeager, 2015; Zhang, 2008; Zhang et al., 2019). These mechanisms can be seen as governing
the circulation or being a direct product of its strength (Kuhlbrodt et al., 2007; Wunsch & Ferrari, 2004).
Overall, the field of oceanography is increasingly starting to use advanced ML methods, as reviewed in
Sonnewald et al. (2021). To infer subsurface dynamics, ML has been employed to predict currents at 1000m
from satellites (Chapman & Charantonis, 2017), and subsurface structure from idealized simulations (Ma-
nucharyan et al., 2021).

THOR overcomes two common problems with ML applications, and a demonstration of how these can be
overcome is also a core motivation of the work. These problems are centered around a lack of labeled data,
and the difficulty of understanding of the applications’ source of predictive power. First, supervised ML
algorithms such as neural networks (NN), are particularly useful for regression/classification problems, but
need labeled data from which to learn. Such data is scarce, and labeling is often complicated by the data
being some combination of highly nonlinear, chaotic, high-dimensional, nonstationary or multi-scale. A
label effectively constitutes defining consistent phenomena of interest. THOR uses unsupervised ML and
identifies coherent structures within data to use these as labels. Unsupervised ML is particularly useful in
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this context, as the labels can be assigned without bias. Second, adoption of ML within the physical sciences
suffers from a lack of trust that stems from a lack of a transparent understanding of the source of predictive
skill (Irrgang et al., 2021; Rudin, 2019; Sonnewald et al., 2021). Ensuring that what is learned by the ma-
chine is physically meaningful, and not due to trivial coincidences, is important for example for reliability
and generalization (Balaji, 2020), and to avoid underspecification (D’Amour et al., 2020). Trustworthy ML
has also been called for in government guidelines from the European Union (Assessment List for Trustwor-
thy Artificial Intelligence) and in a mandate in the United States of America (E.O. 13960 of December 3,
2020). This transparency can be achieved by either building specifically interpretable ML models (interpret-
able artificial intelligence or “IAI”), or retrospectively explaining predictive skill (explainable artificial intel-
ligence or “XAI”). THOR is deemed transparent being both interpretable and explainable, specifically using
the interpretable first step to feature engineer the second supervised step. For NN and other “black-box”
models, methods to explain skill retrospectively include connection weight approaches, Local Interpreta-
ble Model-agnostic Explanations (LIME), Shapley Additive Explanation (SHAP) and Layer-wise Relevance
Propagation (LRP) (Lapuschkin et al., 2015; Lundberg & Lee, 2017; Olden et al., 2004; Ribeiro et al., 2016;
Toms et al., 2020). Together, this class of method is referred to as Additive Feature Attribution (AFA). They
aim to attribute the predictive skill to specific input features given for example to the NN, which can then
for example be used by a domain expert to ensure the predictions are not due to chance. Other methods
rooted in ‘saliency’ mapping also exist (McGovern et al., 2019). For unsupervised ML, leveraging theoretical
knowledge in both the design and interpretation of results can be fruitful, which also motivated its use here
(Callaham et al., 2021; Sonnewald et al., 2019, 2020).

THOR provides rapid and comprehensive evaluation of climate model simulations, using ML to objectively
identify shifts in physics that modulate the AMOC variability. Here, key shifts in different future forcing
scenarios reveal that a shift in the Gulf Stream and North Atlantic Current, together with a change in the
deep water formation regions, are suggestive of a weakening AMOC. A focus on transparent ML underpins
the study, both through the experiment design and a subsequent analysis of the source of predictive skill.
This predictive skill is importantly rooted in physical understanding.

2. Methods and Results
2.1. Identifying Dynamical Regimes

The first step of THOR identifies 2D dynamical regimes (Figure 1a) in the realistic 1° numerical ocean mod-
el Estimating the Circulation and Climate of the Ocean (ECCOv4r3 (Adcroft et al., 2004; Forget et al., 2015;
Wunsch & Heimbach, 2013), 1992-2013). Approached naively, finding robust regimes is intractable due to
the high dimensionality of the complex numerical model, with a high likelihood of nonunique solutions
conflating interpretation. THOR uses a model data transformation into equation space, reducing the dimen-
sionality to five and enhancing interpretability (Sonnewald et al., 2019). The five dynamical drivers/terms
are the fundamental sources of depth integrated (barotropic) vorticity: (a) the wind and bottom stress curl,
(b) the advection of planetary vorticity, (c) bathymetric interactions through bottom pressure torque (BPT),
(d) curl of nonlinear interactions between terms and (e) lateral viscous dissipation from within the ocean
interior (Hughes & de Cuevas, 2001; Munk, 1950; Sonnewald et al., 2019) (Appendix B). The five terms form
a closed budget, and a 5-dimensional vector field, X, on the model grid. Each element x; represents the 5-di-
mensional vector defined on the model’s global horizontal grid. Each index i uniquely identifies a grid point
on the sphere, with (lon, lat) = (6;, ¢;). Within x, six distinct and unique dynamical regimes are identified
as clusters using the unsupervised ML k-means algorithm and information criteria model selection. The
dynamical regimes used in THOR were original presented in Sonnewald et al. (2019), where more details
on the method can be found.

