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ABSTRACT

A model, which is widely used for inertial rang statistics of supersonic turbulence in the context of molecular clouds and star for-
mation, expresses (measurable) relative scaling exponents Zp of two-point velocity statistics as a function of two parameters, β and
Δ. The model relates them to the dimension D of the most dissipative structures, D = 3 − Δ/(1 − β). While this description has
proved most successful for incompressible turbulence (β = Δ = 2/3, and D = 1), its applicability in the highly compressible regime
remains debated. For this regime, theoretical arguments suggest D = 2 and Δ = 2/3, or Δ = 1. Best estimates based on 3D periodic
box simulations of supersonic isothermal turbulence yield Δ = 0.71 and D = 1.9, with uncertainty ranges of Δ ∈ [0.67, 0.78] and
D ∈ [2.04, 1.60]. With these 5−10% uncertainty ranges just marginally including the theoretical values of Δ = 2/3 and D = 2, doubts
remain whether the model indeed applies and, if it applies, for what values of β and Δ. We use a Monte Carlo approach to mimic
actual simulation data and examine what factors are most relevant for the fit quality. We estimate that 0.1% (0.05%) accurate Zp,
with p = 1, . . . , 5, should allow for 2% (1%) accurate estimates of β and Δ in the highly compressible regime, but not in the mildly
compressible regime. We argue that simulation-based Zp with such accuracy are within reach of today’s computer resources. If this
kind of data does not allow for the expected high quality fit of β and Δ, then this may indicate the inapplicability of the model for the
simulation data. In fact, other models than the one we examine here have been suggested.
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1. Introduction

Supersonic turbulence is a key ingredient in various astrophysi-
cal contexts, from gamma ray bursts (Lazar et al. 2009; Narayan
& Kumar 2009) or stellar accretion (Walder et al. 2008; Hobbs
et al. 2011) to molecular clouds and star formation (Chabrier
& Hennebelle 2011; Federrath & Klessen 2012; Padoan et al.
2012; Kritsuk et al. 2013). A key question is whether this tur-
bulence, like incompressible turbulence, is characterized by uni-
versal statistics. Results from 3D periodic box simulations of
driven, isothermal, supersonic turbulence (Kritsuk et al. 2007a;
Schmidt et al. 2008; Pan et al. 2009) are indeed consistent with
the highly compressible variant (Boldyrev 2002) of the hierar-
chical structure model that was put forward by She & Leveque
(1994) for incompressible turbulence and that was further scru-
tinized by Dubrulle (1994) and She & Waymire (1995). This
model is correspondingly popular in astrophysics. It is em-
ployed, for example, in the interpretation of molecular cloud ob-
servations (Gustafsson et al. 2006; Hily-Blant et al. 2008) or to
derive a theoretical expression for the density distribution in su-
personic turbulence (Boldyrev et al. 2002), which enters theo-
ries of the stellar initial mass function (Hennebelle & Chabrier
2008).

Nevertheless, some doubts remain whether the model really
applies to simulation data of supersonic turbulence and, if so,
with what parameter values. The best-fit model parameters that
we are aware of (Pan et al. 2009) still come with a 5−10% un-
certainty range that is only marginally compatible with theoret-
ically predicted parameter values (see below). Here we argue
that today’s computer resources should allow for 1−2% accurate
parameter fits in the highly compressible regime, thereby likely

settling the issue. Our claim is based on a Monte Carlo approach
to mimic actual simulation data.

The hierarchical structure model predicts the ratios Zp
of (observable) structure function scaling exponents ζp, p =
1, 2, 3, ... etc., of a 3D velocity field u as

Zp =
ζp

ζ3
= (1 − Δ)

p
3
+
Δ

1 − β
(
1 − βp/3

)
. (1)

Here, D = 3 −C is the dimension of the most intermittent struc-
ture, C = Δ/(1− β) the associated co-dimension, β ∈ [0, 1] mea-
sures the intermittency of the energy cascade, and Δ ∈ [0, 1]
measures the divergent scale dependence of the most intermit-
tent structures. The ζp are defined in the inertial range by

S p(r) ≡ 〈|u(x + r) − u(x)|p〉 ∝ rζp , (2)

where 〈. . . 〉 denotes the average over all positions x within
the sample and over all directed distances r. The Zp should
be well defined over a larger range because of extended self-
similarity (Benzi et al. 1993) and Eq. (1) should remain formally
valid for generalized structure functions S̃ p(r), computed from
mass-weighted velocities u ≡ ρ1/3u (Kritsuk et al. 2007a,b).

