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1.  Introduction
Tephra deposit thickness and its variation in mappable deposits is a source of data used to quantify the dynamics 
of past volcanic eruptions (e.g., Fierstein & Nathenson, 1992; Newhall & Self, 1982; Pyle, 1989; Pyle, 2015). 
Eruption source parameters (ESPs) used to quantify the eruption magnitude and intensity include tephra mass/
volume, plume height, umbrella cloud radius, total grain size variation, and mass discharge rate. ESPs are derived 
from deposit data using empirical, analytical, and numerical models, particularly for past eruptions (e.g., Bona-
donna & Costa, 2012; Bonadonna et al., 2005; Carey & Sparks, 1986; Rossi et al., 2019). The relationship of ESPs 
to eruption deposit thickness is a nonlinear and underdetermined/ill-posed inverse problem (White et al., 2017). 
This inverse problem is data poor. Many combinations of ESP values reproduce the observed deposit thinning as 
a function of distance and direction from the volcano, leading to uncertainty in the estimated ESPs. Uncertainty 
quantification (UQ) is as important as point estimates of ESPs when classifying eruptions based on geologic 
data. The range of uncertainty provides an evaluation of our confidence in estimated ESPs, for the purposes of 
assessing eruption hazards.

Random variability in tephra deposits is one source of uncertainty in estimating ESPs. Variations in the thick-
nesses of tephra fallout in stratigraphic sections can be related to factors like slope, orographic conditions, remo-
bilization, and observational uncertainty (Buckland et al., 2020; Engwell et al., 2013). Natural variability includes 
the distribution of observable tephra sections, impacted by preservation. For example, distal and thin stratigraphic 

Abstract  Uncertainty quantification (UQ) in eruption source parameters, like tephra volume, plume 
height, and umbrella cloud radius, is a challenge for volcano scientists because tephra deposits are often 
sparsely sampled due to burial, erosion, and related factors. We find that UQ is improved by coupling an 
advection-diffusion model with two Bayesian inversion approaches: (a) a robust but computationally expensive 
Generalized Likelihood Uncertainty Estimation algorithm, and (b) a more approximate but inexpensive 
parameter estimation algorithm combined with first-order, second-moment uncertainty estimation. We apply 
the two inversion methods to one sparsely sampled tephra fall unit from the 2070 BP El Misti (Peru) eruption 
and obtain: Tephra mass 0.78–1.4 × 10 11 kg; umbrella cloud radius 4.5–16.5 km, and plume height 8–35 km 
(95% confidence intervals). These broad ranges demonstrate the significance of UQ for eruption classification 
based on mapped deposits, which has implications for hazard management.

Plain Language Summary  Volcanologists use ashfall deposits to estimate the magnitudes and 
intensities of past or unobserved eruptions. Different processes can affect the ash deposits during and after the 
eruption (e.g., burial, remobilisation, and erosion) resulting in sparse sampling of the deposit and uncertainty 
in the deposit thickness where it is sampled. Uncertain data results in uncertain estimates of erupted volume, 
plume height, and umbrella cloud dimensions, which are essential parameters used to estimate future volcanic 
hazards. Here we present two methods to quantify the uncertainty in these parameter estimates from deposit 
data. As a case study, we estimate eruption parameters for a sparsely sampled ashfall deposit from the 2070 
BP eruption of El Misti, Peru. We find that for this sampled unit the mass of the erupted tephra was 0.78–
1.4 × 10 11 kg, umbrella cloud radius was 4.5–16.5 km, and plume height was 8–35 km. These ranges are 95% 
confidence intervals, giving a much better idea of the eruption magnitude and intensity than that is achieved 
from point estimates, such as reporting the erupted mass as a single value.
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sections tend to erode faster than near-vent deposits, which are buried by more recent deposits. Consequently, 
some of the largest eruptions in Earth's history are either misclassified or missing from stratigraphic records (e.g., 
Kiyosugi et al., 2015). Deposit data contribute to aleatoric uncertainty, meaning there is random variation in tephra 
thickness with distance from the volcano that is not associated with ESPs. Unfortunately, this aleatoric variation 
influences the estimate of ESPs. Methods of deposit volume estimation based on interpolation of isolines of equal 
deposit thickness from tephra sections underestimate aleatoric uncertainty and misestimate volume by up to 50% 
(Biass et al., 2019; Engwell et al., 2013; Klawonn et al., 2014; Prival et al., 2019; Sulpizio, 2005).

