Complex structure of Piton de la Fournaise and its underlying lithosphere revealed by magnetotelluric 3D inversion - INSU - Institut national des sciences de l'Univers Accéder directement au contenu
Article Dans Une Revue Journal of Volcanology and Geothermal Research Année : 2018

Complex structure of Piton de la Fournaise and its underlying lithosphere revealed by magnetotelluric 3D inversion

Résumé

La Réunion is a large volcanic construction resting on Paleocene oceanic crust. Through the 3D inversion of a large set of magnetotelluric (MT) soundings, our results reveal the general resistivity structure of the western part of Piton de la Fournaise volcano down to its base and the first 10 km or so of the underlying lithosphere. The resistivity pattern shows a general stratification of the resistivity values. An upper resistive layer corresponds to unsaturated and water-saturated lava flows. This layer is thinner (a few hundred meters) in the Enclos and Plaine des Sables/Fond de la Rivière de l'Est areas than on the NW flank where it reaches 2000 m. Below, the rest of the edifice is distinctly more conductive and shows highly conductive patches. The origin of the globally weak resistivity of the lower part of the construction is not established but can be tentatively attributed to a higher degree of alteration. The case of the highly conductive patches is different. Resistivity values of a few Ω·m imply the presence of highly conductive fluids and/or minerals that, in this context, are generally associated with hydrothermal phenomena. In the Enclos, highly conductive patches are unambiguously attributed to the presently active hydrothermal system. Beneath the Plaine des Sables/Fond de la Rivière de l'Est, they may be associated with hydrothermal alteration developed by the ancient volcanic center. The larger highly conductive patches are found below sea level and above the crust beneath the NW flank, at depths significantly larger than the others. This area coincides with the path of the N120 rift zone, with a deep (~10-20 km) seismicity and with diffuse CO2 degassing. A relationship may therefore be inferred between deep magmatic activity, eruptive activity and postulated highly conductive hydrothermal zone. In the globally weak resistivity of the lower part of the edifice, a dome of moderate resistivity (>1 kΩ·m) is centered beneath the Plaine des Sables. It is wider than a dense intrusive complex inferred from gravity models in the same area. The present resolution of both MT and gravity models cannot exclude a same nature for both structures. Beneath 4 km b.s.l., an increase of the resistivity values underlines an interface in good agreement with the inferred location of the transition between the edifice and the oceanic crust at this depth. The upper lithosphere shows resistivity values above 250 Ω·m. This study therefore demonstrates the capability of the method to image major shallow structures such as the hydrothermally altered zones, and deeper ones such as the heterogeneity of the crust.

Fig. A.1. a) Location of the resistivity soundings used in this study at the scale of Piton de la Fournaise. b) Zoom on each set of soundings from various organizations. The study area is framed in red.

Fig. B.1. Comparison between the raw data and model responses (xx, xy, yx, yy) at all sites and periods. Circles: measured data; dots: model responses. Black and blue: xx, xy; red and pink: yx and yy.

Dates et versions

insu-03708972 , version 1 (29-06-2022)

Identifiants

Citer

Lydie-Sarah Gailler, Anna Martí, Jean-François Lénat. Complex structure of Piton de la Fournaise and its underlying lithosphere revealed by magnetotelluric 3D inversion. Journal of Volcanology and Geothermal Research, 2018, 356, pp.200-210. ⟨10.1016/j.jvolgeores.2018.03.006⟩. ⟨insu-03708972⟩
5 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More