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1. Introduction
The Antarctic ice sheet (AIS) is the largest ice body on Earth, holding a total potential contribution to 
sea-level rise of ∼57.2 m (Rignot et al., 2019). The AIS is divided into three entities: the Antarctic Penin-
sula (AP) and the West and East Antarctic ice sheets (WAIS and EAIS, respectively). The EAIS has shown 
less dynamic instabilities than the WAIS and AP over the past four decades, but it holds ∼90% of the total 
AIS ice mass and is the area with highest uncertainty concerning recent mass trends (Rignot et al., 2019; 
Shepherd et al., 2018). A layer of firn, the intermediary stage between snow and ice, covers ∼99% of the AIS 
(Winther et al., 2001). The firn layer thickness, defined here as the depth from the surface until the firn-ice 
transition, varies from 0 to more than 100 m (van den Broeke, 2008). Firn thickness also fluctuates in time 

Abstract Mass balance assessments of the East Antarctic ice sheet (EAIS) are highly sensitive to 
changes in firn thickness, causing substantial disagreement in estimates of its contribution to sea-level. 
To better constrain the uncertainty in recent firn thickness changes, we develop an ensemble of 54 model 
scenarios of firn evolution between 1992 and 2017. Using statistical emulation of firn-densification 
models, we quantify the impact of firn compaction formulation, differing climatic forcing, and surface 
snow density on firn thickness evolution. At basin scales, the ensemble uncertainty in firn thickness 
change ranges between 0.2 and 1.0 cm yr−1 (15%–300% relative uncertainty), with the choice of climate 
forcing having the largest influence on the spread. Our results show the regions of the ice sheet where 
unexplained discrepancies exist between observed elevation changes and an extensive set of modeled firn 
thickness changes estimates, marking an important step toward more accurately constraining ice sheet 
mass balance.

Plain Language Summary Firn is the transition stage between snow and ice. The total 
thickness of the firn layer varies in time and space. In East Antarctica, uncertainty about this variability 
has a large impact on satellite-based estimates of ice sheet mass change. We combine statistical surrogates 
of firn-densification models with different climate models over the entire East Antarctic ice sheet. Our 
ensemble of model combinations demonstrates that firn thickness estimates are poorly constrained. 
Accounting for their respective uncertainties, modeled firn thickness change and satellite measurements 
of elevation change are consistent over most of East Antarctica. However, we identify several areas 
of mismatch between model estimates and elevation change observations, which likely indicates that 
further improvements are required either in models or in measurement techniques. Alternatively, these 
disagreements can hint at possible imbalances in the flow of ice, below the firn layer. We quantify how 
much different sources of uncertainty contribute to the total uncertainty in modeled firn thickness 
change. The amount of snowfall estimated by climate models mostly dominates the uncertainty, but 
modeled firn compaction rates and uncertainty in surface snow density also have major contributions in 
certain areas.
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Key Points:
•  By developing an ensemble of 54 

model scenarios, we constrain firn 
thickness change uncertainty in East 
Antarctica over 1992–2017

•  In 9 of 16 basins, modeled firn 
thickness and altimetry trends 
agree; elsewhere uncertainty 
is underestimated or ice flow 
imbalance exists

•  Model uncertainty reaches 1 cm 
yr−1 with snowfall, firn compaction 
and snow density having spatially 
variable contributions to uncertainty
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due to changes in firn compaction rates and climatic conditions, primarily net snow accumulation. These 
fluctuations affect ice sheet mass balance assessments derived from satellite-based altimetry. Measured sur-
face elevation changes are converted into mass changes, but the conversion requires precise knowledge of 
variability in firn thickness and mass. Atmospheric reanalysis products, Regional Climate Models (RCMs) 
and Firn Densification Models (FDMs) are therefore used to simulate changes of firn properties and, ulti-
mately, to evaluate ice sheet mass changes with precision (Kuipers Munneke et al., 2015; Li & Zwally, 2011; 
McMillan et al., 2016; Shepherd et al., 2019; Smith et al., 2020).

By simulating mass fluxes (snowfall, sublimation, and melt), RCMs estimate the surface mass balance 
(SMB) of ice sheets, which partly determines the evolution of the firn layer. These fluxes and modeled 
surface temperatures also serve as input forcing for FDMs that explicitly simulate firn compaction rates. 
Such coupling is required to reproduce seasonal and multi-annual fluctuations in compaction rates 
(Arthern et al., 2010). Uncertainty in SMB estimates across Antarctica are typically assessed by compar-
ing outputs from different RCMs. While SMB is key to firn thickness evolution because it determines 
the amount of snow removed and added at the surface, it does not capture the effects of fluctuating 
firn compaction that must be estimated with FDMs. Differences between FDMs can lead to substantial 
spread in modeled firn thickness and air content (Lundin et al., 2017), especially if scaled up to ice sheet 
extent.