Several special cases of the model that differ in their param-
eter values exist in the literature (see e.g. the review by She &
Zhang 2009). The original model by She & Leveque (1994) ap-
plies most successfully to incompressible turbulence with 1D
vortex filaments as most dissipative structures (D = 1) and pa-
rameter values β = Δ = 2/3. For highly compressible turbu-
lence, parameter values remain debated. Boldyrev (2002) argues
that the most dissipative structures are 2D shocks, thus D = 2,
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and chose to keep Δ = 2/3 and set β = 1/3. By contrast, Schmidt
et al. (2008) argue that Δ = 1 (implying β = 0) to be consis-
tent with Burgers turbulence. A few studies used 3D simulation
data, derived sets of Zp, and attempted simultaneous fits of β and
Δ (Kritsuk et al. 2007b; Schmidt et al. 2008, 2009; Folini et al.
2014). The results are inconclusive in that fits of similar quality
are obtained for widely different β-Δ-pairs. Also using 3D simu-
lation data (10243, Mach 6) but working with density-weighted
moments of the dissipation rate, Pan et al. (2009) simultane-
ously fitted Δ and D to their data. They find Δ ∈ [0.67, 0.78] and
D ∈ [2.04, 1.60], with a best estimate of Δ = 0.71 and D = 1.9,
thus β = 0.35. The range for Δ is not compatible with the sug-
gested Δ = 1 (see above), and also Δ = 2/3 lies only at the
lower-most bound of the inferred range. Both Δ and β may thus
deviate from their incompressible values (β = Δ = 2/3) as the
Mach number increases, making simultaneous determination of
β and Δ a must.

The present study is motivated by this still inconclusive situ-
ation. We want to better understand what factors (accuracy/order
of Zp; mildly versus highly compressible turbulence) are most
relevant for the fit quality and why widely different β-Δ-pairs
yield fits of similar quality. We use this insight to formulate
quantitative estimates of what is needed to obtain 1% accurate
estimates of β and Δ. We present results in Sect. 2, discuss them
in Sect. 3, and conclude in Sect. 4.

2. Results

We first show that β and Δ can be uniquely determined from
an associated (i.e. computed via Eq. (1)) pair Zp1 and Zp2 . We
then illustrate how uncertainties in Zp map onto the β-Δ-plane.
Finally, we give estimates on how accurate the Zp have to be to
achieve a desired accuracy of β, Δ, and C.

2.1. β and Δ from exact Zp

Consider two values Zp1 and Zp2 that both fulfill Eq. (1) for the
same values (β,Δ). In the following, we show that (β,Δ) can
unambiguously (uniquely) be recovered from Zp1 and Zp2 .

We start by rewriting Eq. (1), factoring out Δ:

0 = Δ

(
3(1 − βp/3) − p(1 − β)

3(1 − β)
)
+

(
p − 3Zpj

3

)
, j = 1, 2. (3)

Using Zp1 , we can obtain an expression for Δ,

Δ =

(
3Zp1 − p1

3

) (
3(1 − β)

3(1 − βp1/3) − p1(1 − β)
)
· (4)

By now writing Eq. (3) with Zp = Zp2 , using Eq. (4) to replace Δ,
do some re-ordering of terms, and abbreviating p1/3 ≡ a and
p2/3 ≡ b, we end up with the following equation for β:

0 =

(−βb + bβ + 1 − b
−βa + aβ + 1 − a

)
−

(
Zp2 − b

Zp1 − a

)
≡ Pβ,b

Pβ,a
− Ra,b, (5)

or

Ra,bPβ,a = Pβ,b. (6)

The polynomial Pβ,x ≡ −βx+xβ+1−x, with x > 0 and β ∈ (0, 1),
is a monotonically decreasing (increasing) function for x < 1
(x > 1), as can be seen by taking the derivative of Pβ,x with
respect to β and as illustrated in Fig. 1. Consequently, Eq. (6)
has a unique solution, β, from which Δ can be recovered via

beta

Fig. 1. Ratio of polynomials Pβ,b/Pβ,a, Eq. (5), (y-axis, shown as loga-
rithm) for selected exponents a and b as function of β (x-axis). Colors
indicate b/a = 2 (red), 4 (green), 5 (blue), 6 (magenta), 7 (cyan), all
with a = p1/3 = 1/3, as well as b/a = 7/6 (black) with a = p1/3 = 6/3.

Eq. (4). Thus Eq. (1) defines an exact one-to-one correspondence
between pairs (Zp1 , Zp2 ) and (β,Δ).

Two more points deserve to be highlighted, with the help of
Fig. 1. The ratio Pβ,b/Pβ,a = Ra,b is shown as a function of β for
different a and b or, equivalently, p1 and p2. From the figure it
can be taken that, first, largely different values of p1 and p2 are
advantageous since they result in stronger stratification of β with
respect to Ra,b = (Zp2 − b)/(Zp1 − a). The cyan curve in Fig. 1,
which represents p1/p2 = 1/7, covers a wider range of values
on the y-axis than the black curve (p1/p2 = 6/7). Secondly,
the stratification is stronger for small β. Somewhat anticipating
Sect. 2.2, we thus expect uncertainties in the Zp to be less im-
portant if Zp are available for largely different p and if they are
associated with (yet to be determined) small values of β.

2.2. Uncertainty of Zp in the β-Δ-plane

2.2.1. Single Zp

From Eq. (4) it is clear that each Zp defines a curve in the β-Δ-
plane. If Zp is derived from model data or observations, it will
typically come with an uncertainty estimate, e.g. δZp/Zp ≤ 5%,
with δ indicating the uncertainty. In the β-Δ-plane, this uncer-
tainty range translates into an area around the Zp curve. An il-
lustration is given in Fig. 2. The following points may be made.

