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ABSTRACT
Numerous ongoing and future large area surveys (e.g. Dark Energy Survey, EUCLID, Large
Synoptic Survey Telescope, Wide Field Infrared Survey Telescope) will increase by several
orders of magnitude the volume of data that can be exploited for galaxy morphology studies.
The full potential of these surveys can be unlocked only with the development of automated,
fast, and reliable analysis methods. In this paper, we present DeepLeGATo, a new method for
2-D photometric galaxy profile modelling, based on convolutional neural networks. Our code
is trained and validated on analytic profiles (HST/CANDELS F160W filter) and it is able to
retrieve the full set of parameters of one-component Sérsic models: total magnitude, effective
radius, Sérsic index, and axis ratio. We show detailed comparisons between our code and
GALFIT. On simulated data, our method is more accurate than GALFIT and ∼3000 time faster
on GPU (∼50 times when running on the same CPU). On real data, DeepLeGATo trained on
simulations behaves similarly to GALFIT on isolated galaxies. With a fast domain adaptation
step made with the 0.1–0.8 per cent the size of the training set, our code is easily capable
to reproduce the results obtained with GALFIT even on crowded regions. DeepLeGATo does
not require any human intervention beyond the training step, rendering it much automated
than traditional profiling methods. The development of this method for more complex models
(two-component galaxies, variable point spread function, dense sky regions) could constitute
a fundamental tool in the era of big data in astronomy.

Key words: methods: data analysis – catalogues – galaxies: general – galaxies: high-redshift –
galaxies: structure.

1 IN T RO D U C T I O N

The characterization of the structure of galaxies inferred from their
surface brightness distribution is a powerful tool in astronomy. The
earliest studies on galaxy structural characterization lead to the
discovery of the de Vaucouleurs profile (de Vaucouleurs 1958)
for simple 1-D intensity profile fitting. Subsequently, the fitting
law was generalized by Sersic (1968) and increasingly complicated
1-D component fitting came in work by Kormendy (1977) and Kent
(1985), where galaxies were decomposed into distinct components
rather than into a single light profile.

Nowadays the description of the galaxy structure is often obtained
with software of profile fitting (or profiling) that fit the surface light
distribution of the galaxy with analytic functions (either parametric
or non-parametric) in order to obtain a set of simple parameters that
would ideally allow the reconstruction of the 2D photometric shape
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of the galaxy. Computing structural parameters for large samples
of galaxies allows us to derive more robust scaling relations at low
and high redshift (Bernardi et al. 2013; van der Wel et al. 2014) as
well as to test theoretical models. Studies of the scaling relations of
different galaxy components also rely on robust and reproducible
methods to measure and describe galaxy structure. The images
provided by large-area surveys like the Sloan Digital Sky Survey
(SDSS; York et al. 2000), the Galaxy And Mass Assembly (Driver
et al. 2009), or at high redshift by CANDELS (Grogin et al. 2011;
Koekemoer et al. 2011) have been effectively used to study the
size distribution of galaxies and its dependence on their luminosity
(Shen et al. 2003; Bernardi et al. 2013; Lange et al. 2016). The
large data bases provide accurate statistics when investigating the
distribution of mass and luminosity-surface brightness relation for
different classes of galaxies (Driver et al. 2007; Kelvin et al. 2014;
van der Wel et al. 2014; Kennedy et al. 2016).

The era of big data in astronomy is marked by the numerous
current and future large area surveys like EUCLID, the Large Syn-
optic Survey Telescope (LSST Science Collaboration et al. 2009,
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the Wide Field Infrared Survey Telescope (WFIRST), Kilo-Degree
Survey (de Jong et al. 2013), and Dark Energy Survey (DES). These
surveys will increase by several orders of magnitude, in a few years,
the volume of data that can be exploited for galaxy morphology
studies, offering a unique opportunity to constrain models and infer
properties of galaxies. In fact, the sheer number of galaxies available
with morphological information and photometric or spectroscopic
redshifts will allow precise studies of the rarest populations of ac-
tive galactic nuclei (AGNs) and galaxies, like massive early-type
galaxies at high redshift. Improving studies on the co-evolution of
their multivariate distribution functions (luminosity, mass function,
stellar mass, etc.). The large volume probed by the new surveys
will also make it possible to map the small- and large-scale galactic
environment at all redshifts, and to perform, at early cosmological
epochs, a statistically significant analysis of the environment ef-
fect on the galaxy and AGN properties. The full potential of these
surveys can be unlocked only with the development of automated,
fast, and reliable methods to describe galaxy structure. The most
popular galaxy fitting codes currently used in literature, i.e. GALFIT

(Peng et al. 2002) and GIM2D (Simard et al. 2002), have not been
conceived to deal with large amounts of data and several efforts
have been made to automatize their use for catalogue compilation
in large survey applications. GALAPAGOS, programmed by Barden
et al. (2012), combines SEXTRACTOR (Bertin & Arnouts 1996) for
source detection and extraction, and then makes use of GALFIT for
modelling Sérsic profiles. GALAPAGOS has been proved to be robust in
terms of parameter recoverability, however the results of the quality
of the fitting depend heavily on the choice of the input parameters.
With a similar concept, PYMORPH (Vikram et al. 2010) glues together
GALFIT and SEXTRACTOR in a single pipeline written in PYTHON. The
urgency created by the new generation of surveys has led to re-
cent efforts to develop new fitting codes like ProFit (Robotham
et al. 2017) programmed in C++ and directly conceived to be faster
than older profile fitting codes, therefore exploitable for structural
analysis of large amounts of data.