Compared to the AP and the WAIS, observed elevation changes across the EAIS over the past 25 years 
have been generally smaller, and largely driven by snowfall and compaction variability (Davis et al., 2005; 
Shepherd et al., 2018, 2019). Altimetry-derived mass balance assessments of the EAIS are very sensitive 
to estimates of firn thickness fluctuations because these are of the same order of magnitude as meas-
ured elevation changes. This sensitivity complicates the interpretation of altimetry measurements in 
this area, and it is unclear whether to attribute elevation changes to ice dynamical imbalance or firn 
thickness change (Scambos & Shuman, 2016; Shepherd et al., 2018; Zwally et al., 2015). These conflict-
ing assessments motivate precise uncertainty analyses of coupled RCM-FDM systems over the EAIS. 
Previously, such analyses have been computationally limited; running multiple FDMs for many years at 
the spatial resolution of RCM grids over the EAIS requires many thousands of simulations. The extent 
to which estimates of firn thickness change vary by combining different FDMs with different RCMs 
remains an open question.

To overcome computational limitations and thus improve evaluation of uncertainty in the evolution of 
firn thickness, we build statistical emulators of nine FDMs. An emulator is a fast and statistically driven 
approximation of a more complex physical model (O'Hagan 2006; Sacks et al., 1989). By combining the 
FDM emulators with climatic output from three state-of-the-art polar RCMs, we develop an ensemble of 
54 scenarios of EAIS firn thickness change. We exploit these scenarios to constrain uncertainty analyses of 
firn thickness fluctuations on the EAIS and to quantify the contributions of various sources of uncertainty 
to the spread of modeled results.

2. Methods
2.1. Ensemble Configuration

To generate our ensemble, we first calibrate each of the nine FDM emulators to its corresponding FDM 
(Table 1) in a representative range of EAIS climate conditions, and then we use it to emulate compaction 
rates across the entire EAIS. Changes in SMB as well as climatic forcing for the emulators are computed 
from three RCMs: RACMO2, MAR and HIRHAM (Table  1). Our modeled scenarios of firn thickness 
change span the 1992–2017 period. This period is chosen to match the long-term altimetry record of 
Shepherd et al. (2019), hence facilitating intercomparison of observed elevation changes and modeled 
firn thickness change experiments of this study. We limit our analysis to the EAIS because surface melt 
there is minor compared to the AP and WAIS, and FDM fidelity remains questionable for simulating wet 
firn compaction, water percolation and refreezing (Steger et al., 2017; Vandecrux et al., 2020; Verjans 
et al., 2019).
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2.2. Firn Thickness Change Calculations

Observed ice sheet elevation changes, once corrected for glacial isostatic adjustment, are composed of two 
different signals: one related to ice dynamical imbalance and one to firn thickness change. In this study, we 
focus on the latter. The change in firn thickness at time step t, dhf(t), is given by:

            acc icef M cdh t dh t dh t dh t dh t (1)

with all components expressed in meters and considered positive, and t set to a daily time step in this study. 
The subscript M refers to surface firn removal by melting and acc refers to net snow accumulation. Both 
dhacc and dhM depend on the RCM-computed mass fluxes and on the value assumed for surface snow den-
sity, but they are independent of FDM calculations. The component dhc is the emulated firn compaction 
term (Section 2.3). The last component, dhice, quantifies changes in the flux through the lower boundary of 
the firn column and thus captures changes in the rate of conversion from firn to ice. Changes in dhice act on 
much longer timescales than the other components (Kuipers Munneke et al., 2015; Zwally & Li, 2002). As 
such, dhice can be set constant and equal to the average rate of conversion from firn to ice over a reference 
period (we use 1979–2009, following Ligtenberg et al., 2011), r

icedh . By assuming firn thickness in steady 
state, thus without trend, over the reference period, r

icedh  balances the reference period averages of the other 
components:

  ice acc
r r r r

M cdh dh dh dh (2)

Substituting r
icedh  for dhice in Equation 1 yields Equation 3. This is equivalent to calculating firn thickness 

change by computing anomalies in each of the acc, M and c components with respect to their average value 
in the reference period (Li & Zwally, 2015).

          acc ice
r

f M cdh t dh t dh t dh t dh (3)
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References

FDM

Armap Arthern et al. (2010); Verjans et al. (2020)

GSFC-FDMv0 Smith et al. (2020)