One value of Zp (a line of constant Zp in the β-Δ-plane) is
compatible with a (large) range of β and/or Δ that always in-
cludes Δ = 1 and β = 0. The range tends to be smaller for Zp
associated with small β and large Δ (i.e. the lower right corner of
β-Δ-plane). Uncertainties associated with Zp (5% in Fig. 2, white
curves) augment the range, especially for p = 2 and p = 4, as
well as for small Δ and large β (top left corner of the plane). Also
apparent from Fig. 2 (or from taking the derivative with respect
to Δ of Eq. (1)): for fixed β and p < 3 (p > 3), Zp is a monotoni-
cally increasing (decreasing) function of Δ. A similar statement
holds for Zp as a function of β for fixed Δ.

In summary, we expect uncertainties in the Zp to be more
of an issue if only low orders of p (up to about 4) are available
and/or if the (yet to be determined) β is large.

2.2.2. Multiple Zp

We now turn to multiple Zp and their associated uncertainty
ranges δZp, and ask what area they define in the β-Δ-plane. An
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Fig. 2. Zp in the β-Δ-plane, role of p. Shown is Zp (color coded) for
p = 1 (top left), p = 2 (top right), p = 4 (bottom left) and p = 10
(bottom right). For β = 1/3 and Δ = 2/3 (red dot), the curve of constant
Zp (black) is shown, as well as curves of ±5% different Zp (white).

Fig. 3. Part of β-Δ-plane (color coded in co-dimension C = Δ/(1 − β),
0 < C < 3) within joint reach of (at most) 5% perturbed Zp, starting
from Zp for Δ = 2/3 and β = 1/3 (red dot). Left panel: curves of 5%
perturbed Zp values for p = 1 (white), p = 2 (blue), p = 4 (red),
and p = 5 (green) and part of the β-Δ-plane enclosed by all of them.
Right panel: same as left panel but also including p = 6 (purple) and
p = 7 (black).

illustration is given in Fig. 3. Starting from one specific pair of
β = 1/3 and Δ = 2/3 and computing Zp for p = 1, . . . , 5 (left) or
p = 1, . . . , 7 (right), we show pairs of 5% perturbed Zp curves,
i.e. 1.05 · Zp and 0.95 · Zp.

As can be seen, only a small fraction of the β-Δ-plane lies
between all pairs of perturbed curves. Yet this area comprises
a wide range of (β,Δ) values or co-dimensions. The 5% un-
certainty in the Zp translates into a much larger uncertainty (in
per cent) for β and Δ. Closer inspection reveals that the area is
actually defined by only two sets of curves: those for p = 1
and p = 5 (left panel) or p = 7 (right panel). The latter area
is smaller, which indicates that higher order structure functions
constrain the problem of finding β and Δ from a set of Zp more
strongly. Also apparent from Fig. 3 is the dominant role of the
p = 1 curve for narrowing down the composite area between all
curves. All this is in line with the expectation (see Sect. 2.1) that
Zp for largely different p are advantageous for the determination
of β and Δ.

The relevance of the overall location in the β-Δ-plane is il-
lustrated in Fig. 4. Again, the area shown is contained within 5%
perturbed Zp curves for two additional (β,Δ) pairs. As can be
seen, smaller values of β (lower panels) result in smaller areas,

Fig. 4. Same as Fig. 3, left, but for β = Δ = 2/3 (top left), β = Δ = 1/3
(top right), β = 0.048 and Δ = 1/3 (bottom left), as well as and β =
0.048 and Δ = 2/3 (bottom right).

independent of Δ. The crucial role of the p = 1 (white) and p = 5
(green) curves for confining the area persists. Table 1 gives a
quantitative idea of the relevance of β, Δ, δZp, and pmax for the
uncertainty range ±δC of the co-dimensions C. A small δC basi-
cally requires a small δZp, a large pmax, a small β, and a large Δ.
The concrete numbers highlight the difficulty (or ill-posedness)
of the problem. The situation is worse for larger β (bottom rows
in Table 1) and better for smaller values of β (not shown).

We emphasize that the above considerations serve only as
illustration. We looked at the area confined by a set of Zp ±
δZp curves. We have not yet considered the problem of estimat-
ing best-fit βf ,Δf , and thus Cf for a set of given Zp. Such a best-fit
solution may lie outside the area considered here.

In summary, very accurate Zp are needed to derive reliable
best estimates for β, Δ, and C, and smaller values of β help.

2.3. Best-fit βf and Δf from uncertain Zp

We now turn to our actual problem of interest: given a set of
perturbed (uncertain) Z̃p = Zp + δZp, what are associated best-fit
estimates for βf and Δf? Different techniques exist to cope with
this kind of question (e.g. Najm 2009; Le Maître & Knio 2010).
We use a simple Monte Carlo approach.

