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Can faults become barriers for deep fluid circulation?
Insights from high-resolution seismic VSP tomography
at the Soultz-sous-Foréts geothermal site

Marco Calo', Catherine Dorbath?, and Paul Lubrano Lavadera®

"Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico, 2Ecole et Observatoire des
Sciences de la Terre, University of Strasbourg, Strasbourg, France, 3NORSAR, Oslo, Norway

Abstract vertical Seismic Profile (VSP) surveys are generally used for modelling converted phases of the
seismic body waves propagating in the medium allowing the detection of waves interpreted as reflections
on steeply dipping reflecting structures such as faults, abrupt lateral changes of lithology, and fractures. At
the Enhanced Geothermal System geothermal field of Soultz-sous-Foréts the analysis of data recorded during
a VSP experiment allowed describing the presence of at least two structures near the wells. Here we show
how seismic tomography method can be applied to the VSP data to reconstruct the 3-D shape of structures in
the volume surrounding the geothermal wells. The three-dimensional P wave velocity model obtained shows
positive velocity anomalies associated with the main faults observed by the VSP analysis and negative
anomalies in the regions affected by massive hydraulic stimulations performed in the past. This pattern can
be explained as a different response of the rock volume to the fluid injections where regions marked by
relative pre-existing high permeability were less affected by the hydraulic stimulations. This difference in
permeability produced regions that could work as barriers for fluid diffusion through the reservoir.
Comparisons of our high resolved model with the location of the induced seismicity and with another model
obtained using seismic noise correlation give evidence of the presence of these structures and may explain
the poor connection between the wells GPK4 and GPK2-GPK3 system.

1. Introduction

The performance of an Enhanced Geothermal System (EGS) is related to the hydraulic connectivity of the
injection and production boreholes. Injection tests can play an important role for increasing the general
permeability of the reservoir around the wells. However, sometimes, the results of the stimulations are not
satisfactory in the sense that the increased permeability and connections between boreholes are lower than
expected. These drawbacks limit the productivity of the geothermal reservoir resulting in a big impact of its
economical sustainability.

In Alsace, at the EGS geothermal field of Soultz-sous-Foréts three wells (GPK2, GPK3, GPK4) reach a depth of
about 5000 m (Figure 1). Each well is distant from the other approximately 600 m at the depth of the reser-
voir exploitation (occurring between 4000 m and 5000 m). In order to connect the boreholes to the fracture
network efficiently and to improve the global permeability of the reservoir, GPK2 was stimulated in
June/July 2000, GPK3 in May/June 2003, and GPK4 in September 2004 and again in February 2005. An
acidified water injection experiment was also conducted in GPK4 in February/March 2005. Presently, the
reservoir development is completed and exploitation of heat is conducted through a geothermal reservoir
whose depth ranges from 4000 to 5000 m. During the stimulation of the three wells, several thousand
induced seismic events were detected and located and used for describing the seismic response of the
reservoir [Charléty et al., 2007; Cuenot et al., 2008; Dorbath et al, 2009; Calo et al., 2011; Cald and
Dorbath, 2013; Calo et al., 2014].

After the stimulations, tracer tests were conducted using organic compounds giving evidence of different
types of hydraulic paths between the wells that are resumed in four loops [Sanjuan et al., 2006]: (i) a fast
and relatively direct hydraulic connection between GPK2 and GPK3 (short loop), (ii) the existence of a larger
and slower hydraulic connection between GPK2 and GPK3 (large loop), (iii) a poor connection between GPK3
and GPK4, and (iv) a much large-scale loop connecting GPK4 to GPK2 and GPK3 rather than to a direct
connection to GPK3. Therefore, the results of the tracer tests highlighted the presence of a sort of “barrier”
separating hydraulically the well GPK4 and the GPK2-GPK3 system.
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Figure 1. (left) Map of the sources (black dots) used for the VSP survey and to perform the seismic tomography. Red dots
are the positions of the grid nodes used for the tomographic inversion. Projections of the wells GPK2/3/4 and of the
seismic ray paths of one source are also reported. (right) Vertical projection of the seismic ray paths between one source
and the geophones located into the wells GPK3 and GPK4. Note the density of the ray paths. Red dots are the nodes of
the inversion grid.

Kohl et al. [2006] studying the event density distribution suggested the presence of a conductive structure
between GPK3 and GPK4 that contrasted the migration of the seismicity during the injection of GPK4 and
partially that of GPK3.