Cr Vionnet et al. (2012); van Kampenhout et al. (2017)

HL Herron and Langway (1980)

HLmap Herron and Langway (1980); Verjans et al. (2020)

Lig Ligtenberg et al. (2011)

LZ15 Li and Zwally (2015)

LZmap Li and Zwally (2011); Verjans et al. (2020)

Morris Morris and Wingham (2014)

RCM

RACMO2.3p2 (27 km) van Wessem et al. (2018)

MARv3.11 (35 km) Agosta et al. (2019); Kittel et al. (2020)

HIRHAM5 (12.5 km) Christensen et al. (2007)

ρ0

L11 Ligtenberg et al. (2011)

fixed-350 Smith et al. (2020)

Table 1 
The Nine Firn Densification Models (FDM), Three Regional Climatic Models (RCM) and Two Surface Density 
Parameterizations (ρ0) Used in This Study 

Note. The horizontal resolutions of the RCM grids are given in brackets. All RCMs were forced by the ERA-Interim 
reanalysis at their boundaries (Dee et al., 2011). See supplementary information for details on the FDMs
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In this study, we are interested in the cumulative 1992–2017 firn thickness changes. We thus integrate Equa-

tion 3 over this time period to compute a total firn thickness change tot
fdh .

2.3. Emulation of Firn Compaction

The nine FDM emulators are first calibrated at 50 sites on the EAIS and over the entire time span (1979–
2017) covered by the output of RCMs (Supplementary Information for details). The goal of the emulation is 
to capture both long- and short-term sensitivity of dhc to climatic forcing. The long-term (1979–2017) mean 
and trend in dhc are estimated by linear regressions on the long-term means and trends of temperature, ac-
cumulation and melt. These linear regressions are specific to each FDM and show good performance in cap-
turing the FDM-computed means and trends at the calibration sites (R2 > 0.99 and R2 > 0.97, respectively). 
Gaussian Process regression complements the linear regression by capturing short-term fluctuations from 
the long-term trends as a function of detrended values of temperature and accumulation. We evaluate the 
emulation capabilities in a leave-one-out cross-validation framework; the nine FDM emulators reproduce 
the FDM output well, both for the total 1979–2017 dhc (R2 > 0.99, RMSE = 0.49 m, corresponding to 3.5% 
of the mean total dhc) and for daily values (R2 > 0.99, RMSE = 0.15 × 10−3 m) (supplementary information 
for details).

2.4. Uncertainty Contributions

In order to evaluate uncertainty on the time series of cumulative dhf(t) and on tot
fdh , we construct a model 

ensemble; the spread arising from a large number of simulations provides an estimate of uncertainty (e.g., 
Déqué et  al.,  2007). Our ensemble includes all combinations of the nine FDM emulators and the three 
RCMs (Table 1). Furthermore, surface snow density, ρ0, contributes to uncertainty in all components of 
dhf (e.g., Agosta et  al.,  2019; Ligtenberg et  al.,  2011). As such, we use two different possibilities for the 
value of ρ0: the climate-dependent parameterization of Ligtenberg et al. (2011) and the approach of Smith 
et al. (2020), which takes a constant value of 350 kg m−3 (B. Medley, personal communication, 2020) (Ta-
ble 1). The different combinations of RCM, FDM and ρ0 provide 54 different firn thickness change scenarios 
across the EAIS. We refer to the spread in the model ensemble results as the total ensemble uncertainty 
to distinguish it from the true uncertainty, which may not be captured by the ensemble. We then use the 
analysis of variance (ANOVA) theory to partition the total ensemble uncertainty among the three factors 
RCM, FDM, and ρ0 (Déqué et al., 2007; von Storch & Zwiers, 1999; Yip et al., 2011). This approach allows 
us to decompose the variance in model results into the contribution of each factor and of each interaction 
between these factors (Equation 4).

                    2 2 2 2 2 2 2 2
0 0 0 0RCM FDM RCM FDM RCM FDM RCM FDM (4)

where  2 is the variance in the ensemble results (m2) and the η2 terms are the contributions from each factor 
and interaction between factors to  2. Interaction effects stem from a nonlinear behavior of the three uncer-
tainty sources. Contributions are calculated by computing the sum of squares associated with each η2 term.
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where N denotes the number of possible levels for a factor (3 for RCMs, 9 for FDMs, 2 for ρ0), x denotes the 
value of the variable of interest ( tot

fdh ) and a dot represents the arithmetic mean with respect to the index it 
is substituted for. Because the sums of squares in Equation 5 are averaged departures from a mean, these 
terms are biased estimates of the variance (Déqué et al., 2007). An unbiased estimate should be divided by 
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N−1, but dividing by N results in η2 terms fulfilling Equation 4. As such, any ratio  2 2/  is only interpreted 
as a percentage of contribution to the total ensemble uncertainty. We group together all η2 terms capturing 
an interaction effect to quantify the nonlinear behavior of the model experiments with respect to the three 
factors (2

intr).