We start with a pair (β,Δ) and a maximum order pmax, then
use Eq. (1) to obtain a set of Zp = Zp(β,Δ) for p = 1 to p = pmax.
Each of these Zp we perturb randomly (uniformly distributed
random numbers) by, at most, α%, which gives us a perturbed
set of Z̃p. For this set of Z̃p we then seek to find best-fit βf and
Δf . In the following, we do not consider one set of Z̃p, as would
be the case in a real application (unless multiple time slices are
available, see Sect. 3). Instead, we take a statistical view for the
problem by looking at a large number (1000 to 100 000, see be-
low) of randomly generated sets of perturbed Z̃p. This enables
us, in a statistical sense, to relate the accuracy of the Z̃p with
the accuracy of the fitted parameters. Our approach leaves us
with two free parameters, the uncertainty α and the maximum
order pmax.
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Fig. 5. Best-fit βf and Δf from 5% perturbed Zp. Left: 2D histogram
(contours, log10, spacing 0.5, spanning three orders of magnitude) of
best-fit β-Δ-values from 100 000 perturbed data sets. We note that the
2D histogram shows two peak values (indicated by cyan dots), none of
them co-located with the unperturbed (β = 1/3,Δ = 2/3) pair (red dot).
Right: underestimation of Z5 favors Δf = 1. Shown is, for a subset of
1000 perturbed data sets, Δf as function of Z̃5/Z5, again for an unper-
turbed pair (β = 1/3,Δ = 2/3). Colors indicate Z̃1/Z1.

Table 1. Illustration of range δC of co-dimension C for given order p
and uncertainty δZp of structure functions for two β-Δ pairs.

β = 1/3, Δ = 2/3, C = 1

δZp/Zp = 1% p = 1, . . . , 9

p = 1, . . . , 5: 0.79−1.46 δZp/Zp = 1%: 0.93−1.08
p = 1, . . . , 6: 0.83−1.23 δZp/Zp = 2%: 0.84−1.27
p = 1, . . . , 7: 0.87−1.18 δZp/Zp = 3%: 0.74−1.52
p = 1, . . . , 8: 0.90−1.13 δZp/Zp = 4%: 0.70−1.92
p = 1, . . . , 9: 0.93−1.08 δZp/Zp = 5%: 0.65−2.25

β = 2/3, Δ = 2/3, C = 2

δZp/Zp = 1% p = 1, . . . , 9

p = 1, . . . , 5: 0.51−3.00 δZp/Zp = 1%: 1.11−3.00
p = 1, . . . , 6: 0.70−3.00 δZp/Zp = 2%: 0.71−3.00
p = 1, . . . , 7: 0.86−3.00 δZp/Zp = 3%: 0.55−3.00
p = 1, . . . , 8: 1.00−3.00 δZp/Zp = 4%: 0.44−3.00
p = 1, . . . , 9: 1.11−3.00 δZp/Zp = 5%: 0.36−3.00

2.3.1. Minimization of least square error in Zp

A straightforward way to determine best-fit βf and Δf for any
given set of Z̃p, p = 1, . . . , pmax is to minimize

pmax∑
p=1

[Z̃p − Zp(βf ,Δf)]2 (7)

over the β-Δ-plane. To find the minimum, we compare the Z̃p
with pre-computed values Zp(β,Δ) on a fine β-Δ-grid (β,Δ ∈
(0, 1); grid-spacing 0.002). The associated co-dimension is given
by Cf = Δf/(1 − βf).

To capture the range of potential outcomes for a range of
similarly perturbed data sets Z̃p, we produced 100 000 perturbed
data sets, for each of which we determined βf and Δf . For initial
values (β,Δ) = (1/3, 2/3) and (at most) 5% perturbed Zp for
p = 1, . . . , 5, the result is summarized in Fig. 5.

Shown in the left panel of Fig. 5 is a 2D histogram (con-
tours) of our 100 000 best-fit (βf ,Δf ) pairs. Two points are note-
worthy. First, the overall area defined by the histogram is simi-
lar to the area in Fig. 3, left panel. This is remarkable since the
area in Fig. 3 is strictly defined by the 5% uncertainty of the
Zp, whereas the area in Fig. 5 is defined through a minimiza-
tion problem. Second, the 2D histogram has an interior struc-
ture with two peaks, around (β,Δ) = (0.1, 0.4) or C = 0.4 and

(β,Δ) = (0.45, 1.0) or C = 1.8 (cyan dots). None of them is co-
located with the initial, unperturbed (β,Δ) = (1/3, 2/3) pair (red
dot, C = 1).

Three questions come to mind. Where do the two peaks in
the 2D histogram come from? Do other (β,Δ) pairs result in a
qualitatively different picture? Can the minimization procedure
be improved to better recover the initial, unperturbed (β,Δ) pair?
We address the first two questions in the following while post-
poning the third question for Sect. 2.3.2.