Deep learning has revolutionized data analysis in the last few
years (LeCun, Bengio & Hinton 2015; Schmidhuber 2015). In the
field of computer vision, convolutional neural networks (CNNs)
have become the dominant approach for image processing and
analysis (Krizhevsky, Sutskever & Hinton 2012). One of the main
benefits of CNNs is that they learn representations automatically
from raw inputs, recovering higher level features from lower-level
ones, e.g. in images, the hierarchy of objects, parts, motifs, and lo-
cal combinations of edges. In other words, whereas classical pattern
recognition techniques need manual feature engineering to generate
the outputs, deep learning automatically builds relevant descriptors
from the pixels of the training set, not making any prior assump-
tion on specific features of physical models of the specific problem.
Another advantage is that deep learning, using distributed represen-
tations, combats the exponential challenges of the curse of dimen-
sionality, making it extremely well suited to big data problems.

In astronomy, several groups have recently explored the appli-
cation of deep learning methods. Most notably for morphological
classification of galaxies, Dieleman, Willett & Dambre (2015) de-
veloped a CNN that reached accuracy >99 per cent in the classifi-
cation of SDSS galaxies previously classified in the context of the
Galaxy Zoo project (Lintott et al. 2008). A similar level of accuracy
was obtained by Huertas-Company et al. (2015), who, using a CNN,
retrieved for over 50 000 unclassified CANDELS FIELDS galaxies,
the probabilities of having a spheroid or a disc presenting an irreg-
ularity, being compact or a point source. CNNs have also been used
for star-galaxy classification (Kim & Brunner 2017) of SDSS data,

automated spectral feature extraction (Wang, Guo & Luo 2017),
and unsupervised feature-learning for galaxy SEDs (Frontera-Pons
et al. 2017).

In this work, we explore for the first time the possibility of ap-
plying CNNs for 2-D light profile galaxy-fitting. A deep learning
approach to this problem may be extremely valuable for applica-
tions on large surveys, because it does not require any hand-made
tuning previous to the application of the algorithm, thus automating
the processes and greatly cutting the analysis times. In particular,
we developed a CNN to decompose the galaxy structure of one-
component H-band HST/CANDELS galaxies in terms of their total
magnitude, radius, Sérsic index, and axis ratio. Although we obtain
good and reliable results that may be already used for astronomical
applications, we consider this work as a proof of concept on the
concrete possibility to apply deep learning methods for this class of
astronomical analysis.

The layout of the paper is as follows. In Section 2 we present the
artificial image simulations and the real data that we use through
this work, and in Sections 3 and 4 we describe our method and
present our algorithm that we name DeepLeGATo. In Section 5,
we compare the results obtained from DeepLeGATo and GALFIT

on a sample of 5000 simulated galaxies. In Section 6 we discuss
the domain adaptation of our code and we repeat the comparison
between DeepLeGATo and GALFIT on a sample of 1000 real galaxies
from the HST/CANDELS field. Finally, in Section 7, we discuss the
conclusion of our work and the planned future development of the
method here presented.

2 DATA

In this work we used two sets of data. A set of 55 000 images of
artificially simulated HST/CANDELS -like galaxies (Section 2.2)
and 5000 stamps of galaxies from HST/CANDELS (Section 2.1).
In this section, we describe the simulations and the data, while in
the following sections we will discuss how we used these data to
train and test our profile fitting code.

2.1 Real data

The Cosmic Assembly Near-IR Deep Extragalactic Legacy Sur-
vey (CANDELS) is the largest project ever undertaken by the
HubbleSpaceTelescope imaging data products and consist of five
multiwavelength sky regions fields, each with extensive multi-
wavelength observations. The core of CANDELS data consists of
imaging obtained in the near-infrared by the Wide Field Camera
3 (WFC3/IR) camera, along with images in the visible-light ob-
tained with the Advanced Camera for Surveys (ACS) camera. The
CANDELS/Deep survey covers ∼125 square arcminutes within
GOODS-N and GOODS-S, while the remaining consists of the
CANDELS/Wide survey, achieving a total of ∼800 square arcmin-
utes across GOODS and three additional fields (EGS, COSMOS,
and UDS). A full description of the CANDELS observing program
is given by Grogin et al. (2011) and Koekemoer et al. (2011).

We randomly selected 5000 HST/CANDELS galaxies, with the
only condition of having magnitude, radius, Sérsic index, and axis
ratio spanning in the range of the parameters used to build the
simulated data (see Table 1).

For all selected galaxies, there are structural parameters available
measured with GALFIT/GALAPAGOS from van der Wel et al. (2012),
which is focused on the WFC3 data only, i.e. on the three filters
F105W, F125W, and F160W. In particular, we select all the galax-
ies of our sample in the F160W filter. In this work we also make
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Table 1. We simulated 55 000 realistic one-component F160W filter (H
band) HST/CANDELS galaxies, having structural parameter within these
ranges of values.

Magnitude Radius Sérsic index Axis ratio
(AB) (pixels)

Range 16–23 1.5–31.6 0.3–6.2 0.2–0.8

use of the catalogue from (Dimauro et al. 2017, submitted), pre-
senting the bulge-disc decompositions for the surface brightness
profiles of 17.600 H-band selected galaxies in the CANDELS fields
(F160W < 23, 0 < z < 2) in 4–7 filters covering a spectral range of
430–1600 nm.

In Fig. 1 we show the distributions of the GALFIT-derived parame-
ters of our sample. As we will discuss in the next sections, we used
different subsets of real galaxies in order to test our code and to
transfer the learning acquired on simulated data, to the case of real
galaxies (process known as domain adaptation).

2.2 Simulated data

We simulated 55 000 galaxies using one-component Sérsic models.
The algorithm that we used for the simulations is the 1.4 version of
GalSim (Rowe et al. 2015), an open-source software whose bulk of
the calculations is carried out in C

++
. In order to simulate realistic

galaxy images, we used real point spread function (PSF) and real
noise from the HST/CANDELS F160W filter (H band). Our data
set was obtained uniformly varying magnitude, radius, axis ratio,
Sérsic index, and position angle of the galaxies. All the stamps were
generated in order to have a size of 128 × 128 pixels and a pixel
scale of 0.06 arcsec.