A second source of uncertainty stems from how models, statistical or numerical, are used to estimate ESPs from 
tephra data. Statistical models that are used to estimate volume include exponential, power-law, and Weibull, with 
model parameters estimated from interpolated isopach data (e.g., Bonadonna & Costa, 2012; Fierstein & Nathen-
son, 1992; Pyle, 1989). These models may or may not describe the data adequately, especially when they are 
used to extrapolate trends beyond the limits of available tephra sections (Bonadonna & Costa, 2012). Statistical 
model choice is a source of epistemic uncertainty. Numerical models based on the advection-diffusion equation 
(ADE) are sensitive to all ESPs. Deposit thickness is estimated at each tephra section locality based on a set of 
ESPs and forward modeling with the ADE (e.g., Bonadonna et al., 2005; Connor et al., 2001; Costa et al., 2006; 
Hurst & Turner, 1999; Macedonio et al., 2005; Pfeiffer et al., 2005). Epistemic uncertainty stems from how well 
the forward model, which uses uncertain ESPs as inputs, captures the physical processes of tephra dispersion 
during specific eruptions. Numerical models simplify the processes that control the sedimentation (e.g., simpli-
fied volcanic plume geometry and wind field) and these simplifications potentially impact the estimation of ESPs 
(e.g., Mannen et al., 2020; Yang et al., 2021). For example, models that do not account for the umbrella cloud 
geometry for volcanic explosivity index (VEI) ≥ 4 eruptions yield biased results (Constantinescu et al., 2021). As 
aleatoric and epistemic uncertainties are always present, reconstruction of the dynamics of explosive eruptions 
through modeling and ESP estimation is challenging (Figure 1).

We couple an ADE model with two Bayesian inversion and UQ approaches: (a) a more approximate, assump-
tion-laden, but computationally inexpensive Bayesian parameter estimation algorithm combined with first-or-
der, second-moment UQ based on the Gaussian-Levenburg-Marquardt algorithm-first-order, second-moment 
(GLM-FOSM) (White et al., 2017), and (b) the Generalized Likelihood Uncertainty Estimation (GLUE) algo-
rithm (Beven & Binley, 1992). As a test case, we invert deposit thickness of a sparsely sampled tephra fall unit 
from the 2070 BP El Misti (Peru) eruption (e.g., Cobeñas et al., 2012; Harpel et al., 2011). We estimate total 
erupted mass, umbrella cloud radius and height, diffusion coefficient, mean grain size distribution and wind 
field, and the uncertainty associated with these parameters. We consider the trade-off between more rigorous 
and more approximate probabilistic inversion methods to estimate ESPs (i.e., GLUE vs. GLM-FOSM). This 
analysis demonstrates that ESPs are inadequately characterized by single value estimates. Instead, ESPs should 
be reported using confidence intervals, resulting in better understanding of eruption hazards based on previous 
volcanic activity (Figure 1) (e.g., Bonasia et al., 2010; Primerano et al., 2021). The two inversion approaches, 
which we compare and contrast, each offer a method of estimating these confidence intervals.