The existence and location of the two peaks can be under-
stood, at least qualitatively, from two observations. First, mini-
mization via Eq. (7) gives more weight to larger p, as they are
associated with larger values of Zp. Roughly speaking, the best-
fit (βf ,Δf ) pair tends to lie on or close to the curve defined by
Z̃5. Moving away from that curve results in a large penalty in the
form of a large contribution to the sum in Eq. (7). Second, this
translates the minimization problem into the question of where
the curves for p < 5 come closest to the curve defined by Z̃5. For
illustration, we consider two extreme values of Z̃5. To stay on the
lower green curve in the left panel of Fig. 3, (Z̃5 = 0.95Z5) and, at
the same time, be as close as possible to any of the white curves
(p = 1) results in a (βf ,Δf ) pair to the right, at Δf ≈ 1. By con-
trast, the upper green curve (105% of the exact Z5 curve) only
comes closest to (intersects) any white curve between 95% Z1
and 105% Z1 in a region further to the left. Clearly, the full prob-
lem is more intricate, with also curves for Z2 and Z4, and the
Z5 curve not necessarily adopting one of its two extreme values.
Nevertheless, Fig. 5, right panel, suggests the full data to be in
line with the above reasoning. For 1000 randomly picked data
sets from the left panel, we show Δf as a function of Z̃5/Z5, with
Z5 the exact value. Colors indicate Z̃1/Z1. As can be seen, Δf = 1
indeed tends to be associated with small Z̃5 and small Z̃1 (lower
green and upper white curve in Fig. 3, left panel). Particularly
low values of Δf (e.g. Δf ≈ 0.4) tend to occur for large Z̃5 and
any Z̃1 (upper green curve and any white curve in Fig. 3, left
panel).

Concerning other initial values (other exact (β,Δ) pairs),
a similar situation arises in the sense that double peaked his-
tograms emerge. Details depend, however, on the concrete val-
ues of β and Δ, on the assumed uncertainty (5% or more/less),
and on pmax. An illustration is given in Fig. 6, by means of
1D histograms of Cf = Δf/(1−βf). These 1D histograms are less
intricate than the 2D histogram in Fig. 5, left, yet still capture the
essentials. We show histograms for Δ = 2/3 and different values
of β ∈ [0.0476, 2/3] (corresponding to C ∈ [0.7, 2]) and accu-
racies between 0.1% and 20%. Five points may be made. First,
the double-peaked structure that is apparent in the β-Δ plane in
Fig. 5 re-appears as a double peak in the 1D Cf-histograms of
Fig. 6 (panel in row three, column three). Second, the double-
peak vanishes as β and the uncertainty both become small (lower
left corner of the figure). For the same uncertainty, the double-
peak exists for large β but not for small β (third row in Fig. 6).
For the same β, the double-peak exists for large uncertainties but
not for small ones (second column of Fig. 6). Third, going to
really small values of β and the uncertainty, the histogram be-
comes symmetric with one central peak. Fourth, only for these
really small values is the co-dimension of the initially prescribed
(β,Δ) pair (show in red) co-located with the peak of the his-
togram. Fifth, for β = Δ = 2/3 (right column) the histogram
peaks at Cf = 3 instead of C = 2, unless the accuracy is really
high (0.1%, last row). This is understandable from the arguments
presented above, with regards to the origin of the two peaks in
the 2D histogram in Fig. 5, and from looking at the green (p = 5)
and white (p = 1) curves in Fig. 4, upper left panel.

A120, page 4 of 8

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201527148&pdf_id=5


D. Folini and R. Walder: Accuracy requirements for testing the random cascade model

n
b
in

s

Δ=0.67
β=0.05

0.5 1 1.5
0

50

100
Δ=0.67
β=0.17

1 2 3
0

50

100

150 Δ=0.67
β=0.33

0 1 2 3
0

50

100

150 Δ=0.67
β=0.67

0 1 2 3
0

100

200

300

n
b
in

s

0.4 0.6 0.8 1 1.2
0

50

100

0.5 1 1.5 2
0

50

100

150

1 2 3
0

50

100

150

0 1 2 3
0

100

200

300

n
b
in

s

0.6 0.8 1
0

50

100

0.5 1 1.5
0

50

100

0.5 1 1.5 2 2.5
0

50

100

150

1 2 3
0

200

400

n
b
in

s

0.65 0.7 0.75 0.8
0

50

100

0.7 0.8 0.9 1 1.1
0

50

100

1 1.5 2
0

50

100

150

1 2 3
0

200

400

n
b
in

s

0.68 0.7 0.72
0

50

100

0.75 0.8 0.85
0

50

100

0.9 1 1.1 1.2
0

50

100

1 2 3
0

100

200

300

C
f

n
b
in

s

0.6960.698 0.7 0.7020.704
0

50

100

150

C
f

0.79 0.8 0.81
0

50

100

C
f

0.96 0.98 1 1.02 1.04
0

50

100

C
f

1.5 2 2.5
0

50

100

Fig. 6. Role of β (columns) and accuracy (rows) of associated Zp, for
fixed Δ = 2/3. Shown are PDFs (y-axis) of Cf (x-axis), 1000 random
data sets, powers p = 1, . . . , 5 for β = 0.0476 (first column), β = 0.17
(second column), β = 1/3 (third column), and β = 2/3 (fourth column).
Corresponding exact co-dimensions (red lines) are, from left to right:
C = 0.7, C = 0.8, C = 1, and C = 2. Individual rows from top to bottom
contain accuracies of 20%, 10%, 5%, 2%, 0.5%, and 0.1%. As can be
seen, the larger β, the more severe are the consequences of inaccuracies
in the Zp. Histograms in the upper right (large β, low accuracy of the
Zp) look worst. We note that axis ranges differ among panels, to best
capture the shape of each histogram.

In summary, unless both, δZp and β are small, best-fit values
will preferentially reside in either one of the two peaks of the
histograms in Figs. 5 or 6 instead of merely scattering around
the correct solution, as in Fig. 6, lower left panel.