The total surface brightness of the galaxies is given from the
integral over the galaxy area of the flux intensity distribution I(r)
measured in units of luminosity per unit area at position (x,y), i.e.
2π

∫
I(r)rdr. As conventionally, we express the surface brightness in

units of magnitudes per square arcsec, that is related to the physical
surface brightness profile through mag ∝−2.5log10I(r). The radial
surface brightness profile of a galaxy is described by the Sérsic
function given by:

I (r) = I (0) exp[−bn(r/re)1/n)] (1)

where re is the effective radius of the galaxy, bn is a free parameter
which ensures the correct integration properties at re, and n is the
Sérsic index, which describes the brightness concentration curvature
of the galaxy.

As summarized in Table 1, we simulated galaxies ranges 16 ≤
mag ≤ 23 and Sérsic index 0.3 ≤ n ≤ 6.2. The radius of the galaxies
varies in the interval 1.5 ≤ Radius (pixel) ≤ 31.6 (0.′′09 ≤ Radius
(arcsec) ≤ 1.′′9). The axis ratio(q) of the galaxies ranges within 0.2
and 0.8.

As we will see in the next sections, we used 50 000 simulated
galaxies to train and validate our code, and a separate set of other
5000 simulated galaxies to compare the performance of our method
with GALFIT.

3 IN T RO D U C T I O N TO C N N S

Deep artificial neural networks are a particular subclass of artificial
neural networks that have allowed a dramatic progress in image
and natural language processing in the last years. In this section,
we give a very brief introduction to these methods, and we refer to
Schmidhuber (2015) for a thorough review of the field.

A standard Artificial Neural Network (ANN) consists of many
simple, connected processors called neurons, each of them produc-
ing a sequence of real-valued activations. Neurons are organized in
layers, with the neurons of the input layer directly activated from
the features of the input data, and the neurons of the hidden layers
activated through weighted connections from previously activated
neurons. Analogous to biological systems, where learning involves
adjustments in the synaptic connections that exist between neurons,
in artificial neural networks the learning process consists in finding
the weights that infer the desired output from the features of the
input data. Therefore the tensorial output hl of a given layer l of the
network is given by:

hl = f (Wl · hl−1 + bl), (2)

where f is a non-linear function called activation function, Wl is the
weight matrix, and bl is a biases vector. The biases correspond to the
additive constants of the linear combinations that feed each neuron.
The network is trained to obtain a specific output for a given input
minimizing the loss function and thus optimizing the parameters of
weights and biases. We refer to Lecun (1989) for their complete de-
scription. Briefly, CNNs use convolution layers in place of general
matrix multiplication in at least one of the layers, operation usually
denoted as S(i, j) = (I∗K)(i, j) with K being the kernel of the con-
volution function, and the output S(i, j) known as feature map. This
results in local connections, with each neuron connected to a sub-
sample of the input instead of all the inputs. After the convolution in
each neuron follows an activation function operation like in ordinary
ANNs. Typical components of a CNN include one or more max-
pooling layers that are subsampling layers where the feature map
is downsampled. The max-pooling operation is usually obtained by
applying a max filter to (usually) non-overlapping subregions of the
initial representation that reduces the output dimensionality while
keeping the most salient information. Other typical elements are
the dropout layers (Srivastava et al. 2014) which are a regulariza-
tion technique introduced to reduce overfitting. The fully connected
layer is the final layer of a CNN, where each neuron is completely
connected to the other neurons. In a CNN, each layer applies dif-
ferent filters, and each one of these filters detects a specific feature
of the inputs. For example, when the inputs are images, different
filters can learn from the raw pixels the edges of the images, then
other filters can detect simple shapes of the images, which are then
used to detect higher level features. The last fully connected layer
may then be a classical ANN that uses the recovered information for
classification or regression tasks. The implementation of the convo-
lution greatly improves a machine learning system for processing
grid-like topology data, like 2D grids of pixels.

4 M E T H O D D E S C R I P T I O N : DEEPLEGATO

Our surface brightness fitting code was developed as a CNN used
for regression tasks, that in our problem consists in the prediction of
galaxy structural parameters given their 2D fits images as input. We
called it DeepLeGATo, standing for Deep Learning Galaxy Analysis
Tool. We implemented our code using Keras (Chollet 2015) on top
of Theano (Bastien et al. 2012), two frameworks commonly used
to build Deep Learning models. Our architectures were inspired by
VGG-net (Simonyan & Zisserman 2014), the main difference lies
in the use of a noise layer. We trained and tested many different
CNN architectures and we got the best results with two of them;
the first of them will be described in Section 4.1 and the second in
Section 4.2.
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Figure 1. Distributions in magnitude (HF160W), half light radius in units of pixels (Re), Sérsic index (n), and axis ratio (q) of the 5000 HST/CANDELS galaxies
used in this work. See Section 2.1

In Section 4.3 we describe how we trained and validated our
models, in the next section we discuss in detail the performance
of the networks on a sample of 5000 galaxies excluded from the
training and validation.

4.1 Architecture 1

Architecture 1 of our model is schematically illustrated in the upper
image of Fig 2. First, we apply zero-centred additive Gaussian noise
to the input images (128 × 128 pixels), then they are processed by
two 2D convolution layers with a 4 × 4 filter size and, finally,
subsampled by a 2 × 2 max pooling and a dropout layer. The
Gaussian layer, used both in this architecture and in the other one,
adds robustness to the model by decreasing its sensitivity to small
changes of the input data. Other three units follow with the same
configuration of convolutional and max pooling layers, but with
a growing dimensionality of the output space (i.e. the number of
filters in the output) and a reducing filter size (4 × 4, 3 × 3, 2 × 2)
in the convolutions. Only the first of these three units is followed
by a dropout layer. In this architecture we have therefore a total
of eight convolutional layers, four max pooling layers, and two
dropout layers. Each one of the convolutional layers is followed
by a rectified linear unit (ReLU) step. The output of all these units
is then processed through three fully connected layers with the
decreasing number of neurons (128, 64, 1).