Nevertheless, both tracer tests and studies based on the spatial density of the seismicity do not give a direct
proof of the existence of a structure for the simply reason that (i) tracer test gives insight on the connectivity
between wells and apparent permeability of the reservoir and it is not able to depicts shape, direction, dip of
permeable structures and (ii) standard location procedure of seismicity at Soultz produces horizontal and ver-
tical uncertainty of 100 m and 80 m [Cuenot et al., 2008]. These errors on the event locations may introduce
large bias on the evaluation of the direction and dip of thin structures (e.g., less than 300-200 m thick).
Therefore, the use of the Soultz catalogues needs more processing to refine the event location for studying
thin structures [e.g., Cald et al., 2011; Calo and Dorbath, 2013].

Place et al. [2011] used the data acquired during a first VSP survey performed in 1993 to describe the main
fault geometry in the first 3500 m of the reservoir and extrapolating it to the deeper part. Sausse et al.
[2010] combined all the existing information from well logs, induced seismicity, and active sources showing
a complex network of structures affecting the reservoir.

However, the presence of such hydraulic barrier and its nature is still under debate because of the lack of
geophysical/geological information at depths greater than 3500 m.

In 2007 a Vertical Seismic Profile (VSP) multicomponent, multioffset survey has been conducted in the wells
GPK3 and GPK4 down to 4800 m depth. The records have been used for modelling converted phases of the
body waves propagating in the granite allowing the detection of waves interpreted as reflections on steeply
dipping reflectors intersecting the wells between 4 and 5 km depth [Lubrano Lavadera, 2013]. The main
results of that study were (a) a better constrain of the direction of the major NW-SE fault crossing the wells
and (b) the observation of a reflecting structure located westward of the reservoir between GPK3 and
GPK4 and striking NE-SW, which was not observed with the previous active seismic surveys.

In this work we performed a 3-D high-resolution seismic tomography using the first arrival times picked on
the records of the VSP survey. Since sources and sensors have known position, the errors produced on the
seismic velocity estimations are strongly reduced, allowing a more reliable interpretation also of the weak
anomalies. Here we show that the reconstructed seismic velocity model depicts patterns highly correlated
with the geometry of the faults described with the classical VSP analysis by Lubrano Lavadera [2013].
Comparison of the VSP results presented here, with those of an independent experiment carried out using
the seismic noise cross-correlation (NCC) tomography [Calo et al., 2013a], and with the spatial distribution
of the induced seismicity corroborates the pattern observed. The velocity model presented here,
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We used data collected during a VSP
Figure 2. Example of signals recorded at the geophones located in the well ~ survey performed in 2007. The
GPK3. Red line refers to the manual picking of the first arrivals. experiment was conducted locating

two arrays of three component
geophones in the wells GPK3 and GPK4 at a depth range of 2.84-4.81 km and 3.09-4.81 km, respectively.
The spacing of the geophones was 20m, and the signals were recorded with a sampling rate of 500 Hz.
The sources consisted of 24 shot points located within a 5km radius around the well head and recorded
by two sets of geophones located into the two wells (Figure 1). We picked the first arrival time of each trace
manually by keeping only the signals marked by a high signal-to-noise ratio for a total of 2880 P wave travel
time measurements. Figure 2 reports an example of the signals recorded during a shot and the picking of the
first arrival times. The errors associated with the picking procedure can be estimated on 0.002s.

The database was then used for calculating a Vp model applying the travel time local earthquake tomogra-
phy method [Evans et al., 1994]. The initial horizontal nodes spacing for the seismic velocity inversion is 75 m
in the X, ¥, and Z directions near the centre of the grid, where a maximal resolution is required, whereas it is
sparser in the rest of the investigated volume (Figure 1).

The initial 1-D horizontally layered velocity model used is derived from sonic logs and calibration shots per-
formed in the GPK1 well [Beauce et al., 1991]. This model is the same used to locate the induced seismicity
observed during injections tests and for the seismic monitoring. To be consistent with the previous studies
related to the induced seismicity [Charléty et al., 2007; Cuenot et al., 2008; Dorbath et al., 2009; Calo et al.,
2011; Cald and Dorbath, 2013; Calo et al., 2014], we chose GPK1 well head (48.93537 N, 7.86535 E, altitude
153 m) as the geographical origin for the grid points.