The six dynamical regimes are back projected onto the globe, with the geographical area covered signifying
the unique balance of dynamical drivers present there (Figure 2a). The global area averaged term balances
(Figure 2b) demonstrate which dynamical drivers are important and which are negligible. Here, the North
Atlantic is discussed (Figure 2c). The “Northern Hemisphere Sverdrupian” dynamical regime (N-SV, pink)
represents a region where the vorticity input by the wind is largely negative, and the input by advection is
positive. The term “Sverdrupian” refers to a canonical dynamical balance between the wind stress curl and
the advection (Sverdrup, 1947). The “Southern Hemisphere Sverdrupian” dynamical regime (S-SV, green)
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Figure 1. Sketch of THOR workflow. Method to identify dynamical regimes that are indicative of dynamics contributing to the AMOC variability. THOR is
engineered for interpretability and explainability of ML predictive skill for transparent, and as such to move toward trustworthy ML. A more detailed sketch of
step B can be seen in Figure 5. Globe from Forget et al. (2015).

has a largely positive vorticity input by the wind, while the advection is a source of negative vorticity. In
the North Atlantic, the S-SV is found north of the “Momentum Driven” regime (MD, dark blue). The MD
regime has area averaged vorticity inputs that are of much smaller magnitude than the other regimes. The
wind stress curl adds negative vorticity, while interactions with the bathymetry contribute positive vorticity.
The MD dynamical regime occupies a region associated with the North Atlantic Current. The “Transition-
al” dynamical regime (TR, burnt orange) is found north of the S-SV regime. The TR regime has positive
vorticity input by the wind stress curl, and negative vorticity input by the advection and interactions with
the bathymetry. This balance is expected from a region associated with deep watermass formation (Zhang
et al., 2011). The “Southern Ocean” dynamical regime (SO, gray) is negligible in the North Atlantic. The
“Non-linear” regime (NL, light blue), is associated with western boundaries and areas of rough bathym-
etry, and it is particularly prevalent in the higher latitudes. The NL regime is notable as it is made up of a
collection of smaller regimes that all have a large nonlinear torque component, but make up a very small
component of the ocean area (Sonnewald et al., 2019).

To interpret a regime’s role in the North Atlantic circulation, the co-local density structure and the contribu-
tion to the meridional circulation are used. The 2D dynamical regimes allow a partitioning of the in-depth
ocean physics by regime. This is achieved by using the dynamical regimes' latitude and longitude spatial
extent as a mask, and considering only the depth information covered by this mask. In this manner, it is pos-
sible to consider only the properties in the ocean volume (surface to seafloor) delineated by the geographical
area covered by a regime. The meridional overturning circulation (Appendix A) captures the bulk merid-
ional movement of watermasses at a fixed latitude, and in the North Atlantic constitutes the AMOC. As a
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Figure 2. Estimating the Circulation and Climate of the Ocean dynamical regimes geographical expanse, area averaged term magnitudes and learning
contributions. (a) is a spatial projection of regimes (adapted from Sonnewald et al., 2019), (b) is a closeup of the North Atlantic, (c) are the area averaged terms
(m*s™2), (d) are the features' respective contributions to the learning in the regimes (black bar: standard deviation). The negative and positive relevances are
computed separately for each regime, with the resulting mean and standard deviation presented on the left (negative) and right (positive), as indicated by the
x-axis labels. The names and colors of the dynamical regimes are: Nonlinear (NL, light blue), Southern Ocean (SO, gray), Transitional (TR, burnt orange),
Northward-Sverdrupian (N-SV, pink), Southward-Sverdrupian (S-SV, green) and Momentum Driven (MD, dark blue).