2.  Data and Prior Information
The 2070 BP eruption of El Misti (Peru) was a Plinian (VEI 4) event that produced extensive pumice fall 
and flow deposits (Supplementary Note 1 in Supporting Information  S1; Charbonnier et  al.,  2020; Cobeñas 
et al., 2012, 2014; Harpel et al., 2011; Thouret et al., 2001). We sample the lower-most lapilli-rich tephra fall unit 
from this complex eruption and measure its deposit thickness at 30 localities (Supplementary Note 1; Figure S1 
in Supporting Information S1). This unit is identified as the upper part of Layer 1 of Cobeñas et al. (2012) and as 
Bed 2 of Harpel et al. (2011), and is one of the most easily recognized units across the medial facies SW of the 
volcano. The measured localities are mostly located between ∼6 and 26 km from the volcano because elsewhere 
the deposit is eroded or disturbed by urban development.

We invert the thickness of this tephra unit and estimate seven ESPs (Table 1). Deposit thickness is the most 
commonly used source of information to estimate ESPs; here we do not use grain size information. The inversions 
are guided by prior distributions defined by a range of realistic values for each ESP. The parameter boundaries 
are based on expert knowledge of the eruption (Cobeñas et al., 2012; Thouret et al., 2001) and constrained to 
physically plausible values (e.g., eruptive columns are <55 km high; Wilson et al., 1978).
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3.  Forward Model
Tephra sedimentation is estimated with the forward model developed by 
Constantinescu et al. (2021) and based on the Tephra2 algorithm (Bonadonna 
et  al.,  2005; Connor and Connor,  2006). The model assumes an umbrella 
cloud inserted into the atmosphere as a circular or elliptical disk, discretized 
in grid cells, at a neutral buoyancy height above the vent (e.g., Bonadonna 
& Phillips, 2003; Bursik et al., 1992; Costa et al., 2013; Mastin et al., 2014; 
Sparks et al., 1997). The disk does not account for the dynamics of a laterally 
spreading plume. The umbrella region is well mixed (i.e., umbrella cloud 
diameter is reached when umbrella spreading velocity is smaller than wind 
velocity, e.g., Bursik et al., 1992; Carey & Sparks, 1986). Tephra falls from 
the base of the cloud and is advected by wind.

The total mass of tephra accumulated at a ground location (M(x, y)) is:
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∑�����

��=1

∑����

����
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�� ,�
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where the mass contribution (𝐴𝐴 𝐴𝐴0

𝑐𝑐𝑗𝑗 ,𝜙𝜙
 ) of particles of each ϕ size is released 

from each source location in the disk (cj). fcj,ϕ(x, y) calculates ground mass 
accumulation at coordinates (x, y) for each particle size released from each 
disk cell and accounts for particle diffusion through a turbulent atmosphere 
and advection by a wind field. In practice, the total mass of particles is binned 
in 100 bins from −6ϕ to +6ϕ and is uniformly divided among 8.5 × 10 3 disk 
grid cells. The position and accumulation of particles on the ground depends 
on (a) the mass and distribution of each particle size, (b) particle position in 
the disk relative to the vent and the number of disk cells, (c) the height of the 

base of the disk, (d) the uniform horisontal diffusion of the atmosphere, and (e) the wind speed and direction 
(assumed to be constant in the model). Unlike other models (e.g., Poulidis et al., 2021), we assume no vertical 
wind or vertical diffusion and particle accumulation occurs on a flat topography.

4.  Inversion Models
Inversion is used to estimate ESPs from the forward model and deposit data, given ESPs prior distributions. In 
GLUE analysis (Beven & Binley, 1992), a large prior ensemble, which represents the plausible range of ESPs, is 
filtered based on “behavioral” characteristics related to reproducing the observed tephra deposit data. A rigorous 

Figure 1.  Schematic example of aleatoric and epistemic uncertainty 
quantification associated with point estimates of eruption volume and the 
effect on eruption classification using the volcanic explosivity index scale.

