Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models - INSU - Institut national des sciences de l'Univers Accéder directement au contenu
Article Dans Une Revue Biogeosciences Année : 2019

Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models

Matthias Forkel
  • Fonction : Auteur
Niels Andela
  • Fonction : Auteur
Sandy P. Harrison
Gitta Lasslop
  • Fonction : Auteur
Margreet van Marle
  • Fonction : Auteur
Emilio Chuvieco
  • Fonction : Auteur
Wouter Dorigo
  • Fonction : Auteur
Matthew Forrest
  • Fonction : Auteur
Stijn Hantson
  • Fonction : Auteur
Angelika Heil
  • Fonction : Auteur
Fang Li
  • Fonction : Auteur
Joe Melton
  • Fonction : Auteur
Stephen Sitch
  • Fonction : Auteur
Almut Arneth
  • Fonction : Auteur

Résumé

Recent climate changes have increased fire-prone weather conditions in many regions and have likely affected fire occurrence, which might impact ecosystem functioning, biogeochemical cycles, and society. Prediction of how fire impacts may change in the future is difficult because of the complexity of the controls on fire occurrence and burned area. Here we aim to assess how process-based fire-enabled dynamic global vegetation models (DGVMs) represent relationships between controlling factors and burned area. We developed a pattern-oriented model evaluation approach using the random forest (RF) algorithm to identify emergent relationships between climate, vegetation, and socio-economic predictor variables and burned area. We applied this approach to monthly burned area time series for the period from 2005 to 2011 from satellite observations and from DGVMs from the "Fire Modeling Intercomparison Project" (FireMIP) that were run using a common protocol and forcing data sets. The satellite-derived relationships indicate strong sensitivity to climate variables (e.g. maximum temperature, number of wet days), vegetation properties (e.g. vegetation type, previous-season plant productivity and leaf area, woody litter), and to socio-economic variables (e.g. human population density). DGVMs broadly reproduce the relationships with climate variables and, for some models, with population density. Interestingly, satellite-derived responses show a strong increase in burned area with an increase in previous-season leaf area index and plant productivity in most fire-prone ecosystems, which was largely underestimated by most DGVMs. Hence, our pattern-oriented model evaluation approach allowed us to diagnose that vegetation effects on fire are a main deficiency regarding fire-enabled dynamic global vegetation models' ability to accurately simulate the role of fire under global environmental change.
Fichier principal
Vignette du fichier
bg-16-57-2019.pdf (5.77 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

insu-03721889 , version 1 (13-07-2022)

Licence

Paternité

Identifiants

Citer

Matthias Forkel, Niels Andela, Sandy P. Harrison, Gitta Lasslop, Margreet van Marle, et al.. Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences, 2019, 16, pp.57-76. ⟨10.5194/bg-16-57-2019⟩. ⟨insu-03721889⟩
13 Consultations
4 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More