large scale circulation, the AMOC is an overall clockwise feature, with surface waters traveling northward
to return south at depth. The individual dynamical regimes' contributions to the AMOC can be assessed by
decomposing the overall transport by dynamical regime, and calculating the resultant streamfunction. The
sum of the streamfunctions associated with each regime comprises the AMOC. Decomposing the AMOC
into dynamical regimes shows the local contribution of each regime individually to the AMOC, and reveals
a complex interplay of dynamical features. The density structure can be decomposed by dynamical regime
similarly. Together, the density structure and the meridional overturning are thus decomposed by dynami-
cal regime. Overarching coherent and in-depth physical regimes emerge (Figure 3). The overall transport in
the N-SV regime is clockwise (red, Figure 3a). It transports relatively light watermasses northwards in the
surface (<1000 m) as seen by the light colored isopycnals overlying the transport. It coincides with the large
subtropical gyre thought to be in Sverdrup balance (Thomas et al., 2014; Wunsch, 2011). In the S-SV regime
the transport is largely anticlockwise (blue, Figure 3b), taking place also in the predominantly lighter water-
masses with northward transport confined to the surface (<500 m). The S-SV regime is largely seen in the
subpolar gyre. The TR regime also transports waters anticlockwise (Figure 3c). The TR regime is associated
with the creation of deep watermasses, with doming of isopycnals in the higher latitudes constituting dense
waters close to the surface, and also transports reaching depths below 2500 m. The SO regime is largely
confined to the Southern Ocean (Figure 3d), and absent in the North Atlantic. The NL regime (Figure 3e)
contributes clockwise between 50 and 80°N, reaching depths of ~2500 m. This regime also has dense waters
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Figure 3. Physical interpretation of regimes from Atlantic Meridional Overturning Circulation (AMOC) contribution
and density structure. The individual dynamical regime contributions to the AMOC (filled contours, red northwards,
blue southwards) and isopycnal structure (density, contours). Name abbreviations as in Figure 2. Note the Transitional
regimes contribution of dense watermasses that move southwards at depth, the stacked (red over blue in depth)
contributions of the Momentum Driven regime and the distinct partitioning between northwards and southwards light
surface waters contribution for the N-SV and S-SV regimes respectively. The sum of figures (a-f) comprises the AMOC.
In gray areas the regime was not present.

close to the surface but they are lighter than in the TR regime. Together, the TR and NL regime are thought
to govern the creation and advection of dense waters in the higher latitudes that return south at depth,
constituting convection, and the resulting overall clockwise circulation. In the MD regime (Figure 3f), the
transports are both clockwise and anticlockwise, with stronger transports largely confined to lower latitudes
(<30°N and S). The MD regime acts predominantly in lighter waters. Notably, the MD regime has vertically
stacked clockwise/anticlockwise transports, which is only also present in the NL regime. The MD regime
is largely found in regions where there is a sign change in the forcing, such as the S-SV and N-SV, where
continuity through the convergence between the two suggests a strong eastwards current in the surface
waters could be found. This is seen in the MD regime, allowing stacked meridional transports, particularly
with a core of clockwise transport at ~1000 m at 47-53°N. The latitudes where the clockwise/anticlockwise
circulation is stacked, coincides with the region occupied by the North Atlantic Current.

Figure 4 shows a cartoon of how the dynamical regimes map onto the 3D isopycnal and current structures.
The currents at the western boundary, through the Gulf Stream and North Atlantic Current, bring warm
and light waters northward hugging the coast until they separate around the Grand Banks (where S-SV and
MD regime coincide). As these waters are brought east and north they cool, in the North Atlantic Current
(MD regime). Some are transformed to denser watermasses by intense cooling (TR and NL regime). There
are several locations where the denser watermasses can be formed, but they are largely brought to depth
as LSDW, DSOW or ISOW (marked arrows). The densest waters come from the DSOW and ISOW, and
creation of denser waters would overall act to invigorate the AMOC. If there were a shift in the location of
deep water formation toward the Labrador Sea, this could incur an AMOC weakening as less dense waters
would result. The partitioning of the overall dynamics into the regimes is a simplified representation of
the highly complicated full structure, which highlights the underlying processes that constitute the dy-
namical regimes. The motivation behind using ML for this strategy is that it can identify such areas within
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the equation space that constitute the dominant term balances in an un-
biased manner. THOR independently identifies the expected dynamics,
but importantly adds geographic precision. The simplification of the full
ECCO data facilitated by the step A of THOR is not only helpful for pro-
cess understanding, it also rephrases the development of a NN from a
continuous to a class based framework.