2.3.2. Alternative ways to obtain best-fit βf and Δf

A number of ideas come to mind on how one may improve the
best-fit approach detailed in Sect. 2.3.1.

Recalling the findings in Sect. 2.2.1, including higher values
of p in the best-fit estimate should improve the situation. From
Fig. 7 it can be taken that this is indeed the case, at least for the
example shown (β = 1/3, Δ = 2/3, accuracy of 5%). However,
the improvement may be regarded as rather modest. Going from
p = 5 to p = 10, as is illustrated in the figure, has about the
same effect as staying with p = 5 but going from an accuracy
of 5% to an accuracy of 2%. From a practical point of view it
also seems questionable whether high order structure functions
can meet the accuracy requirements. In numerical simulations,
higher order structure functions are probably more prone to the
bottleneck effect (Dobler et al. 2003; Kritsuk et al. 2007a).

Another way to improve the situation could be to go to
weighted root mean squares instead of the unweighted sum in
Eq. (7). Hopefully this breaks the dominant role of the highest
order Zp available (see Sect. 2.3.1) and, ultimately, leads to more
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Fig. 7. Role of higher order moments. Inclusion of higher order ESS
scaling exponents (from p = 5, top left, to p = 10, bottom right) grad-
ually reduces the erroneous peak in the best-fit co-dimension (around
Cf = 2.5). Shown are PDFs of Cf for at most 5% perturbed Zp values
(100 000 random data sets) and exact pair (β = 1/3,Δ = 2/3). Spacing
of the β-Δ-grid for fitting is 0.002.

accurate best-fit βf andΔf . Two weightings come to mind. On the
one hand, weights proportional to the inverse of the Zp with the
goal of giving equal weight to each term in the sum, thus reduc-
ing the “overweight” of larger p in the sum. On the other hand,
we could try to give more weight to p terms with a higher accu-
racy (smaller δZp). Corresponding information may be available,
e.g. from the numerical determination of the Zp. We tried both
ideas but neither choice of weights decidedly improved the best-
fit values. Weighting tends to change the relative height of the
two peaks in the double peaked histograms of Fig. 6, but it does
not get rid of the double peaked structure.

We interpret this finding in the following way. First, there
are likely always several Zp that do not have their exact values
and thus draw the solution in different directions, away from its
exact value. Second, the different curve shapes are important so
that, even for weighted sums, the terms p = 1 and p = pmax are
of crucial importance for the overall fit.

In summary, none of the above alternative ways of fitting
simultaneously for β and Δ provides clearly superior results to
what can be obtained from the straightforward minimization of
Eq. (7). We conclude that, for successful two-parameter fits of β
and Δ, highly accurate Zp are a must. A quantitative estimate of
“highly accurate”is given in the next section.

2.3.3. Required accuracy of Zp for “good” best-fit βf and Δf

We now ask how accurate the Zp have to be in order to reach a
prescribed accuracy of Cf = Δf/(1 − βf) via fitting βf and Δf .

We formulate our accuracy goal in terms of only Cf , since we
illustrated in Sect. 2.3.1 that a single peaked and roughly sym-
metric distribution of Cf goes hand in hand with high accuracy,
not only of Cf but also of the underlying two parameter fit, βf
and Δf . If the latter is not accurate enough, a double peaked dis-
tribution for Cf results. We find, as a rule of thumb, a single peak
distribution if 2/3 of all Cf lie within 10% or better of the exact
C. We use Eq. (7) for the two parameter fit, as the more elab-
orate attempts of Sect. 2.3.2 gave no decidedly better results.
As theoretical arguments suggest Δ = 2/3 or larger (Dubrulle
1994; Schmidt et al. 2008), we concentrate on that part of the
β-Δ-plane.

In practical terms, we define a grid of exact pairs (β,Δ)
via a (nearly) equidistant grid of C = 0.4, . . . , 2 and Δ =
0.7, . . . , 0.99 plus, in addition, Δ = 2/3. We equally de-
fine some fixed levels of perturbations: δZp/Zp (in %) ∈
[0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 15, 20]. For each exact pair and
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Fig. 8. Required accuracy (color coding) of perturbed Zp, p = 1, . . . , 5,
such that for at least 2/3 of the best-fit pairs (βf , Δf ) the associated Cf

are within 10% (top) or 5% (bottom) of the C associated with the initial,
unperturbed (β, Δ) pair. As can be seen, the required accuracy depends
crucially on the location within the β-Δ plane. Gray lines indicate the
range within which 2/3 of the actual βf (vertical direction) and Δf (hor-
izontal direction) lie. Black lines indicate constant C = 1 (lower line)
and C = 2 (upper line). For details see text.

each perturbation, we created 1000 perturbed sets of Z̃p, p =
1, . . . , 5 (see Sect. 2.3). Each perturbed set is fitted via Eq. (7).
For each initial pair (β, Δ) and for each prescribed δZp/Zp this
yields 1000 fitted pairs (βf ,Δf) and derived co-dimensions Cf .
These can, in principle, be arranged in histograms, as in Fig. 6.
Finally, we identify the largest δZp/Zp for which 2/3 of all Cf lie
within the demanded accuracy of the exact, initial C.

