Skip to Main content Skip to Navigation
Journal articles

Electrostatic shock waves in the laboratory and astrophysics: similarities and differences

Abstract : Contemporary lasers allow us to create shocks in the laboratory that propagate at a speed that matches that of energetic astrophysical shocks like those that ensheath supernova blast shells. The rapid growth time of the shocks and the spatio-temporal resolution, with which they can be sampled, allow us to identify the processes that are involved in their formation and evolution. Some laser-generated unmagnetized shocks are mediated by collective electrostatic forces and effects caused by binary collisions between particles can be neglected. Hydrodynamic models, which are valid for many large-scale astrophysical shocks, assume that collisions enforce a local thermodynamic equilibrium in the medium; laser-generated shocks are thus not always representative for astrophysical shocks. Laboratory studies of shocks can improve the understanding of their astrophysical counterparts if we can identify processes that affect electrostatic shocks and hydrodynamic shocks alike. An example is the nonlinear thin-shell instability (NTSI). We show that the NTSI destabilises collisionless and collisional shocks by the same physical mechanism.
Document type :
Journal articles
Complete list of metadata

https://hal-insu.archives-ouvertes.fr/insu-03711240
Contributor : Nathalie POTHIER Connect in order to contact the contributor
Submitted on : Friday, July 1, 2022 - 11:25:17 AM
Last modification on : Saturday, July 2, 2022 - 3:40:14 AM

Links full text

Identifiers

Collections

Citation

M. E. Dieckmann, D. Doria, G. Sarri, L. Romagnani, H. Ahmed, et al.. Electrostatic shock waves in the laboratory and astrophysics: similarities and differences. Plasma Physics and Controlled Fusion, 2018, 60, ⟨10.1088/1361-6587/aa8c8f⟩. ⟨insu-03711240⟩

Share

Metrics

Record views

6