2.2. Prediction With a NN

The second step of THOR trains a NN (Figure 1b) to infer in-depth
dynamics from data that is largely readily available from for example
CMIP6 models, using NN methods to infer the source of predictive skill
(Figure 5). The data used is comprised of labeled input variables referred
to as features, with the dynamical regimes as labels for each point on the
model grid. The input features are engineered using the knowledge of the
most important dynamical terms from step A: the advective component,
the BPT and the wind stress torque. The wind stress torque is largely an
available model output, and used as a feature. To approximate the torques
from interactions of bottom pressure with the bathymetry, the depth (H)
and dynamic sea level (1) are used, with 7 as a proxy for the pressure at
the bottom (Hughes & de Cuevas, 2001; Losch et al., 2004). The advective
component is influenced by the wind stress torque (V X 7), Coriolis (f)
and 7 (Buckley & Marshall, 2016; Bingham & Hughes, 2009; Z. Wang
et al., 2015). The f and gradients of the 5 term reflect the surface geo-
strophic velocity. In sum the features are: wind stress torque, H, fand 7,
and the latitudinal and longitudinal gradients of H and #.

A fully connected multilayer perceptron (MLP) NN is used. The moti-
vation to employ a NN is to determine relationships between the input
features and the labels within a training data set, so these relationships
can be leveraged to make similar predictions for unseen data. MLPs are
powerful universal function approximators, and particularly suited for

Classification
Predict dynamical regimes
in unseen data

Mean of predictions is used to
find the most probable class

XAI method (ex: LRP) is' used Explainability
for each MLP to obtain Attribute predictive skill
the mean of relevances to input features

% Negative relevance o Positive relevance

Figure 5. Detailed sketch of Tracking global Heating with Ocean Regimes (THOR) workflow step C illustrating the Ensemble multilayer perceptron (MLP).
The last step of THOR applies the Ensemble MLP to unseen data. After extracting input data needed for the classification, the Ensemble of trained MLPs (Step
B in Figure 1) is run to get the probabilities of belonging to one of the six classes signifying the dynamical regimes, the mean of the predictions is used to find
the most probable class for each (lon,lat) sample. In principle, the same Ensemble MLP can be used to find the most relevant inputs that led to the prediction at
a particular (lon, lat) sample in the unseen data using the trained Ensemble MLP for example with LRP.
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multi-class classification applications (Cybenko, 1989). Testing, training and validation data were split
by ocean basin, ensuring independence. Training input data were normalized to have a zero-mean and a
unit-variance. The MLP retained in this work was the result of a hyperparameter search using Hyperband
(Li et al., 2017), based on the implementation provided in Keras-Tuner (O’Malley et al., 2019). The search
space was the number of neurons {8, 16, 32, 64, 128} and the number of layers {from 2 to 5}, we manually
tested different activation function from {ReLU, SeLU, Tanh} and found Tanh to lead to slightly better per-
formances. The hyperparameter search resulted in a 4-layer MLP with respectively 24-24-16-16 neurons and
Tanh activations, a softmax layer is used for the final layer. Training was done using backpropagation com-
bined with a stochastic gradient descent algorithm, here ADAM (Kingma & Ba, 2014), with a learning rate
of 10~ and early stopping if the validation loss stops improving after five iterations. In order to improve the
robustness of the ML method an Ensemble MLP was used, where many instances of the MLP are trained.
This is known to improve the generalization capacity and to weaken the dependence on the initial training
parameters (Appendix G). The Ensemble MLP considered in this work is composed by 50 MLP with same
architecture as mentioned above. When predicting the classes, an average over the 50 softmax probabilities
for each pixel was done, and then a new softmax function is applied to constrain the sum of the outputs to
be equal to one. The predicted class for a position is then the one with the maximum probability.

Code was written using the Python-based Keras library (Chollet et al., 2015) and makes use of several
other open source libraries (Hamman et al., 2018; Harris et al., 2020; Hoyer & Hamman, 2017; Pedregosa
et al., 2011). The good performance of the Ensemble MLP is illustrated in Appendix D, where the NL re-
gime was most difficult to classify. An independent validation on an unseen model of similar resolution and
access to the barotropic vorticity terms to assess performance was done. This serves as a stringent test to
avoid underspecification (D’Amour et al., 2020), and confirms the skill of THOR (CESM1 at 1° horizontal
resolution, Figure C1 and Appendix C). For application to further unseen data from CMIP6, the wind stress
is taken from the ocean, and simplifying assumptions were made with respect to the curl operator due to a
lack of grid-metadata.

