The GOGREEN Survey: Evidence of an Excess of Quiescent Disks in Clusters at 1.0 - INSU - Institut national des sciences de l'Univers Access content directly
Journal Articles The Astrophysical Journal Year : 2021

The GOGREEN Survey: Evidence of an Excess of Quiescent Disks in Clusters at 1.0

Jeffrey C. C. Chan
  • Function : Author
Gillian Wilson
  • Function : Author
Michael Balogh
  • Function : Author
Gregory Rudnick
  • Function : Author
Remco F. J. van der Burg
  • Function : Author
Adam Muzzin
  • Function : Author
Kristi A. Webb
  • Function : Author
Andrea Biviano
  • Function : Author
Pierluigi Cerulo
  • Function : Author
M. C. Cooper
  • Function : Author
Gabriella de Lucia
  • Function : Author
Ricardo Demarco
  • Function : Author
Ben Forrest
  • Function : Author
Chris Lidman
  • Function : Author
Sean L. Mcgee
  • Function : Author
Julie Nantais
  • Function : Author
Lyndsay Old
  • Function : Author
Irene Pintos-Castro
  • Function : Author
Bianca Poggianti
  • Function : Author
Andrew M. M. Reeves
  • Function : Author
Benedetta Vulcani
  • Function : Author
Howard K. C. Yee
  • Function : Author
Dennis Zaritsky
  • Function : Author

Abstract

We present the results of the measured shapes of 832 galaxies in 11 galaxy clusters at 1.0 < z < 1.4 from the GOGREEN survey. We measure the axis ratio (q), the ratio of the minor to the major axis, of the cluster galaxies from near-infrared Hubble Space Telescope imaging using Sérsic profile fitting and compare them with a field sample. We find that the median q of both star-forming and quiescent galaxies in clusters increases with stellar mass, similar to the field. Comparing the axis ratio distributions between clusters and the field in four mass bins, the distributions for star-forming galaxies in clusters are consistent with those in the field. Conversely, the distributions for quiescent galaxies in the two environments are distinct, most remarkably in 10.1\leqslant \mathrm{log}(M/{M}_{\odot }) 10.5$ where clusters show a flatter distribution, with an excess at low q. Modelling the distribution with oblate and triaxial components, we find that the cluster and field sample difference is consistent with an excess of flattened oblate quiescent galaxies in clusters. The oblate population contribution drops at high masses, resulting in a narrower q distribution in the massive population than at lower masses. Using a simple accretion model, we show that the observed q distributions and quenched fractions are consistent with a scenario where no morphological transformation occurs for the environmentally quenched population in the two intermediate-mass bins. Our results suggest that environmental quenching mechanism(s) likely produce a population that has a different morphological mix than those resulting from the dominant quenching mechanism in the field.

Dates and versions

insu-03720856 , version 1 (12-07-2022)

Identifiers

Cite

Jeffrey C. C. Chan, Gillian Wilson, Michael Balogh, Gregory Rudnick, Remco F. J. van der Burg, et al.. The GOGREEN Survey: Evidence of an Excess of Quiescent Disks in Clusters at 1.0. The Astrophysical Journal, 2021, 920, ⟨10.3847/1538-4357/ac1117⟩. ⟨insu-03720856⟩
5 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More