Prior information Posterior estimates

GLUE GLM-FOSM GLUE GLM-FOSM

Parameter Lower bound Upper bound Prior mean Prior σ Posterior mean Posterior σ Posterior mean Posterior σ

Erupted mass (kg × 10 11) 0.1 5.0 1.0 1.2 0.9 0.2 1.0 0.1

Umbrella height (m.a.v. × 10 3) 10 30 25 5 20 6 25 4.8

Umbrella radius (m × 10 3) 5 25 11 5 10.5 3 11 3.2

TGSD (ϕ) −2 2 −1.9 1 0.9 0.7 1.1 0.6

Diffusion (m 2 s −1 × 10 3) 0.3 3 1.5 0.7 2.0 0.6 1.5 0.5

Wind speed (m s −1) 0.5 20 5 4.8 1.7 0.7 1.2 0.5

Wind direction (0 from N) 160 260 220 25 218 4.3 218 5.8

Note. The posterior means and standard deviations are at ±2σ for 95% confidence interval. m.a.v. = meters above vent.

Table 1 
Estimated Eruption Source Parameters and the Search Domain Boundaries for Generalized Likelihood Uncertainty Estimation Method (Uniform Prior Distribution) 
and the GLM-FOSM Method (Gaussian Prior Distribution With Prior Mean)
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rejection-sampling method is used to estimate the uncertainty in ESPs, based on the assumptions that complex 
natural systems such as volcanic eruptions cannot be represented by one set of ESPs but rather that multiple 
combinations of ESPs. Each prior realization of ESP values in the prior ensemble is evaluated with the model to 
produce a simulated tephra deposit. Each simulated tephra thickness is compared against the observed deposit 
thickness using a summary statistic criterion (e.g., residual sum of squares [RSS]) established a priori. The prior 
ESP realizations associated with simulation outputs that acceptably reproduce the tephra thickness observations 
are termed “behavioral” and retained (Beven & Binley, 1992, 2014; Beven & Freer, 2001). Collectively, a large 
number of behavioral ESP realizations are found by Monte Carlo sampling.

As an alternative ESP estimation approach, the forward model is coupled to the GLM-FOSM algorithm through 
the pestpp-glm software tool (White et al., 2017, 2020). This approach pairs gradient-based minimum-error-vari-
ance parameter estimation with prior and posterior Bayes-linear parameter uncertainty estimation, which assumes 
the prior and posterior parameter distribution are (log) Gaussian. The GLM-FOSM approach is computationally 
very efficient but requires additional assumptions compared to the GLUE analysis. We used the same param-
eterization for the GLM-FOSM as for the GLUE analysis, however, because of its inherent assumptions, the 
GLM-FOSM analysis employs a multivariate Gaussian prior parameter distribution in place of the uniform prior 
distribution used in GLUE (Table 1).

5.  Results
5.1.  GLUE Analysis and UQ

A total of 1 × 10 6 model runs were completed for the GLUE analysis, corresponding to 1 × 10 6 prior ESP real-
izations, each representing a set of plausible ESP values. We retain 96 model realisations that best match the 
observed thicknesses (an acceptance ratio of RSS ≤ 1.25 × best_RSS). The uncertainty in ESPs is summarized 
in Figure 2 and Table 1.

The conditioning provided by the tephra thickness is evaluated by how much uncertainty is reduced in the poste-
rior distribution compared with the prior distribution. The total eruption mass in the prior ranges from 0.1 to 
5 × 10 11 kg (VEI 3 to 4). The total erupted mass is one of the most conditioned parameters; the uncertainty range 
is significantly reduced in the posterior estimate to 0.5–1.4 × 10 11 kg. When compared to the uniform prior distri-
bution, inversion reduces the uncertainty in the eruption mass estimate by more than 80%. The umbrella cloud 
radius was estimated between 4.5 and 16.5 km, a 40% uncertainty reduction compared to its prior.