2.3. The Source of Predictive Skill

Using supervised ML, being able to explain the source of predictive skill and move beyond a “black box”
approach, to create transparency, is often nontrivial. This difficulty should not detract from the importance
of transparent ML applications, as leveraging the combination of domain knowledge and emerging ML
techniques such as AFA could be of pivotal importance for applications within the physical sciences (Bala-
ji, 2020; Irrgang et al., 2021; McGovern et al., 2019; Sonnewald et al., 2021; Toms et al., 2020). When used as
a “black box”, a NN will be trained to make desired prediction, and while it can be skillful in making these
predictions, it could have skill rooted in chance more than physics. Step B of THOR assesses which features
in the input vector give rise to the predictive skill using LRP (Bach et al., 2015; Binder et al., 2016). The
LRP method belongs to a growing family of techniques aiming to attribute relevance to the input features
toward the resulting prediction. These often produce a “heatmap” rendition of NN classification decisions
(Montavon et al., 2017; Rumelhart et al., 1986; Simonyan et al., 2014; Zeiler & Fergus, 2013). The LIME
method was also used to assess the source of predictive skill, with similar results. Overall, the LRP method
was most robust to local perturbations, and deemed most reliable (see Appendix F for details). Methods for
AFA such as the LRP method are distinct from other ‘saliency’ methods reviewed in McGovern et al. (2019).
To construct the “heatmap” individual contributions (called relevance) are calculated from input nodes to
the output classification score. A positive/negative relevance suggests that a feature contributes positively/
negatively to NN decision (Lapuschkin et al., 2015). In the case of an Ensemble MLP, the contributions are
calculated layer by layer from the output layer to the input layer. To illustrate, at layer [, the relevance of a
neuron i is the sum of “messages” Rl-(f;]}’l) from all the neurons j belonging to layer [ + 1 (Binder et al., 2016).
These messages are calculated using different variants of the LRP, here an e-rule was used that helps avoid
numerical issues when dividing by small numbers:

RUIHD jj RUD
i—j . J 5
z; + € - sign(z;)
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where z; are weighted activations (multiplication of the activation at neuron i with the NN weight from
neuron i to j), and z; is the sum of weighted activation linked to neuron j. A scaling of the relevance maps to
lie between —1 and 1 is standard. The relevance maps shown here are the average of the 50 LRP relevance
maps calculated using the Ensemble MLP. For geoscientific applications, the positive component of LRP
have previously been used to demonstrate different sources of relevance for El Nifio event patterns from the
eastern Pacific and the central Pacific (Toms et al., 2020). In this work, the LRP-¢ implementation provided
by the iNNvestigate (Alber et al., 2019) library was used, that supports Keras-written models. Figure Al
illustrates the spatial distributions of the relevances.

For each dynamical regime, the relevance contributions are assessed as the mean and standard deviation
across the North Atlantic region spatially. Note the initial labels and not the predicted clusters were used.
Positive and negative relevance contributions are treated separately (Figure 2d). The information the LRP
provides should not be interpreted directly in terms of the theoretical rationale used to select the input fea-
tures. Rather, the LRP provides an a posteriori assessment of the detailed adjustments of the Ensemble MLP
at each location, where the absence of a term can also contribute positive relevance. There is considerable
spatial variability, as reflected by the standard deviation, but it is notable that all terms contribute positive-
ly. The wind stress curl is the dominant positive feature across all but the NL and MD regimes, although
the S-SV regime also features large negative contributions. The longitudinal and latitudinal gradients of 7
contribute positively in the S-SV, TR and NL regimes, which could be due to a meridional flow facilitated
by such a gradient e.g. the Gulf Stream. The f parameter contributes positive relevance to the MD and NL
regimes, but largely negative relevance in the S-SV, N-SV and TR regimes. The importance of fin the MD
regime could be associated with the geostrophic currents. The H term contributes significant positive rele-
vance in the N-SV regime, as the regions where there is little variability in H within the deep and flat ocean
(abyss) are recognized (spatial maps in Figure A1, discussed further in Appendix E). The N-SV regime is no-
tably sheltered from the bathymetry dynamically, and thus a range of H values constituting the abyss would
facilitate recognition. While H can contribute to the relevances, the gradient of H in latitude and longitude
was not seen to have large relevance, outside of the NL regime. This could be due to the smaller variability
in the ranges of the gradient of H as compared to the H term in the North Atlantic sector considered. The
ability to explain the Ensemble MLPs skill lends confidence to its subsequent predictions. Assessing the rel-
evance metric highlights the physical underpinning of the Ensemble MLP skill, and means that THOR can
be applied with more confidence in previously unseen models or under different climate forcing.

