SDSS-IV MaNGA IFS Galaxy Survey—Survey Design, Execution, and Initial Data Quality - INSU - Institut national des sciences de l'Univers Access content directly
Journal Articles The Astronomical Journal Year : 2016

SDSS-IV MaNGA IFS Galaxy Survey—Survey Design, Execution, and Initial Data Quality

Renbin Yan
  • Function : Author
Kevin Bundy
  • Function : Author
David R. Law
  • Function : Author
Matthew A. Bershady
  • Function : Author
Brett Andrews
  • Function : Author
Brian Cherinka
  • Function : Author
Aleksandar M. Diamond-Stanic
  • Function : Author
Niv Drory
  • Function : Author
Nicholas Macdonald
  • Function : Author
José R. Sánchez-Gallego
  • Function : Author
Daniel Thomas
  • Function : Author
David A. Wake
  • Function : Author
Anne-Marie Weijmans
  • Function : Author
Kyle B. Westfall
  • Function : Author
Kai Zhang
  • Function : Author
Alfonso Aragón-Salamanca
  • Function : Author
Francesco Belfiore
  • Function : Author
Dmitry Bizyaev
  • Function : Author
Guillermo A. Blanc
  • Function : Author
Michael R. Blanton
  • Function : Author
Joel Brownstein
  • Function : Author
Michele Cappellari
  • Function : Author
Richard d'Souza
  • Function : Author
Hai Fu
  • Function : Author
Patrick Gaulme
  • Function : Author
Mark T. Graham
  • Function : Author
Daniel Goddard
  • Function : Author
James E. Gunn
  • Function : Author
Paul Harding
  • Function : Author
Amy Jones
  • Function : Author
Karen Kinemuchi
  • Function : Author
Cheng Li
  • Function : Author
Hongyu Li
  • Function : Author
Roberto Maiolino
  • Function : Author
Shude Mao
  • Function : Author
Claudia Maraston
  • Function : Author
Karen Masters
  • Function : Author
Michael R. Merrifield
  • Function : Author
Daniel Oravetz
  • Function : Author
Kaike Pan
  • Function : Author
John K. Parejko
  • Function : Author
Sebastian F. Sanchez
  • Function : Author
David Schlegel
  • Function : Author
Audrey Simmons
  • Function : Author
Karun Thanjavur
  • Function : Author
Jeremy Tinker
  • Function : Author
Christy Tremonti
  • Function : Author
Remco van den Bosch
  • Function : Author
Zheng Zheng
  • Function : Author

Abstract

The MaNGA Survey (Mapping Nearby Galaxies at Apache Point Observatory) is one of three core programs in the Sloan Digital Sky Survey IV. It is obtaining integral field spectroscopy for 10,000 nearby galaxies at a spectral resolution of R ∼ 2000 from 3622 to 10354 Å. The design of the survey is driven by a set of science requirements on the precision of estimates of the following properties: star formation rate surface density, gas metallicity, stellar population age, metallicity, and abundance ratio, and their gradients; stellar and gas kinematics; and enclosed gravitational mass as a function of radius. We describe how these science requirements set the depth of the observations and dictate sample selection. The majority of targeted galaxies are selected to ensure uniform spatial coverage in units of effective radius (R e ) while maximizing spatial resolution. About two-thirds of the sample is covered out to 1.5R e (Primary sample), and one-third of the sample is covered to 2.5R e (Secondary sample). We describe the survey execution with details that would be useful in the design of similar future surveys. We also present statistics on the achieved data quality, specifically the point-spread function, sampling uniformity, spectral resolution, sky subtraction, and flux calibration. For our Primary sample, the median r-band signal-to-noise ratio is ∼70 per 1.4 Å pixel for spectra stacked between 1R e and 1.5R e . Measurements of various galaxy properties from the first-year data show that we are meeting or exceeding the defined requirements for the majority of our science goals.

Dates and versions

insu-03710561 , version 1 (30-06-2022)

Identifiers

Cite

Renbin Yan, Kevin Bundy, David R. Law, Matthew A. Bershady, Brett Andrews, et al.. SDSS-IV MaNGA IFS Galaxy Survey—Survey Design, Execution, and Initial Data Quality. The Astronomical Journal, 2016, 152, ⟨10.3847/0004-6256/152/6/197⟩. ⟨insu-03710561⟩
1 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More