3. Results
3.1. Ensemble Scenarios

The model ensemble shows a stable firn thickness over 1992–2017 for most of (Figure 1) the EAIS, but 
strong regional changes are evident in several of the 16 basins. The large interior basins (2, 3, 10, 17) show 
no significant thickness change; the 2  uncertainty ranges of the ensemble results encompass zero. In con-
trast, the ensemble shows a significant and pronounced (>0.49 m) firn thickening in Dronning Maud Land 
(basins 5–8), driven by high snowfall rates since 2009 (Boening et al., 2012; Medley et al., 2018). Conversely, 
decreases in snowfall rates cause firn thinning (>0.25 m) in the areas of Shackleton ice shelf and Totten 
glacier (basins 12–13), which coincide with localized zones of high ice flow velocities (Rignot et al., 2019). 
Low accumulation since 2005 also induced thinning in Victoria Land (basin 14) (Velicogna et al., 2014). 
In such cases of accumulation anomalies, the firn compaction signal must be accounted for as it partially 
mitigates the overall change in firn thickness; increased accumulation provides more pore space and thus 
higher compaction rates, while decreased accumulation has the opposite effect. In other basins, the ensem-
ble suggests thickening (e.g., basins 3–4) or thinning (e.g., basins 9 and 15) but high variability among model 
scenarios precludes any firm conclusion.

Model uncertainties in basin-averaged rates of firn thickness change range between 0.2 and 1.0 cm yr−1, 
translating into relative uncertainties between 15% and 300% (Table 2). Despite low absolute uncertainties, 
the interior basins (2, 3, 10, 16, 17) show the largest relative values because their trends in dhf are close to 
zero (<0.4 cm yr−1). Basins with trends exceeding 1 cm yr−1 have lower relative uncertainties. Yet, some of 
these still exhibit relative uncertainties higher than 25% (4, 5, 8, 13, 15). The relative importance of the RCM, 
FDM, and ρ0 factors on the model spread varies between basins. An area-weighted averaging demonstrates 
the general predominance of the RCM factor (72%) followed by the FDM (20%), ρ0 (4%) and interaction 
(4%) factors. The high influence of RCM choice is mostly due to the large and direct impact of SMB on 
firn thickness. In addition, there is an indirect impact of RCM output as forcing for FDMs and for the cli-
mate-dependent L11 parameterization of ρ0.

Cold basins with low snowfall rates (e.g., 2–3, 10–11) are characterized by particularly high contribu-
tions of 2

RCM  (>90% of  2). In such dry conditions, small discrepancies between RCM-modeled snow-
fall anomalies translate into large relative differences in firn thickness change. FDM contribution to 
the total ensemble uncertainty increases in basins with higher temperature and accumulation (e.g., 5–7, 
12–13), with 2

FDM  explaining ∼30%–45% of the spread. These climatic settings drastically increase both 
the sensitivity of FDMs to temperature fluctuations and the absolute compaction rates. Consequently, 
small relative differences in compaction rates between the FDMs result in large absolute differences in 
firn thickness change. Moreover, high total snowfall amounts mitigate the impact of small differences 
between RCM estimates of accumulation, thus reducing 2

RCM . Another aspect that favors high  2 2/FDM  
values is spatial variability of climatic conditions within basins; within basins spanning many climatic 
zones, there is more likely to be a region in which the FDMs disagree on compaction rates. Contribution 
of 

2
0 is highest in basins with large and positive snowfall anomalies (basins 5–8). In such basins, it ac-

counts for up to 28% of the model spread because the thickening caused by the anomaly is sensitive to the 
snow density parameterization. Basins 16 and 17 illustrate the role of interaction effects. In these basins, 
MAR simulates substantially higher temperatures and accumulation rates, causing larger disagreements 
between FDMs forced by MAR than between FDMs forced by RACMO2 or HIRHAM. This nonconstancy 
of variance across FDMs for different RCMs leads to a significant interaction term 2

intr. Because interac-
tion effects account for a non-negligible part of the model spread in all basins (1%–8% of  2), our results 
demonstrate the importance of combining RCMs, FDMs, and ρ0 within different model experiments to 
assess firn thickness change uncertainty.
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3.2. Comparison With Altimetry

