Skip to Main content Skip to Navigation
Journal articles

Carbon monoxide gas produced by a giant impact in the inner region of a young system

Abstract : Models of terrestrial planet formation predict that the final stages of planetary assembly—lasting tens of millions of years beyond the dispersal of young protoplanetary disks—are dominated by planetary collisions. It is through these giant impacts that planets like the young Earth grow to their final mass and achieve long-term stable orbital configurations1. A key prediction is that these impacts produce debris. So far, the most compelling observational evidence for post-impact debris comes from the planetary system around the nearby 23-million-year-old A-type star HD 172555. This system shows large amounts of fine dust with an unusually steep size distribution and atypical dust composition, previously attributed to either a hypervelocity impact2,3 or a massive asteroid belt4. Here we report the spectrally resolved detection of a carbon monoxide gas ring co-orbiting with dusty debris around HD 172555 between about six and nine astronomical units—a region analogous to the outer terrestrial planet region of our Solar System. Taken together, the dust and carbon monoxide detections favour a giant impact between large, volatile-rich bodies. This suggests that planetary-scale collisions, analogous to the Moon-forming impact, can release large amounts of gas as well as debris, and that this gas is observable, providing a window into the composition of young planets.
Document type :
Journal articles
Complete list of metadata

https://hal-insu.archives-ouvertes.fr/insu-03713751
Contributor : Nathalie POTHIER Connect in order to contact the contributor
Submitted on : Tuesday, July 5, 2022 - 8:11:01 AM
Last modification on : Friday, August 5, 2022 - 12:00:56 PM

Links full text

Identifiers

Citation

Tajana Schneiderman, Luca Matrà, Alan P. Jackson, Grant M. Kennedy, Quentin Kral, et al.. Carbon monoxide gas produced by a giant impact in the inner region of a young system. Nature, 2021, 598, pp.425-428. ⟨10.1038/s41586-021-03872-x⟩. ⟨insu-03713751⟩

Share

Metrics

Record views

1