4.2 Architecture 2

The architecture 2 of our model is illustrated in the bottom image
of Fig 2. Considering the architecture 1 as the reference, here the
input images (128 × 128 pixels) are first processed by the block
composed of two 2D convolution layers with a 4 × 4 filter size,

and the 2 × 2 max pooling followed by the dropout layer. After
this step, the zero-centred additive Gaussian noise is applied. Other
two units follow with the same configuration of convolutional and
max pooling layers, but with a growing dimensionality of the output
space. Only the first of these three units is followed by a dropout
layer. In this architecture we have therefore one block less respect
to the architecture 1, for a total of six convolutional layers, three
max pooling layers and one dropout layer. Also here, each one of
the convolutional layers is followed by an ReLU step, and the block
of three fully connected layers is identical to architecture 1.

4.3 Training and validation

Our CNNs have been trained and tested on the simulated data de-
scribed in Section 2.2. Each parameter is estimated independently,
i.e. each CNN is trained and tested using only one parameter at a
time as target. The size of the training set was 50k, divided in the
proportion of 4/5 for the training and 1/5 for the validation. For
the regression problem we used a mean absolute error cost function
on a normalized version of variables, i.e. values are in the interval
[−1,1]. For weights updates we used an adaptive moment estimation
(ADAM; Kingma & Ba 2014).

In order to increase the size of the training set and make the model
more robust and invariant to specific transformations, we performed
data augmentation on the training set. Different types of image
augmentation effectively improve the quality of generalization of
CNNs (Krizhevsky et al. 2012). In particular, we applied:

(i) Random shifts for all parameters, used in order to make the
model insensitive to centring. In particular, the images were ran-
domly shifted of 0.05 times the total width of the image.
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Figure 2. The upper image (a) shows the scheme of Architecture 1 used by DeepLegato. The input image is processed adding Gaussian noise, then the first
two blocks are composed of two convolution layers with ReLU activation functions, followed by max pooling layers and dropout. The second two units are
similar to the previous, but they do not apply dropout. The last block is composed of three connected layers, which outputs the estimation of the evaluated
parameter. See Section 4.1 for details. The bottom image (b) shows Architecture 2 used by DeepLegato. Here the first block is composed of two convolution
layers with ReLU activation function, followed by a max-pooling layer and a dropout. After the addition of a Gaussian noise layer, two units follow with
similar architecture as the first one, but they do not apply dropout. The last block is composed of three connected layers, which outputs the estimation of the
evaluated parameter. See Section 4.2 for details

(ii) Random horizontal and vertical flips of the images for all
parameters.

(iii) Random zoom in the the images within the range [0.7, 1.3]
only for the regression of the radius and the Sérsic index.

During the training, we always initialized the weights of our
model with random normal values. We warm up the training (Huang
et al. 2016) of the CNN for 10 epochs, using no exponential decay
rate and a starting learning rate of 0.001. During the pre-warming
and the subsequent proper fit, we use the ADAM optimizer, which
improves and stabilizes the learning rate. After the warm -up phase
the networks are trained using an early stopping method, for a max-
imum number of 300 epochs. The early stopping method consists in
stopping the training if a monitored quantity does not improve for
a fixed number (called patience) of training epochs. The quantity
that we monitored and minimized was the mean absolute error of
the regression on the parameter of the validation sample, and the
patience was fixed to 20.

5 TESTS ON SI MULATED DATA

The two CNNs architectures that we have described in the previous
section have been chosen from among several different architectures
on the basis of their good performance on the validation set. How-
ever, in order to finally judge those two architectures, we selected a
third test set of simulated galaxies excluded from the training and
validation of the models. This way, we evaluate the two models
without incurring the risk of meta-training that makes the test set
work as a second training set. In Section 5.1 we describe the met-
ric used for this test and the comparison of the two architectures
performance. In Section 5.2 we compare the performance of best
CNNs with the predictions of GALFIT run on the same data test.

5.1 CNNs performance on simulated data

The test set includes 5000 of the simulated galaxies described in
Section 2.2. As metric to evaluate the regression, we used the co-
efficient of determination R2 between the predicted parameter and
the ground truth is given from the galaxy simulations. The R2 is
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Table 2. The coefficient of determination of the two CNN architectures
for the parameters of the light profile fitting, for 5000 simulated galaxies
excluded from the training and validation of the methods.

R2 simulated data
Parameter Architecture 1 Architecture 2 GALFIT

Magnitude 0.961 0.997 0.983
Radius 0.899 0.972 0.877
Sérsic index 0.968 0.881 0.607
Axis ratio 0.983 0.959 0.903

a standardized measure of the degree of the regression accuracy
defined as:

R2 = 1 −
∑n

i (yi − fi)2

∑n
i (yi − ȳ)2

, (3)

where fi is the predicted value of the true (or input) value of variable
yi, and ȳ is the mean of the whole set of n input data. Essentially,
R2 measures how much better we can do in predicting y by using
our model instead of just using the mean as a predictor. When the
predicted values come from a least-squares regression line, the co-
efficient of determination measures the proportion of total variation
in the response variable that is explained by the regression line.
In fact, in the second term of the above equation, the numerator
is the squared sum of the regression errors and the denominator
measures the deviations of the observations from their mean. The
objective of ordinary least squared regression is to get a line which
minimizes the sum squared error. The default line with minimum
sum squared error is a horizontal line through the mean. So in the
case a least-squares regression line is used to predict the values of
y, then 0 ≤ R2 ≤ 1, with R2 = 0 if the regression line explains no
value and R2 = 1 if it explains the 100 per cent of the variation in
the response variable. On the other hand, if we use a different model
f to predict the values of y, then R2 naturally ranges between −∞
≤ R2 ≤ 1, with negative values meaning that a horizontal line at
the mean ȳ actually explains the data better than the model f. The
R2 can be used as an alternative to the mean squared error, and
the two measurements are related by R2 = 1 − MSE

σ 2
y

, where MSE

is the mean squared error and σ 2
y is the squared standard deviation

of the dependent variable.
In Table 2 we show the comparison of the CNNs accuracies on the

basis of the R2 value. It is interesting that a particular network archi-
tecture works very well for a particular parameter (e.g. architecture
1 for Sérsic index and axis ratio; architecture 2 for magnitude and
half-light radius), while it is not so efficient for other. We conclude
that the use of only one architecture for all the parameters does not
allow us to obtain the best results since some parameters need more
level of abstraction than others.