We imposed only velocity adjustments during the inversion procedure because source position and origin
time are known. The computation of the final velocity model has been obtained applying the weighted aver-
age model (WAM) postprocessing [Cald, 2009; Calo et al., 2009, 2011, 2013b]. In WAM, several velocity models
are calculated using different input parameters and merged into a final velocity distribution. This technique
allows to significantly reduce the input parameter effects on the final velocity distribution making the model
more reliable [Calo et al., 2011; Calo et al., 2012]. Hence, we merged seven velocity models obtained after
perturbing the position of the velocity nodes by rotating the inversion grid by 30° steps and changing the
position of the nodes in depth. The relative small amount of models merged with WAM is due to the fact that
for this experiment, the parameter most affecting the results was the inversion grid (origin time of and
position of the sources are known). We assessed the reliability of the features observed on the P wave velocity
model performing a restoration resolution (RR) test [Zhao et al., 1992]. RR test (Figure S1 in the supporting
information) shows that at depth of 4 km, seismic structures 200 m thin are sufficiently recovered in a region
of about 1 x 1 km? centred on the wells. In vertical direction, the model is well recovered in the depth range of
3.5-4.7 km. However, the lateral extension of the best resolved region decreases with depth, making difficult
at 4.5-4.7 km the interpretation of the structure at distance grater 200 m from the wells GPK3/4. Analysis of
the resolution matrix (Figure S2) shows that the inversion procedure is well constrained by the data in the
study region. Although at depths shallower than 4 km, the model is still resolved at distance greater than
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Figure 3. (top) Maps of the P wave anomalies at (a) 3.8 km and (b) 4 km depth. In each map is also projected; the positions
of the wells (GPK1/2/3/4), the direction of the reflecting faults modelled by the VSP analysis, and the traces of the cross
sections (A-B and C-D). (bottom) Vertical sections of the P wave anomaly along the profile A-B and C-D. The projection of
the wells is also reported.

500-1000 m from the wells, smearing affects due to the poor intersection of the ray paths make the interpre-
tation not reliable; therefore, all our considerations refer to the volume around the injection wells.

3. Results and Discussion

The P wave velocity model reported here is expressed in percentage with respect to the initial 1-D model. The
horizontal slices at 3.8 km and 4.0 km depth (Figures 3a and 3b) show that the investigated volume is split
into two main domains: a region marked by a positive anomaly located east of the wells (up to 3%, marked
with Y in Figure 3) and a region mostly dominated by a negative one in the west sector (X1 and X2, in
Figures 3a and 3b). The separation region (NM, dashed line in Figure 3b) is oriented approximately
NNW-SSE. Furthermore, a thin (less than 200 m) high Vp anomaly (FM, dashed line in Figure 3b) oriented
SW-NE is located between the wells GPK3 and GPK4 splitting the low-velocity anomaly in two subregions
(X1 and X2). Vertical section A-B (Figure 3c) shows the continuity of the pattern observed for the structure
NM, at least in the depth range of 3.5-4.7 km (i.e., in the well resolved part of the model), whereas section
C-D shows the continuity of FM in depth.
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1.5

Figure 4. A 3-D plot of the high Vp anomalies (larger than 1%). Dashed lines  [ubrano Lavadera [2013], using the
(NM and FM) are the main faults discussed in the text. A slice shows the X1
and X2 low-velocity regions at 4.2 km depth. The trajectory of the wells GPK2,
GPK3, and GPK4 is also reported.

same database for the VSP analysis
described the presence of at least
two main reflecting structures near
the wells GPK3 and GPK4 (dashed
lines in Figure 3b). The first one is compatible with the fault plane region oriented NNW-SSE and already
observed by several authors because crossing the well GPK3 at about 4.76 km depth [Sausse et al., 2010;
Dorbath et al., 2009]. The second structure, although other authors have proposed its presence, is illumi-
nated for the first time thanks to the survey of 2007 [Lubrano Lavadera, 2013]. The projection of the two
faults on the horizontal section of the Vp model shows the good agreement existing between the orienta-
tions of the structures observed with the VSP modelling and the seismic velocity pattern presented here
(Figure 3b).

Therefore, we suppose that the injection tests performed at Soultz allowed the reactivation of the fracture
network producing a huge amount of induced seismicity due to the pore pressure increase and consequently
an increase of permeability. The relative lowering of Vp is due to the damaging of the rock volume [Shalev
et al., 2013] and change of the original stress condition. Therefore, injection tests can cause lowering of
the seismic velocities and increasing of permeability. Laboratory experiments also show the trend where
an increase of permeability produces a lowering of the seismic velocities [Barton, 2006; Klimentos, 1991]. In
regions where the permeability is already high, the lowering of the Vp is less noticeable. This has already been
observed during the stimulation of GPK3 in 2003 where the decrease of the seismic P wave velocities were of
only 1-3% with respect to the reference value because most of the injection water was absorbed by an open
fracture crossing the borehole [Calo and Dorbath, 2013].