The umbrella cloud height (i.e., height at the base of the cloud) is a highly uncertain parameter and we assign a 
uniform prior search domain between 10 and 30 km above vent. The inversion estimates a mean of 20 km a.s.l. 
with a 95% confidence interval between 8 and 32 km, indicating a poorly constrained parameter. This is a natural 
result in ill-posed inverse problems; the deposit data do not have sufficient unique information to condition this 
ESP. The umbrella cloud height and diffusion coefficient show only minor differences between the prior and the 
posterior estimates indicating two dependent parameters. The uncertainty in diffusion coefficient is reduced by 
∼15%. The posterior mean of the total grain size distribution is 0.9ϕ, with an uncertainty range between −0.5ϕ 
and 2.3ϕ. Wind direction is related to the distribution of the samples and easily inferred, but the wind speed during 
past eruptions is challenging to estimate. Given the assumptions of the model (i.e., average wind field across the 
simulated grid area), the mean wind speed was estimated between 0.5 and 3 m s −1 with 95% confidence.

5.2.  GLM-FOSM Analysis and UQ

The GLM-FOSM analysis used 99 model runs and generally agrees with GLUE analysis (Figure 2; Table 1). 
The GLM-FOSM best estimate for the erupted mass is ∼1 × 10 11 kg with a 95% confidence interval between 
0.78 and 1.2 × 10 11 kg; the uncertainty in posterior was reduced by ∼90%. The umbrella cloud radius estimate 
is ∼11 km with the uncertainty decreased by ∼30%. No significant uncertainty reduction was achieved in the 
posterior umbrella cloud height estimate (∼3%). The posterior diffusion coefficient estimate is slightly improved 
when compared with the prior (∼17%), given the relationship with the umbrella cloud radius and height (i.e., 
high diffusion is no longer required to account for wider spread of tephra). Considerable uncertainty reduction 
was obtained for the wind direction and speed; the uncertainty in the posterior estimate was reduced by more than 
80%. The mean posterior grain size distribution was estimated at 1.12ϕ (−0.1ϕ–2.3ϕ, 95% confidence).
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Figure 2.  Generalized Likelihood Uncertainty Estimation analysis—hollow histograms show the uniform prior ensemble and solid blue histograms show the posterior 
estimates. GLM-FOSM analysis—the solid line Gaussian show the prior ensemble and the dashed line Gaussian the posterior estimate. The vertical lines represent the 
95% confidence interval (solid blue for GLUE; dashed gray for GLM-FOSM).
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6.  Discussion and Final Remarks
There is a varying posterior uncertainty in the estimated ESPs when using deposit thickness data to infer the 
dynamics of the eruption because this information is not sufficient to condition all uncertain ESPs. In this case 
study, the selected tephra layer has highly variable thickness throughout the medial facies (∼10–35 cm; Supple-
mentary Note 1 in Supporting Information  S1). We attribute this variability to the roughness of topography 
(i.e., deep and steep valleys separated by relatively flatter interfluves) combined with postdepositional processes 
(e.g., Buckland et al., 2020; Engwell et al., 2013; Green et al., 2016). While the tephra deposit was buried and 
compacted by thick pyroclastic flow deposits in the valleys (Charbonnier et  al.,  2020; Thouret et  al.,  2001), 
the exposed material on the interfluves was subjected to intense erosion (Cobeñas et al., 2012). Owing to the 
climatic conditions, deposits in the distal facies (>26 km from the vent) are poorly preserved and a vast area of 
the medial facies has been covered by the city of Arequipa. The availability of outcrops for this tephra layer leads 
to a sparsely sampled deposit with the majority of thickness measurements taken in the near medial facies. Few 
distal points were available to constrain the deposit. These factors contribute to aleatoric uncertainty for ESPs 
(Connor et al., 2019). The GLUE and GLM-FOSM inversion methods explain roughly equal amounts of variation 
in deposit thickness, as reflected by the coefficient of determination (r 2) (Figures 3a–3d). Both reveal that only 
some ESPs are well constrained due to aleatoric uncertainty.