5.2 Comparison with GALFIT

In order to compare the performance of our code with standard
algorithms used in the literature for galaxy surface brightness fit-
ting, we used GALFIT on the same set of 5000 simulated galaxies
used to test the CNNs architectures. The fitted parameters, listed
in Table 1, are the magnitude, half-light radius measured along the
major axis, Sérsic index, axis ratio (from which we derive the axis
ratio). As PSF image we used the same to generate the simulations
and, following a procedure similar to the one used in van der Wel
et al. (2012), we used SEXTRACTOR to input initial guesses for some
of the parameters used in the GALFIT configuration file. In particular,

SEXTRACTOR provides initial values for magnitude, half-light radius,
and axis ratio. A constraint file is also provided to GALFIT to force
it to keep the Sérsic index between 0.2 and 6.3, the effective radius
between 0.3 and 130 pixels, the axis ratio between 0.0001 and 1, the
magnitude, between −3 and +3 magnitudes from the input value
given by the SEXTRACTOR magnitude.

The accuracy of GALFIT is measured using the same metrics, i.e.
the coefficient of determination R2, and directly compared with the
CNNs performance in Table 2. Additionally, in Fig. 3 we compare
the best fit given from the CNN and GALFIT on the simulated data
as a function of the apparent H-band magnitude. In particular, we
compute the mean difference between the recovered and input pa-
rameters for different magnitude bins. The error bars represent the
standard deviation in each bin and reflect thus the uncertainty in the
measurements.

For these tests, we run GALFIT on a MacBook Pro running Sierra
with 3.1 GHz i7 processors and 16 GB of RAM, and our CNNs on
Nvida Titan X GPU. GALFIT takes approximately 3.5 h to fit 5000
galaxies. Our code, once trained, takes less than 4 s on the GPU and
about 200 s on the same CPU machine where we tested GALFIT.

From these comparisons on the simulated data between GALFIT

and our CNNs, we show that our models are considerably faster and
provide one component galaxy structure decomposition equally or
more accurate than GALFIT in the range of magnitude, effective-
radius and the Sérsic index used to generate our simulated data.

6 T E S T S O N R E A L DATA

Having discussed in the previous section the performance of our
code on simulated data, in this section we show its results on the
real data presented in Section 2.1.

6.1 Direct application of the learned system on real data

Testing on real data is a fundamental step for every profiling
method. Galaxy simulations are regular by definition and even when
analysing a sample generated with a wide range of structural pa-
rameters, we may underestimate the true errors involved in the
estimations. Real galaxies may be more asymmetric and difficult
to decompose than simulated objects, but above all, the stamps of
real galaxies may include the presence of companions that are not
included in our simulations. On the other hand, tests on the simu-
lated data presented in the previous section have the great advantage
that the ground truth is exactly known, i.e. the structural parame-
ters used to generate the data are known by definition. In the case
of real data, we do not know the authentic ground truth. Testing
the accuracy of our code on real galaxies, we need to rely on the
comparison with estimations done with some other methods. For
this reason, we choose galaxies included in the van der Wel et al.
(2012) catalogue, and we use their estimations as ground truth for
our further tests. This will, of course, add additional scatter into
the results since the parameter estimations are certainly affected by
both random and systematic (often unknown) errors.

With this assumption, we run our best CNNs architectures (archi-
tecture 1 for Sérsic index and axis ratio; architecture 2 for magnitude
and half-light radius) on 1000 real galaxies introduced in Section 2.1
and we compare their predictions with those of the van der Wel et al.
(2012) catalogue. As in Section 5, we quantify this comparison us-
ing the coefficient of regression R2. When we fit the images of real
galaxies with DeepLeGATo trained only on simulations, we do not
obtain results as reliable as those obtained on the test sample of
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900 D. Tuccillo et al.

Figure 3. Results of profile fitting for the images of 5000 simulated galaxies. The left-hand column shows the results obtained using DeepLeGATo (architecture
1 for Sérsic index and axis ratio; architecture 2 for magnitude and half-light radius), the right column the results obtained using GALFIT. For each galaxy and for
each parameter X we calculated the difference between the parameter used to simulate the galaxy (Xin) and the estimation (Xout) obtained from profile fitting
codes. In the first row we show the results for the magnitude HF160W, in the second for the half-light radius Re, in the third for the Sérsic index n and in the last
for the axis ratio q. The results are shown in bins of magnitude (bin width = 1 mag) and non-parametrically in the form of box plots. As usually, the boxes are
delimitated by the first and third interquartiles of the data, while the whisker indicates the range between ±1.5 the interquartile range (IQR). The red line in
the box indicates the median of the data.

simulated data (see Section 5.2). We show this result for the mag-
nitude in panel (a) of Fig. 4, and for all the other parameters in the
plots (a) of Figs A1, A2, and A3 of Appendix A. In those figures,
on the x-axis we plot the parameter estimation given from the van
der Wel et al. (2012) catalogue, while on the y-axis we give the

parameter values estimated with DeepLeGATo. The same result is
given in terms of R2 for the first column of Table 3.