2.4. Interpreting Physical Regimes in a Climate Model

The final step of THOR (Figures 1c and 5) is to apply the trained Ensemble MLP to a climate model in
order to assess circulation changes under global heating. This application provides direct knowledge
of the dynamical source of the weakening in the AMOC. The model used is the Geophysical Fluid Dy-
namics Laboratory (GFDL) Earth System Model 4 (ESM4.1 (Dunne et al., 2020; Krasting et al., 2018))
featuring in CMIP6. ESM4.1 is chosen as it is recognized to perform well, having the highest weighting
among other CMIP6 models when explaining the historical record (Brunner et al., 2020). ESM4.1 has a
horizontal ocean resolution of 1/2° which is comparable to ECCO, containing similar physical processes.
Data from the historical scenario was used (1990-2010, comparable to ECCO), which has been forced
with observations. Two future forcing scenarios were used, that were run for 150 years. One where the
CO, concentration in the atmosphere is increased by 1% over 140 years (1pctCO,), representing a still
transient climate state, and an abrupt quadrupling of CO, (abrupt4xCO,) that has had more time to
stabilize. The AMOC weakens as expected (Weijer et al., 2020) in the 1pctCO,, and decreases further in
the abrupt4xCO, (Figure A1). These are designed to reflect two distinct strategies for how society could
move forwards without strong mitigation. To ensure results are not due to natural variability, consistent
classifications on 20 years sections of the final 60 years are used and dynamical regime assignments are
only given if >75% of predictions agree. If an assignment is given, the dynamical regime classification is
described as “robust” to natural variability.

Applying THOR to the ESM4.1 model with historical forcing (Figure 6a), dynamical regime distributions
similar to ECCO are seen. The MD regime occupies a large area stretching east and northwards from the
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Figure 6. The dynamical regimes predicted under global heating using Tracking global Heating with Ocean Regimes. (a) The historical scenario shows
dynamical regimes that are very similar to Estimating the Circulation and Climate of the Ocean (Figure 2). (b) The 1pctCO, scenario shows expanses of ocean
areas that were not robustly/consistently classified (white), particularly in the areas associated with downwelling. This could suggest episodic downwelling. (c)
The abrupt4xCO, scenarios shows a distinct shift of the downwelling areas (TR) toward areas where lighter waters are created, an eastwards shift in the North
Atlantic Current (MD), and a northward shift in the Gulf Stream. This illustrates dynamical changes that are associated with Atlantic Meridional Overturning
Circulation’s progressive weakening from historical, 1pctCO, and abrupt4xCO, scenarios, as observed (Figure Al).
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eastern coast of America. It reaches a latitude of ca 55°N, and stays eastwards of the Reykjanes ridge. The
N-SV regime is seen spanning the Atlantic Ocean. On the western boundary from 35 to 45°N, a sliver of the
MD regime separates the S-SV regime, with patches of the TR regime. The NL regime is prevalent along
large parts of the subpolar gyre, somewhat confined to the West of the Reykjanes ridge. In the center of the
subpolar gyre (50°N and 40°W) there is a large area of S-SV, with the TR regime extending northward into
the Labrador and Irminger basin. The dominant TR area is in the Iceland basin to the east of the Reykjanes
ridge.

In the 1pctCO, scenario (Figure 6b), the unclassified white areas highlight that the climate could still
have a large component of natural variability. The locations associated with deep watermass crea-
tion in the historical and abrupt4xCO, are not well classified, which is ascribed to natural variability.
Interpreting the unclassified regions to be due to episodic shifts in deep watermass creation, the TR
regime now occupies the Irminger and Labrador basins periodically. A slower equilibration timescale
(less robust classification) of the TR regime is expected, as this would be an advective process rather
than a fast Kelvin wave process (Zhang et al., 2011). There is an expansion of the S-SV. The TR and
S-SV regime patterns could be associated with different episodic deep watermass formation of upper
and lower NADW, with formation in the Labrador Sea likely creating lighter watermasses. The area on
the western boundary south of the Grand Banks sees a northward shift of the MD and S-SV regimes,
interpreted as a northward shift in the Gulf Stream path. The MD regime has contracted somewhat
moving northward, but surrounding areas are poorly classified. This indicates that the North Atlantic
Current could be changing, but has not shifted drastically. More detailed discussion and figures can be
found in Appendix H.

In the abrupt4xCO, scenario (Figure 6¢), the climate has had more time to stabilize, and most of the ocean
area is robustly assigned to a dynamical regime. The TR regime has shifted to the west of the Reykjanes
ridge, and markedly widened its expanse in the Labrador Sea compared to the historical baseline. The
northward shift of the MD and S-SV regimes south of the Grand Banks persists, shifting even further
North. This suggests that the Gulf Stream also shifts further northward. The MD regime heading across
the basin does not make it further north than 50°N, demonstrating a distinct eastwards shift which could
indicate a change in the North Atlantic Current. Concurrently, the S-SV regime extends further South.
These observed changes point toward a weakened AMOC. More detailed discussion and figures can be
found in Appendix H.