The regression analysis coefficients of determination, 0.68 and 0.69, respectively, indicate that approximately 
two thirds of the variation in mapped deposit thickness is explained by best-fit models, regardless of the inversion 
method. This result agrees with Engwell et al. (2013) who suggested that random variation in deposit thicknesses 
may be on order of 30%.

Erupted mass is the best constrained parameter by both inversion methods. The erupted mass is well constrained 
because of the linear dependency between ground mass tephra accumulation and the total erupted mass in the 
forward model (e.g., Magill et al., 2015; White et al., 2017). This model efficiency is reflected in the reduction of 
uncertainty in the posterior compared to the prior using GLUE and GLM-FOSM methods. Both inversion meth-
ods rely on the definition of a prior parameter distribution that effectively defines the plausible search domain, 
which is subjective. The GLUE method gives more flexibility in the prior. In this case, we used a uniform random 
prior distribution. The ensemble inversion results shift the posterior mean substantially compared to the prior, and 
narrows the 95% confidence interval on total erupted mass. The GLM-FOSM inversion method requires a Gauss-
ian prior distribution. The posterior is shifted only slightly. Experimentation shows that the GLM-FOSM method 
does not achieve good model fits if the prior varies substantially from the posterior distribution. In other words, 
the GLUE method is computationally much more expensive, but yields a robust estimate of the total eruption 
mass ESP. In contrast, unless the prior mean of the GLM-FOSM approach is in the appropriate region of attrac-
tion, the total eruption mass may be less well estimated, and RMSE will be larger, indicating a poorer model fit.

The umbrella cloud radius is relatively well informed given the dependency between the position of particles 
accumulated on the ground and their release position in the disk relative to the vent location. Tephra sedimenta-
tion occurs directly under the leading edge of the umbrella cloud (e.g., Carey & Sparks, 1986; Sparks et al., 1997); 
sedimentation over this limit is attributed to atmospheric diffusion and wind advection. We look at the deposit to 
define a search domain for the umbrella cloud radius between 10 and 30 km (i.e., assuming sedimentation either 
occurred from a small cloud in high wind, or from a larger cloud and lower wind). An umbrella cloud radius 
of ∼11 km seems to provide the best fit. As with total erupted mass, the GLUE inversion method starts with a 
broader prior and finds a posterior comparable with GLM-FOSM.

As sedimentation is controlled by particle fall time and atmospheric properties (e.g., Bonadonna & Costa, 2013; 
Connor et al., 2019; Volentik et al., 2010), the umbrella cloud height, the mean grain size distribution, and diffu-
sion coefficient are associated with larger posterior uncertainty. We noticed in simulations that pairs of “high 
plumes—small umbrella clouds” associated with “high diffusion—low wind speed” can replicate the deposit 
equally well—a critical nonuniqueness (e.g., Bonasia et al., 2010; White et al., 2017). In other words, the same 
deposit thickness can be modeled at a given distance from the volcano with coarse grain sizes released from a 
high umbrella cloud, or fine grain sizes released from a low umbrella cloud. Some of these parameter trade-
offs are physically implausible and are addressed with a prior distribution constrained by plausible boundaries. 
Assuming a Plinian event, here we use the vent altitude (∼5,800 m a.s.l.) and the tropopause level at this latitude 
(∼16,000 m a.s.l.) to define the prior for umbrella height between 10 and 30 km above vent. Although most 
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umbrella clouds form at tropopause level where the atmospheric properties change, higher levels were observed 
for other Plinian events (e.g., Mt. St. Helens, 10–20 km (Sparks et al., 1986); Pinatubo, >20 km (Koyaguchi & 
Tokuno, 1993; Suzuki & Koyaguchi, 2009)). Reducing uncertainty in umbrella height is dependent on model 
assumptions and number of measurements. Given the simplified wind profile assumed by the model, few meas-
urements, and no grain size data, no constraints are made on particle fall time, resulting in higher uncertainties in 