We qualitatively analysed the reasons of this discrepancy by di-
rectly looking at the stamps of the galaxies, both for the simulated
data and for the real ones. At first glance, the simulated and real data
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Deep learning for galaxy surface brightness profile fitting 901

Figure 4. We show the results of our CNNs in fitting the magnitude of one thousand real galaxies. On the x-axis we plot the parameter estimation given from
the van der Wel et al. (2012) catalogue, while on the y-axis we give the parameter values estimated with DeepLeGATo. The upper panels show the results
obtained for the whole sample before the domain adaptation step (panel a) and after the domain adaptation (panel b). The three bottom panels show (c) the
results obtained for the 142 galaxies whose brightest companion has at least the 50 per cent of their flux; (d) the middle panel shows the results for the 450
galaxies whose companion has less than the 10 per cent of the flux; and (e) the third panel shows the results for the 103 isolated galaxies of our test sample, i.e.
without any companion within the stamp

seem to be quite similar, but the differences are evident when we
order the data depending on the difference between the parameters
predicted by the CNNs and the ground truth. The first two lines
of Fig. 5 show 12 randomly selected stamps of simulated galaxies.
The third and fourth lines show 12 stamps of real galaxies selected
between the ones best predicted by our CNNs (with respect to the
estimations given in the van der Wel et al. 2012 catalogue). Finally,
the last two lines show 12 stamps of real galaxies selected between
the ones worse predicted by our CNNs. Notice that for both best
and worse predictions, we chose three galaxies for each of the four
parameters. From these images we can see that the CNNs purely
trained on simulated data are able to recover the parameters of real
galaxies that are as regular and isolated as the simulated. The main
issue our method encounters when fitting real data appears to be the
presence of bright companions in the stamp, since our simulation

includes only one object per stamp.The CNNs can still give accurate
predictions when the real galaxies show smooth asymmetries and
in the stamps there are other fainter and smaller galaxy compan-
ions. They give unreliable results when the stamps include several
brighter companions.

In order to verify the conclusions of this visual analysis, we
calculated, for the whole test sample of real data, the number of
galaxies having at least one companion close enough to fall within
the stamp (i.e. within ∼3.′′8). We obtain that almost all the galaxies
(897 out of 1000) have at least one companion and that the mean
number of companions for galaxy is ∼2.5. We verified that, for
all parameters, the accuracy of the CNNs predictions is clearly
correlated with the presence of a bright companion. In the three
bottom panels of Fig. 4 we show this trend for the magnitude. We
calculated the ratio between the flux of the fitted galaxy and the
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Table 3. The coefficient of determination of the light profile fitting obtained
with different methods for a sample of 1000 HST/CANDELS real galaxies.
In the first column the parameters were obtained with DeepLeGATo before
the domain adaptation step (see Section 6.1). In column 2 we repeat the same
test restricting the analysis to 103 isolated galaxies, i.e. without neighbour
galaxies or stars within the stamp. In column 3 we apply again DeepLeGATo
to the whole sample of 1000 real galaxies, but after the domain adaptation
step (see Section 6.2). Finally, in column 4 we compare the estimations
of van der Wel et al. (2012) with those of Dimauro et al. (2017, submit-
ted), i.e. comparing two estimations of two different set-ups of GALFIT (see
Section 6.3).

R2 Real data
Parameter Before TL BTL isolated After TL 2 GALFIT

Magnitude 0.795 0.979 0.980 0.984
Radius −0.431 0.630 0.813 0.860
Sérsic index −0.331 0.516 0.813 0.819
Axis ratio 0.773 0.915 0.934 0.914

one of its brighter companion. In panel (c), we show the results
obtained fitting the 142 galaxies whose companion has at least
the 50 per cent of their flux. In panel (d) we show the results for
the 450 galaxies whose companion has less than the 10 per cent
of the flux of the galaxy. Finally, panel (e) shows the results for
the 103 isolated galaxies of our test sample, i.e. without companion
within the stamp. For the latter sample, we also computed the R2,
reported in the second column of Table 3. In Figs A1, A2, and A3
of Appendix A, and in the second column of Table 3, we repeat the
same analysis for the half-light radius, the Sérsic index, and the axis
ratio. We conclude that on isolated galaxies, our machine trained on
simulations is able to retrieve accurately the structural parameters.

6.2 Domain adaptation

In the previous subsection, we show that a direct application on
real data of the CNN models trained on the simulated data does not
lead to predictions comparable to the ones obtained using GALFIT if
galaxies have bright neighbours. This is because we did not include
companions in our simulations. One simple possibility to overcome
this problem is to produce more realistic simulations. In this sec-
tion, we explore an alternative based on domain adaptation between
networks. There is a vast literature in computer science dealing with
this kind of problems, where methods are trained and evaluated on a
certain kind of image distribution but then they are applied to chang-
ing visual domains. In general, visual domains could differ in some
combination of (often unknown) factors, including viewing angle,
resolution, intra-category variation, object location, and pose. Stud-
ies have demonstrated a significant degradation in the performance
of image methods due to these domain shifts. Therefore, methods
of so-called domain adaptation have been developed to deal with
these situations, where the task of the machine learning method
remains the same between each set, but the input distribution is
slightly different.

Adopting a domain adaptation strategy, we saved our best models
trained and validated on simulated data, and we repeated their train-
ing and validation using a small sample of real data. The core idea
of this strategy is that the same representation learned on simulated
data may be useful to adapt the learning system on the second set-
ting of real data. This way, we exploit what the CNNs have learned
on one setting to improve the generalization in another one.