Interpreting the changes between the historical and future forcing scenarios, the declining AMOC can be
put into context. The 1pctCO, scenario is still stabilizing, and has an AMOC that is more highly variable
and not quite as weak overall. The mechanisms identified are the meridional shift in the Gulf Stream and
the change in location of the deep watermass formation areas. This shift suggests that UNADW is being
created. For the abrupt4xCO, scenario, the dynamical regime configuration is more stable, in concurrence
with the climate having had more time to stabilize. Under abrupt4xCO,, the Gulf Stream has shifted further
north, and the North Atlantic Current has shifted east. The deep water formation regions move toward lo-
cations where less dense waters could result. These three factors are associated with a weakening of AMOC
(Zhang et al., 2019). It is of note that most of the CMIP6 models predict a weakening of the AMOC (Weijer
et al., 2020). Using THOR, comparing the historical scenario to the future scenarios, illustrates that this
weakening could be indicated by an eastward shift of the North Atlantic Current, a northward shift of the
Gulf Stream, and a likely slower shift of the regions where dense waters are formed to areas where lighter
watermasses could be favored. Consistent identification of regimes can help identify the potential dominant
mechanisms causing AMOC variability.

3. Discussion and Conclusion

The THOR method is presented, engineered as a trustworthy ML application to recognize dynamical re-
gimes that are tied to dynamical ocean features governing AMOC such as the Gulf Stream, North Atlan-
tic Current and the formation regions of deep watermasses. THOR is grounded in basic understanding
of ocean physics, which allows the ML components of THOR to be explicitly evaluated against physical
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intuition. While applicable globally, the present focus is on climatically key AMOC. THOR is devised
using the ECCO state estimate. Key features modulating the strength and variability of AMOC are lo-
calized and assessed in the CMIP6 model ESM4.1 to understand their response under global heating.
Dominant drivers are the deep water formation areas and the Gulf Stream and North Atlantic Cur-
rent transporting heat northward. Elucidating such underlying dynamics in, for example the CMIP6
ensemble, is often hindered by the difficulty of data dissemination for analysis. In response to this
difficulty, THOR is developed, and engineered to use readily available climate model data: the mean
7 and H, their lateral gradients, the wind stress curl and f. The dynamical regimes are predicted using
an explainable Ensemble MLP. The Ensemble MLP has been trained by constructing a labeled data set
using interpretable unsupervised ML, clustering on transformed realistic 3D ocean model momentum
fields (Sonnewald et al., 2019) (Figure 1). The labels constitute six dynamical regimes, representing
northward and southward surface transport, northern hemisphere deep water formation and southern
hemisphere upwelling, a MD regime and a composite dynamical regime where nonlinear processes
dominate (Figures 2 and 3).

Using THOR, the evaluated forcing scenarios are the historical and the future projections 1pctCO, and
abrupt4xCO, (Figure 6). In the North Atlantic (Figure 6), the location of deep water formation (TR)
moves from the east of the Reykjanes ridge to the west, and into the Labrador Sea where less dense
watermasses are formed. The regime associated with the North Atlantic Current (MD) reduces its reach
northwards and is seen to shift eastwards, particularly in the abrupt4xCO, scenario. South of the Grand
Banks, the latitudinally stacked S-SV and MD regimes, associated with the Gulf Stream path, shift north,
particularly in the abrupt4xCO2 scenario. The AMOC decreases from the historical to the 1pctCO, and
further in the abrupt4xCO,, and THOR elucidates the dynamics that could underpin this change. Iden-
tifying such in-depth dynamics is difficult in CMIP, both due to the prohibitively large volumes of data,
with their associated dissemination hurdles, as well as the lack of all necessary fields being saved to close
the ocean momentum budget. The source of predictive skill for the Ensemble MLP (Figure 2d, Appen-
dix E) illustrates the importance of the change in the wind stress in future climate, but also stresses the
role of ocean dynamics in shaping the distribution of the dynamical regimes through the role of other
input features. THOR scales readily, and can elucidate the dynamical features in ocean models of similar
horizontal resolution.

