Understanding Top-of-Atmosphere Flux Bias in the AeroCom Phase III Models: A Clear-Sky Perspective - INSU - Institut national des sciences de l'Univers Accéder directement au contenu
Article Dans Une Revue Journal of Advances in Modeling Earth Systems Année : 2021

Understanding Top-of-Atmosphere Flux Bias in the AeroCom Phase III Models: A Clear-Sky Perspective

Wenying Su
  • Fonction : Auteur
Lusheng Liang
  • Fonction : Auteur
Gunnar Myhre
  • Fonction : Auteur
Tyler J. Thorsen
  • Fonction : Auteur
Norman G. Loeb
  • Fonction : Auteur
Gregory L. Schuster
  • Fonction : Auteur
Paul Ginoux
  • Fonction : Auteur
Fabien Paulot
  • Fonction : Auteur
David Neubauer
  • Fonction : Auteur
Hitoshi Matsui
  • Fonction : Auteur
Kostas Tsigaridis
  • Fonction : Auteur
Ragnhild B. Skeie
  • Fonction : Auteur
Toshihiko Takemura
  • Fonction : Auteur
Susanne E. Bauer
  • Fonction : Auteur
Michael Schulz
  • Fonction : Auteur

Résumé

Biases in aerosol optical depths (AOD) and land surface albedos in the AeroCom models are manifested in the top-of-atmosphere (TOA) clear-sky reflected shortwave (SW) fluxes. Biases in the SW fluxes from AeroCom models are quantitatively related to biases in AOD and land surface albedo by using their radiative kernels. Over ocean, AOD contributes about 25% to the 60°S-60°N mean SW flux bias for the multi-model mean (MMM) result. Over land, AOD and land surface albedo contribute about 40% and 30%, respectively, to the 60°S-60°N mean SW flux bias for the MMM result. Furthermore, the spatial patterns of the SW flux biases derived from the radiative kernels are very similar to those between models and CERES observation, with the correlation coefficient of 0.6 over ocean and 0.76 over land for MMM using data of 2010. Satellite data used in this evaluation are derived independently from each other, consistencies in their bias patterns when compared with model simulations suggest that these patterns are robust. This highlights the importance of evaluating related variables in a synergistic manner to provide an unambiguous assessment of the models, as results from single parameter assessments are often confounded by measurement uncertainty. Model biases in land surface albedos can and must be corrected to accurately calculate TOA flux. We also compare the AOD trend from three models with the observation-based counterpart. These models reproduce all notable trends in AOD except the decreasing trend over eastern China and the adjacent oceanic regions due to limitations in the emission data set.
Fichier principal
Vignette du fichier
J Adv Model Earth Syst - 2021 - Su - Understanding Top%u2010of%u2010Atmosphere Flux Bias in the AeroCom Phase III Models A Clear%u2010Sky.pdf (7.06 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

insu-03721908 , version 1 (13-07-2022)

Licence

Paternité - Pas d'utilisation commerciale - Partage selon les Conditions Initiales

Identifiants

Citer

Wenying Su, Lusheng Liang, Gunnar Myhre, Tyler J. Thorsen, Norman G. Loeb, et al.. Understanding Top-of-Atmosphere Flux Bias in the AeroCom Phase III Models: A Clear-Sky Perspective. Journal of Advances in Modeling Earth Systems, 2021, 13, ⟨10.1029/2021MS002584⟩. ⟨insu-03721908⟩
9 Consultations
36 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More