In Section 2.1 we described a sample of 5000 real galaxies in-
cluded in the van der Wel et al. (2012) catalogue. We divided that

sample into a test sample A of 1000 galaxies, and a training sam-
ple B including the remaining 4000 galaxies. We trained and vali-
date our CNNs with different subsets (B1, B2, B3, ...) of B, having
size variating between 50 and 4000. In agreement with the proce-
dure that we followed in this work, each of the Bi samples was
divided in the proportion of 4/5 for the training and 1/5 for the
validation. After the training and validation of the domain adapted
CNN, we applied the result of the new model on the sample A
and we calculated R2 of the prediction for each galaxy structural
parameter retrieved. Through all this step we considered the struc-
tural parameters estimations given in the van der Wel et al. (2012)
catalogue as the ground truth of our models.

In Fig. 6 we show how R2 of the prediction varies as a function
of the size of the real data used to train and validate the CNN. The
blue lines represent the behaviour of our CNNs previously trained
on simulated data, to which we then applied domain adaptation;
the green star at the beginning of the blue lines represents the R2

of the prediction before the domain adaptation. The red lines repre-
sent the behaviour of our CNNs directly trained on the Bi samples of
real data (i.e. without domain adaptation). Each parameter is esti-
mated independently by the CNN that showed the best accuracy for
the profiling of the simulated data (see Table 2). For the magnitude,
with only 50 real galaxies used as domain adaptation, we obtain an
R2 ∼ 0.9 and with 200 real galaxies an R2 ∼ 0.97 (i.e a 0.4 per cent
of the 50k simulated galaxies formerly used to train and validate
the CNN). In the case of the magnitude, without domain adaptation
(red line), with 800 real galaxies we already reach an R2 ∼ 0.96.
For the half-light radius, the R2 has a value of ∼−0.43 when trained
only with simulated data (the green star), and it improves to ∼0.62
with domain adaptation made with only 50 real galaxies. It reaches
an R2 ∼ 0.81 with 600 real galaxies, while without domain adapta-
tion, it needs ∼1500 galaxies to reach an R2 ∼ 0.75 In the case of
the Sérsic index, the best R2 ∼ 0.79 is obtained with domain adapta-
tion made with 400 real galaxies, while the best performance for the
CNN trained without domain adaptation is R2 ∼ 0.76 obtained with
1000 real galaxies. The trend for the axis ratio is smoother, with the
blue line (domain adaptation curve) improving in the whole range
of sizes and obtaining R2 ∼ 0.93 when trained/validated with 4000
real galaxies. On the contrary, the red line (trend without domain
adaptation) reaches a plateau of R2 ∼ 0.70 with 800 real galaxies.
We notice that for all parameters the blue line is always above the
red line, i.e. when using domain adaptation curve the CNNs need
fewer real galaxies examples to reach their best performance on
real galaxies and they are always more accurate than CNNs not
previously trained with simulated data.

In Fig. 4 and in Appendix A we compare the result of the CNNs
profiling of the one thousand galaxies before and after the domain
adaptation.

6.3 Comparison with GALFIT

The results of the GALFIT predictions greatly depend on the initial
parametrization used. Different parametrization may easily lead to
different results. To take this effect into account, in the third column
of Table 3 we compare, for our test set of real data, the predictions
of van der Wel et al. (2012) catalogue (used as ground truth) with
the ones of another catalogue using GALFIT (Dima uro et al. in
preparation). As we can see, R2 of our models after the domain
adaptation are very similar to the results obtained for the same set
of data from these two catalogues using GALFIT.

In Fig. 7 we detail the comparison between our CNNs predictions
and the two GALFIT catalogues, as a function of the magnitude.
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Deep learning for galaxy surface brightness profile fitting 903

Figure 5. The first two lines we show 12 randomly selected stamps of simulated galaxies. The third and fourth lines show 12 stamps of real galaxies selected
between the ones better predicted by our CNNs. Finally, the last two lines show 12 stamps of real galaxies selected between the ones worse predicted by our
CNNs. From these images we can see that the CNNs purely trained on simulated data are able to recover the parameters of real galaxies that are as regular
and isolated as the simulated. The CNNs can still give accurate predictions when the real galaxies show smooth asymmetries and in the stamps there are other
fainter and smaller galaxy companions. They give worse results when the stamps include several brighter and bigger galaxy companions.

7 C O N C L U S I O N S A N D P E R S P E C T I V E S

In this work, we present DeepLeGATo, a CNN method designed
for 2-D light profile fitting of one-component galaxies. We trained,
validated, and tested DeepLeGATo on an extensive set of simu-
lations of HST/CANDELS galaxies images and we find it to be
robust in terms of parameter recoverability and consistent with the
results obtained with GALFIT. We find that the use of different ar-
chitectures depending on the output parameter helps to improve the
performance of the models, therefore DeepLeGATo uses two dif-
ferent architectures. On simulated data, our method obtains more

accurate results than GALFIT for the parameters (magnitude, half-
light radius, Sérsic index, and axis ratio) of the structural decompo-
sition. Moreover, it is ∼3000 times faster when running on GPU,
and ∼50 times when run on the same CPU machine. On real data,
DeepLeGATo trained on simulations behaves similarly to GALFIT

on isolated and fairly regular galaxies. Moreover, after a domain
adaptation step made with the 0.1–0.8 per cent of the size of the
training set, DeepLeGATo obtains results consistent with the ones
presented in the van der Wel et al. (2012) catalogue even for galax-
ies having several bright companions. Considering this test, we
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Figure 6. We show R2 for the profile fitting of 1000 real CANDELS/HST galaxies, obtained using our CNN code. The values of R2 are plotted as a function
of the size of real-data sample used to train and validate the method. In particular, the blue line represents the behaviour of our CNN previously trained on
simulated data and then domain adaptated using real galaxies. The staring point of the blue line, the green star, represents the R2 value obtained using the
CNN purely trained on simulated data (see Section 6.1). The red line represents the behaviour of our CNN directly trained on real data (i.e. without domain
adaptation). The points on the x-axis, i.e. the size of the training/validation sample, are 50, 100, 200, 400, 600, 800, 1000, 1500, 2000, 3000, and 4000. See
Section 6.2.

conclude that our method is able to obtain reliable results either
using more complex and realistic simulations for its training, ei-
ther with a domain adaptation step made with a sample of reliable
estimations.