Assessment reports such as the IPCC rely on intercomparisons of models such as the CMIP6 ensemble, that
largely have ocean components of 1° resolution. The spread between projections of features such as the
AMOC in CMIP6 (Weijer et al., 2020) highlight the need to understand its source. THOR could help under-
stand both the dynamical source and also guide model development. Assessing the source of the spread in
AMOC weakening in CMIP5 points to a number of dynamics, and the weakening may have been underes-
timated (Saba et al., 2016). One feature in CMIP5 models impacting AMOC was a differing cold biases in
the entire Northern Hemisphere (C. Wang et al., 2014). The deep convection was also largely too far south
and reaching too deep (Heuzé, 2017). Such process variability would be apparent using THOR. Structural
model errors are a key source of the spread of projections of AMOC, and the dynamics can partially be seen
as emerging from these. Identification of processes form a drive to guide climate model development using
process oriented diagnostics (Maloney et al., 2019). THOR could be used as such a process identification
method, diagnosing specific features leading to structural model errors. Because THOR is scalable and uses
only few input fields, it could provide a rapid and comprehensive analysis of process representation and
identification of gaps in phenomena.

The dynamical regimes identified using THOR demonstrate clear spatial changes under different climate
forcing. THOR by construction, relies on the identification of dynamical regimes on the basis of those
found in ECCO. This implicitly assumes that ECCO represents six dynamical regimes that will only be
spatially different in location and expanse in a different model and under different climate forcing. The
highly robust nature of the dynamical regimes identified in ECCO in the first part of THOR lends confi-
dence to this underlying assumption, as very large changes in the basic configuration of ocean dynamics
would be necessary to arrive at a novel dynamical regime (Sonnewald et al., 2019). However, THOR
should only be applied to similar horizontal resolutions. If the horizontal resolution of the ocean model
changes significantly, for example to eddy-resolving, more physical processes can be explicitly represented
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and the clear distinction between regimes could erode. Another assumption made in THOR is the use of
a depth integral in the dynamical regime identification. This implies, for example, that nonlocal changes
in deep advection in bottom currents could be missed. A caveat related to what a shift in mechanisms
would lead to in terms of driving the AMOC strength, is if a thermohaline framework used or a mixing/
wind driven framework. If a strictly thermohaline framework were used (similar to a heat engine) they
would be driving, rather than governing forces (Griffies et al., 2015; Kuhlbrodt et al., 2007; Wunsch &
Ferrari, 2004). Note that a weaker/stronger AMOC would exhibit the same changes in the highlighted
mechanisms.

To be truly appropriate for application to the physical sciences, the source of skill from ML should be
transparent. At the root of this need is a necessity that the ML is based on something physical and not ran-
dom chance (Balaji, 2020; Irrgang et al., 2021; Sonnewald et al., 2021). The interpretability and explaina-
bility of THOR comes from a combination of the equation transform at its core (Sonnewald et al., 2019),
the engineering of its input features, and the LRP explanation of its predictive skill. First, the equation
transform reduces complicated full model data to a form that enables identified regimes to be dynami-
cally interpretable (Figures 2c and 3). Second, the knowledge of the dominant terms provides a rationale
for the engineering of input features, as these form a proxy of the key dynamical drivers. Third, the LRP
provides detailed information about the source of the predictive skill. The explanation of predictive skill
was seen as crucial to THOR, but importantly restricted the NN architecture available. For example, the
Ensemble MLP did not encode explicit mathematical formulations that theory suggests could be helpful,
such as a the Jacobian operator. The structural changes needed would preclude the LRP application. This
is because the original LRP was designed for regular feed forward MLPs and not bilinear MLPs (com-
prising two paths whose outputs are multiplied). This is an example of NN development that would be
meaningful for ML applications to the physical sciences, that to the authors’ knowledge are lacking as of
date. Interpreting the relevances with this additional information could make the sources of the skill less
abstract. Other methods for AFA such as LIME are also available, as well as SHAP based on game theory
(Lundberg & Lee, 2017; Ribeiro et al., 2016). It should be noted, that many perturbation-based methods
that exist to explain the predictive skill of “black-box” ML models are still not robust to local perturba-
tions on inputs (Alvarez-Melis & Jaakkola, 2018). The ideal desired outcome of an AFA method is that
the feature attribution will remain similar when input features surrounding the sample being explained
are perturbed slightly, with no change in the NN prediction. Highlighting their brittle nature, techniques
such as LIME or SHAP can also be tweaked to intentionally lead to misleading interpretations (Slack
et al., 2020). The LRP method which is not perturbation-based was deemed most reliable for the present
work, also because it does not treat the NN completely as a “black-box”. This is because unlike LIME, it
has access to weights and biases of the NN.

For the interpretability of THOR, the LRP method was deemed appropriat