Figure 8 illustrates the result. Obviously, the accuracy of the
Z̃p (colored squares, in %) that is needed to get at least 2/3 of
best-fit Cf to lie within 10% (top panel) or 5% (bottom panel)
of the exact (initial) C depends on the position within the β-Δ-
plane. In the lower right parts, δZp/Zp ≥ 1% is sufficient to get
10% accurate Cf , and δZp/Zp ≥ 0.5% yields 5% accurate Cf . By
contrast, in the upper left parts of the plane (β ≥ 0.5) one needs
δZp/Zp ≤ 0.1% to get 10% accurate Cf . Gray lines in Fig. 8 (for
clarity only shown for a subset of the colored squares) indicate
the range within which at least 2/3 of the actually fitted βf and Δf
lie. The range is larger for Δ (horizontal lines) than for β (vertical

lines). This is plausible from Fig. 4, from the area confined by
multiple Zp curves. Repeating Fig. 8 but demanding 10% accu-
racy for Δf instead of Cf yields a similar pattern in the β-Δ-plane
(not shown), while demanding 10% accuracy for βf gives a much
more homogeneous pattern (0.2% to 0.5% accuracy for Z̃p, not
shown).

For highly compressible turbulence, best-fit βf and Δf are ex-
pected to lie in the lower part of the β-Δ-plane in Fig. 8, roughly
β ≤ 1/3 and Δ ≥ 2/3 (Boldyrev 2002; Padoan et al. 2004; Pan
et al. 2009). Here, accuracies of 0.5%, 0.1%, and 0.05% for the
Z̃p translate into accuracies of 10%, 2%, and 1% for βf and Δf
(not shown). Fits of similar quality require much more accurate
Z̃p in the mildly compressible regime, where β > 1/3 (upper part
of panels in Fig. 8) and ultimately β = 2/3 in the incompress-
ible limit. We note that in practical applications, best-fit values
may be further improved by combining, for example, data from
different time slices (Pan et al. 2009).

In summary, a 2% (1%) accurate simultaneous fit for βf and
Δf should be possible in the highly compressible regime if the
Zp are 0.1% (0.05%) accurate. If no satisfying fit is possible for
such Zp, this may indicate that the model is not applicable to the
turbulence data under examination.

3. Discussion

We address three topics. First, can the necessary accuracy for the
Zp be met in practical applications? Second, if we had this type
of accurate simulation data, what could be learned about the hier-
archical structure model and its applicability or non-applicability
to driven, isothermal, supersonic turbulence in a 3D periodic
box? Third, we want to briefly revisit the frequently used one
parameter fits.

We start with the question whether 0.1% or even 0.05% ac-
curate Zp for p = 1, . . . , 5 are achievable, as are needed to get
2% (1%) accurate fits for β and Δ. The answer is probably yes, at
least in the context of 3D periodic box simulations. Schmidt et al.
(2008) estimate the accuracy of their Zp, p = 1, . . . , 5, to 1%
(3D box simulations, 10243). Kritsuk et al. (2007a) estimate 1%
accuracy or better for absolute scaling exponents ζp, p = 1, . . . , 3
(3D box simulations, 10243). Meanwhile, 3D box simulations
with 40963 exist (e.g. Federrath 2013; Beresnyak 2014). A first
order estimate suggests the four times better resolution to trans-
late into four times (first order scheme) or 16 times (second or-
der scheme) more accurate structure functions, thus accuracies
of 0.25% or even 0.0625%. Moreover, if the accuracy of the Zp
is good enough to avoid double peaked histograms as in Fig. 6,
accuracy may be further enhanced by exploring multiple time
slices. Pan et al. (2009; 3D box simulations, 10243) used data
from nine time slices for their two parameter fit. Their work is
comparable although they rely on dissipation rates instead of ve-
locity structure functions, since the involved scaling exponents
(τp for the dissipation rate) are structurally similar according to
Kolmogorov’s refined similarity hypothesis (Kolmogorov 1962),
ζp = p/3 + τp/3. The tests we carried out using ratios of τp in-
stead of ζp indeed show a similar behavior. From the quality of
their fit and based on our results, we estimate their τp to be about
1% accurate, which is plausible given their numerical resolution.
A reliable two parameter fit to 3D periodic box data of highly su-
personic turbulence that is based on velocity structure functions
thus appears feasible with today’s data.

What could be learned from better simulation data (40963

or better) and associated, more accurate Zp? Each Zp defines a
curve with associated uncertainty in the β-Δ plane, the curves
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for different p may or may not intersect to within uncertainties. If
they intersect, the model by She & Leveque (1994) may indeed
carry over to highly compressible turbulence. It is then inter-
esting to see whether the fitted range for Δ, currently estimated
as (0.67−0.78) by Pan et al. (2009), remains compatible with
Δ = 2/3, the value tacitly assumed in a large body of literature.
It is also interesting to check whether β = 1/3, as theoretically
anticipated by Boldyrev (2002). If indeed (β,Δ) = (1/3, 2/3),
results from one parameter fits that quantify the transition to in-
compressible turbulence (β = Δ = 2/3) with decreasing Mach
number likely apply (Padoan et al. 2004). If Δ � 2/3, two pa-
rameter fits for β and Δ would also be needed in the mildly com-
pressible regime. However, the analysis in Sect. 2.3.3 suggests
that these kind of fits are likely beyond reach of today’s com-
puter resources.