Overall, in this work we prove that deep neural net-
works represent an exciting prospect for conducting large-scale
galaxy-decomposition, as they are capable of automated feature
extraction and do not need a hand-made user-defined parameter
set-up. While the accuracy of other methods greatly depends on
the choice of the input set-up of parameters, initial conditions, and
centring. Deep learning and CNNs, in particular, have the potential
to significantly cut down on the need for human visual inspec-
tion and make the galaxy decomposition a powerful tool in the
era of new and future wide-field surveys such as LSST, Euclid,
and WFIRST.

DeepLeGATo aims to be a first step towards the systematic use of
deep learning methods for fast, accurate, and precise measurements
of galaxy structural parameters. Future steps are needed before this
method can be implemented effectively on large photometric data
sets. A fundamental issue that we plan to address is the measurement
of uncertainties. Realistic error bars are crucial to confirm or rule out
models when compared to data. Several solutions to this problem
may be viable outside the CNN framework. For instance, calculating
the residuals after subtracting away from the galaxy image a model
generated with the fitted parameters. More elegant solutions having

interest beyond our specific task would implement the estimation of
the uncertainties within the CNN framework although this is still an
unsolved issue. We tested one possible approach, consisting in fit-
ting several slightly different images of the same galaxy. We test the
self-consistence of the CNN regression using different observations
(or artificially disturbed images) of the galaxies, thus obtaining an
empirical sample of the predictive distribution for each one of them.
From the latter we infer an empirical estimator for the predictive
variance (our uncertainty in the estimations). Another possible so-
lution involves the use of Bayesian neural networks (BNNs), that
are currently considered the state of the art for estimating predictive
uncertainty (Gal 2016). BNNs learn a-posterior distribution over
the parameters of the neural network and use this approximate dis-
tribution as a prior to provide a complete probability distribution
of the estimations. Classical deep neural networks provide only a
single estimation.

As shown in the paper, in this initial test we excluded all extreme
cases from our analysis, including very round or flat galaxies. Future
and ongoing work includes the extension of the parameter space,
and the application of CNNs on more complex cases consisting of
two-component bulge-disc galaxies, implementing a variable PSF
and making the algorithm more robust for dense and noisy regions
of the sky. Last, we plan to render DeepLeGATo freely available with
a full set of instructions to adapt the method to different surveys
and galaxy samples.
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Deep learning for galaxy surface brightness profile fitting 905

Figure 7. Results of profile fitting for the images of 1000 real HST/CANDELS galaxies. The left-hand column shows the results obtained using DeepLeGATo
after domain adaptation, and the right-hand column the results obtained using two different catalogues based on the use of GALFIT. For each galaxy and for
each parameter X, we calculated the difference between the parameter estimation given in Van der Wel et al. (2012) (Xin) and, on the left-hand column the
estimation (Xout) obtained from DeepLeGATo, and on the right the estimation published in Dimauro et al. (2017, submitted). The results are shown in bins of
magnitude (bin width = 1 mag) and non-parametrically in the form of box plots. As usual, the boxes are delimitated by the first and third interquartiles of the
data, while the whisker indicates the range between ±1.5 the interquartile range (IQR). The red line in the box indicates the median of the data.
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A P P E N D I X A : C N N s P R E D I C T I O N O N R E A L
DATA

In this appendix we complete the analysis presented in Section 6.1,
and we show the results of the application of DeepLeGATo to a
test sample of real galaxies. In particular, we show the one-to-one
scatter-plot comparison of our estimations with those of the van der
Wel et al. (2012) catalogue before and after domain adaptation. The
sample fitted before domain adaptation is presented in Figs A1, A2,
and A3.
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Figure A1. We show the results of our CNNs in fitting the half-light radius of one thousand real galaxies. On the x-axis we plot the parameter estimation given
from the van der Wel et al. (2012) catalogue, while on the y-axis we give the parameter values estimated with DeepLeGATo. The upper panels show the results
obtained for the whole sample before domain adaptation step (a), and after the domain adaptation (b). The three bottom panels show: (c) the results obtained
on the 142 galaxies whose companion has at least 50 per cent of their flux; (d) the results for the 450 galaxies whose companion has less than 10 per cent of the
flux of the galaxy; (e) results for the 103 isolated galaxies of our test sample, i.e. without companion within the stamp.
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Figure A2. We show the results of our CNNs in fitting the Sérsic index of one thousand real galaxies. On the x-axis we plot the parameter estimation given
from the van der Wel et al. (2012) catalogue, while on the y-axis we give the parameter values estimated with DeepLeGATo. The upper panels show the results
obtained for the whole sample before domain adaptation step (a) and after the domain adaptation (b). The three bottom panels show (c) the results obtained
on the 142 galaxies whose companion has at least 50 per cent of their flux; (d) the results for the 450 galaxies whose companion have less than the 10 per cent
of the flux of the galaxy; (e) the results for the 103 isolated galaxies of our test sample, i.e. without companion within the stamp.
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Figure A3. We show the results of our CNNs in fitting the axis ratio of one thousand real galaxies. On the x-axis we plot the parameter estimation given from
the van der Wel et al. (2012) catalogue, while on the y-axis we give the parameter values estimated with DeepLeGATo. The upper panels show the results
obtained for the whole sample before domain adaptation step (a) and after the domain adaptation (b). The three bottom panels show: (c) the first from the left,
the results obtained on the 142 galaxies whose companion has at least 50 per cent of their flux; (d) the results for the 450 galaxies whose companion have less
than 10 per cent of the flux of the galaxy; and (e) the results for the 103 isolated galaxies of our test sample, i.e. without companion within the stamp.
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