Figure 3.  Correlation between observed and modeled tephra thickness from the lowest RSS Generalized Likelihood 
Uncertainty Estimation (GLUE) (a) and GLM-FOSM (c). The negative (blue) and positive (red) residual thicknesses 
downwind from the vent (triangle) for GLUE (b) and GLM-FOSM (d). The diameter of the points indicates the magnitude of 
the residual thicknesses. Histograms show the estimates for erupted mass (e), umbrella cloud radius (f), and umbrella cloud 
height (g) using a wider parameter search domain. The hollow blue histograms show the prior distribution, the solid blue 
histograms show the posterior estimates from the original search domain (Table 1; Figure 2), and the hachured red histograms 
show the posterior estimates from the larger parameter search domain.
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umbrella cloud height estimates (8–32 km). Previous studies showed that using grain size information in tephra 
sedimentation models constrains particle fall time and therefore plume height (e.g., Bonasia et al., 2010; Costa 
et al., 2016; Mele et al., 2020; Volentik et al., 2010). Here we invert only deposit thickness and this results in 
poorer constraints of umbrella height. For similar reasons, the posterior mean grain size was associated with high 
uncertainty. From expert knowledge and assuming an efficient fragmentation associated with Plinian eruptions 
(e.g., Dufek et al., 2012), we define a prior mean grain size between −2ϕ and +2ϕ with a posterior estimate 
peaking around ∼1ϕ a value comparable with those reported by Cobeñas et al. (2012).

One of the goals of tephra sedimentation models is to lower the diffusion coefficient to more physically plausi-
ble values, that is, reduce the use of this ESP as a compensatory parameter. Using a disk source in sedimenta-
tion models decreases the need for unrealistically high diffusion coefficients (Constantinescu et al., 2021). We 
constrain the search domain for this parameter between 300 and 3,000 m 2 s −1 and observe that most model reali-
sations tend to form a peak around 1,700 m 2 s −1. We also notice that increasing wind speed to decrease diffusion 
leads to thinner deposits as finer particles are likely blown away. These two parameters are not mutually exclusive 
and both contribute to the sedimentation patterns observed in the field. The uncertainty in wind speed and direc-
tion is reduced significantly, although this is an average value, given models' assumptions.

The sensitivity of estimated ESP values to the choice ESP prior distribution was further investigated by running 
additional 1 × 10 6 GLUE model realizations using wider prior distributions for the erupted mass (10 10–10 12 kg), 
umbrella cloud radius (5–35 km), and height (10–50 km). The best estimated parameters, total eruption mass, 
and umbrella cloud radius converge on the same posterior estimates as using an inflated prior distribution 
(Figures 3e and 3f). Based on the expected value of total eruption mass and umbrella cloud radius (Constan-
tinescu et al., 2021), the eruption that produced this tephra unit was most likely VEI 4, in agreement with previous 
estimates (Harpel et al., 2011; Cobeñas et al., 2012; Supplementary Note 1 in Supporting Information S1).

While both inversion methods we presented have their merit, the GLM-FOSM analysis is much more efficient at 
UQ and provides a probabilistic estimate of ESPs within minutes running on a regular desktop computer. GLUE 
is able to provide a more robust estimate of the posterior ESPs, with the cost of longer computation times. Poste-
rior ESPs can be refined for contemporary eruptions by providing prior parameter distributions constrained by 
observations of plume heights or umbrella cloud radii. Using data sets from the proximal and distal facies along 
with grain size information may reduce the uncertainty in ESP estimates regardless of the inversion method. 
Ultimately, both methods presented here provide insight into how well ESPs are constrained by a given tephra 
thickness data set, an improvement over point estimates of ESPs (Figure 1). Understanding the magnitude of this 
uncertainty will improve our assessment of volcanic hazards.
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