The latter of the above cases, where the Zp curves do not in-
tersect to within their uncertainty, would imply that the model
by She & Leveque (1994) does not carry over to 3D peri-
odic box simulations of driven, isothermal, highly compress-
ible turbulence. A simple reason here could be that theoreti-
cal results are based on the assumption of an infinite Reynolds
number, a criterion clearly violated by numerical simulations.
More importantly, She & Waymire (1995) already pointed out
that there is no reason why only one dimension should be as-
sociated with the most dissipative structure. They argued that in
such a large portion of space as is typically analyzed, a vari-
ety of most dissipative structures may co-exist with different co-
dimensions. Hopkins (2013) suggests a slightly different model
based on work by Castaing (1996), which is more compatible
with not strictly log-normal density PDFs as observed in isother-
mal supersonic turbulence. Finally, yet other models exist, (e.g.
via multifractals Macek et al. 2011; Zybin & Sirota 2013), as
well as other perspectives on the fractal character of a turbulent
medium (see e.g. Kritsuk et al. 2007a).

Lastly, we briefly come back to the one parameter fits that are
often used in the literature. Fixing the value of Δ by hand greatly
reduces the impact of uncertainties in the Zp on the accuracy of
the estimated best-fit co-dimension Cf . Folini et al. (2014) found
5% uncertain Zp, p = 1, . . . , 5, to translate into roughly 10% un-
certainty of the Cf for fixed Δ = 2/3. Fig. 3 offers a qualitative
understanding of this reduced “error propagation”, which sug-
gests some sensitivity to the specific location in the β-Δ-plane,
and indicates that fixing C or β instead of Δ has a similar ef-
fect. Fixing β seems questionable at first sight since there is, to
our knowledge, little theoretical understanding of what numer-
ical value β might have (see e.g. Dubrulle 1994). On the other
hand, She et al. (2001) presented a theoretical framework that
allows for an independent determination of only β from the rela-
tive scaling exponents Zp (see also Hily-Blant et al. (2008), their
Appendix A3). One could thus imagine breaking the two param-
eter fit for β and Δ into a two step procedure: first, fix the value of
β, then use this value and do a one parameter fit for Δ. Hopefully
this type of a two step approach is more robust against uncer-
tainties in the Zp, but this question is beyond the scope of the
current paper and we are unaware of corresponding attempts in
the literature.

4. Summary and conclusions

This study was motivated by the overarching question of whether
or not the random cascade model (She & Leveque 1994;
Dubrulle 1994; She & Waymire 1995; Boldyrev 2002) applies
to simulation data of highly compressible isothermal turbulence
and, if so, with what parameter values for β and Δ. If applicable,

the model offers a theoretical link between observable properties
of the turbulence, namely ratios Zp of scaling exponents of the
structure functions, and non-observable turbulence characteris-
tics, for example the dimension D of the most dissipative struc-
tures. To date, applicability of the model is assumed in much of
the literature with Δ = 2/3, a value just marginally compatible
with simulation-based best estimates (Pan et al. 2009): Δ = 0.71
with an uncertainty range Δ ∈ (0.67, 0.78).

We examine how uncertainties in the Zp translate into un-
certainties of best-fit β-Δ-pairs and discuss what best-fits, con-
sequently, seem achievable with today’s computer resources. A
Monte Carlo approach is used to mimic actual simulation data.
The results can be summarized in six main points.

– Simultaneous fitting of β and Δ to sets of substantially (5%)
perturbed (uncertain) Zp yields a “double peaked ridge” of
best-fit values in the β-Δ plane. None of the two peaks is
co-located with the initial (β,Δ) pair.

– The highest and lowest order p are particularly relevant for
simultaneous fitting of β and Δ. A somewhat optimal choice
is p = 1, . . . , 5. Yet higher order structure functions add com-
paratively little to the quality of the fit, while they tend to be
afflicted with larger uncertainties in real applications.

– A simultaneous, 2% (1%) accurate fit of β and Δ should be
possible if the Zp, p = 1, . . . , 5, are 0.1% (0.05%) accurate
and if the (yet to be determined) value of β is about 1/3 or
less.

– Applicability of the model thus may be best tested in the
highly compressible regime, where β ≈ 1/3 is expected, and
not in the mildly compressible regime where β ultimately
must approach its incompressible value of 2/3.

– We argue that today’s computer resources likely allow to
reach this accuracy. Existing simulations of 40963 (Federrath
2013; Beresnyak 2014) probably allow for at least 2%, pos-
sibly 1% accurate estimates of β and Δ.

– Should the ambiguity in the determination of β and Δ per-
sist despite such highly accurate Zp, this may indicate that
the notion of She & Waymire (1995; β and Δ take a contin-
uum of values) or Hopkins (2013; a different model for the
statistics of the inertial range) is correct or that yet a different
turbulence model is needed in this regime.

While the authors lack the computational resources to really test
the estimates presented here, this study may encourage other
groups to analyze their data in the light of this study.
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