Therefore, the goal of the injections test (i.e., to increase the permeability of a reservoir) is strongly affected by
the presence of large pre-existing high-permeability structures [Calo and Dorbath, 2013; Dorbath et al., 2009;
Nami et al., 2008]. If a large fracture crosses the well, most of the injected water is drained through, and weak
overpressures in the volume are expected. In this condition, if induced events occur, the fault plane region
plays an important role on driving the seismicity [Calo and Dorbath, 2013; Wibberley and Shimamoto, 2003;
Byerlee, 19901. If the permeable/fault zone is relatively close to the injection point, the stimulation allows an
increasing of the pore pressure only in the volume between the borehole and the structure. Indeed the
relatively larger pre-existing permeability affects the pore pressure changes beyond the structure and
consequently the microseismic occurrence. Consequently, in some circumstances a structure marked by
a larger permeability than the surrounding region, such as an open fault, can be considered as a barrier
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Figure 5. Sketch showing how the low Vp anomalies are the regions
damaged by the injections and high Vp anomalies are expression of
structures undertaking the role of barriers for fluid circulation between the

wells. The black dots are the projections of the events with duration wells (Figure S3). The region separat-
magnitude greater than 0.3 recorded during the injection tests of 2000, ing the high and low anomalies
2003, 2004, and 2005 and located +200 m from the depth of the corre- matches for both models suggesting

sponding slice. The events are located using both 3-D models and double
difference data (for details see Calo et al. [2011], Caldo and Dorbath [2013],
and Calo et al. [2014]). Green lines contour the density event in pixels of

150 x 150 m. Numbers on the green lines indicate the event density of The presence of FM, although not
the pixels.

that the structure NM plays a role on
the velocity pattern both for Vpand Vs.

observed on the NCC model because
of the lack of resolution, is documen-
ted by the VSP analysis suggesting the existence of a relatively thin region containing reflecting fault planes
[Lubrano Lavadera, 2013].

Projections of the best located events related to all the injections tests on the velocity model (Figure S3) show
that the events are mostly located in the low-velocity regions highlighting that the stimulations of the wells
GPK2 and GPK3 affected mostly the region north of FM, whereas those of GPK4 developed the reservoir south
of it. The presence of FM has affected indirectly the seismic pattern of the induced seismicity observed during
the GPK4 stimulations [Cald et al, 2014]. The seismic clouds observed during those injections did not
propagate northward and had a shape of segment of ring vertically oriented with a seismic gap in the region
where FM has been observed (Figure S4).

A three-dimensional plot of the high-velocity anomaly (Figure 4) shows that NM fault limits the eastern side of
the reservoir from the western one, while FM splits, at all depths (3.8-4.6 km depth), the western sector into a
northern part, where it operates the wells GPK2 and GPK3, from the southern one, which includes the region
of interest of the well GPK4.

All these considerations are based on the assumption that all the parts in which the reservoir is nowadays
separated (X1, X2, and Y) had similar physical characteristics before the stimulations, and what we are obser-
ving now is a consequence of the massive injections performed at Soultz.
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The sketch of Figure 5 schematizes the pattern observed and its interpretation. Overlapped to the model are
the projections of the best located events (Md > 0.3) induced during the injection tests performed between
2000 and 2005, highlighting that the low Vp zones are the most affected by the seismicity. Following these
observations, we argue that the two structures constrain the fluid circulation reducing strongly the connec-
tivity between GPK4 and the other wells as was already documented by the tracer tests performed to assess
the injection performance [Sanjuan et al., 2006]. In addition, spatial coherence between seismicity and low Vp
anomalies supports the idea that these lasts are portions of the reservoir involved by the injections, which are
separated in subregions because of the fault zones.

4, Conclusion

In this work we showed a high resolved 3-D P wave velocity model obtained using P wave travel times picked
on the signals recorded during the VSP experiment performed in 2007 at the geothermal reservoir of Soultz-
sous-Foréts.

The seismic pattern observed here is in agreement with the structures imaged with the classical analysis of
these data (i.e., the reconstruction of structures by analysis of the reflected/converted phases). The main fault
crossing the reservoir is identified as a clear limit between higher and lower Vp zones. Furthermore, this
pattern has been documented by an independent experiment using the seismic noise cross-correlation
tomography [Calo et al., 2013a].

We also showed the evidence of a structure, which was already suggested by other authors [e.g., Kohl et al.,
2006; Sausse et al., 2010] but never clearly documented. This structure is underlined by both reflections
through classical VSP analysis and the Vp model proposed here, which images a thin (less than 200 m)
high-velocity anomaly. This structure is located between the wells GPK3 and GPK4, affected the injections
tests of GPK4 in 2004/5 and the related induced seismicity [Calo et al., 2014], and could represent a valid
element to explain the low connection between the southern and northern parts of the reservoir.

Finally, here we showed that VSP data can be used not only for describing possible dipping reflectors but also
for seismic velocity models, which complements the information retrieved by the classical use of such data.
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