We compare our estimates of basin-wide trends in firn thickness with elevation trends reported by Shep-
herd et al.  (2019) (Table 2, Figure 2). Firn thickness change is only a single component of the ice sheet 
elevation change signal, which also captures ice dynamical imbalance. Thus, accurate estimations of firn 
thickness change can be compared to measured elevation changes to identify areas of dynamical imbalance 
(Hawley et al., 2020; Kuipers Munneke et al., 2015; Li & Zwally, 2011). For 9 of the 16 basins, the model en-
semble uncertainty ranges and the altimetry uncertainty ranges overlap. In these cases, our results provide 
no evidence to support the existence of net ice flow imbalance. However, basin-wide averaging may con-
ceal localized dynamic changes. On Totten glacier (within basin 13) for example, ice dynamical imbalance 
close to the grounding line makes a substantial contribution to recent mass loss and thus to local elevation 
decrease (Li et al., 2016). On the other hand, the uncertainty ranges do not overlap for several basins, high-
lighting the need to better understand the source of the discrepancies in these regions. In such cases, three 
possibilities, or combinations thereof, should be considered: (1) the model ensemble may fail to represent 
the true firn thickness change over the 1992–2017 period, (2) the 1  uncertainty range associated with the 
altimetry measurements may not adequately capture the true signal or (3) a component of the elevation 
changes may be related to ice dynamical imbalance.

At this stage, identifying the exact cause of the discrepancy remains speculative. The long response time 
of ice flow makes any dynamical imbalance challenging to evaluate because long-term trends may still 
outweigh recent changes (Zwally et al., 2015). Moreover, disagreements persist between simulated SMB 
and field observations in certain regions (Wang et al., 2016), which can lead to substantial differences in 
mass balance partitioning (Martin-Español et al., 2017; Mohajerani et al., 2019). Similarly, different sources 
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Basin

tot
fdh  

[cm]
 tot

f  
[cm]

ftrend dh  [cm 
yr−1]

 trend
fdh  [cm 

yr−1]

 trend
f

f

dh

trend dh  [%]
Altimetry trend 

[cm yr−1]  2 2/RCM  [%]  2 2/FDM  [%]  2 2
0 /  [%]

 2 2/intr  
[%]

2 −9.1 6.5 −0.3 ±0.3 100 0.3 ± 2.3 92.1 6.2 0.2 1.5

3 7.3 8.8 0.5 ±0.4 80 0.7 ± 0.1 97.6 1.4 0.0 1.0

4 26.7 21.3 2 ±0.8 40 3.3 ± 0.4 * 97.3 1.0 0.4 1.3

5 70.9 12.6 2.2 ±0.6 27 4.4 ± 0.6 * 49.4 32.5 15.3 2.8

6 54.1 6.9 2 ±0.3 15 1.8 ± 0.3 28.5 42.6 26.1 2.8

7 49.0 6.8 1.9 ±0.3 16 1.6 ± 0.3 18.9 46.0 28.2 6.9

8 68.9 16.0 3.6 ±1.0 28 4.1 ± 0.4 71.9 11.8 12.6 3.7

9 −13.1 9.1 0.8 ±0.7 88 3.0 ± 0.7 * 69.5 23.9 0.3 6.3

10 −10.2 5.5 −0.1 ±0.3 300 0.0 ± 0.2 92.5 6.2 0.1 1.3

11 6.3 2.2 0.5 ±0.2 40 0.4 ± 0.4 84.9 6.0 5.6 3.5

12 −44.8 12.0 −0.8 ±0.4 50 1.8 ± 0.4 * 51.0 40.8 3.9 4.3

13 −25.5 9.0 −1.2 ±0.5 42 −0.7 ± 0.4 60.8 32.8 3.4 3.1

14 −17.3 7.9 −2.3 ±0.4 17 −1.5 ± 0.2 * 74.6 21.1 1.3 3.1

15 −18.4 9.4 −2.7 ±0.9 33 −6.2 ± 1.5 * 72.1 21.6 1.2 5.2

16 2.2 5.0 −0.2 ±0.4 200 −0.1 ± 0.3 95.5 1.4 0.0 3.1

17 3.3 2.5 −0.3 ±0.2 67 0.3 ± 0.1 * 70.5 21.6 0.1 7.9

Table 2 
For Each EAIS Basin, Ensemble Mean ( tot

fdh ) and Standard Deviation ( tot
f ) of Firn Thickness Change

Note. Mean (trend dhf) and standard deviation ( trend
fdh ) of the linear trends fitted to the ensemble scenarios, and their ratio 

 trend

trend

dh

dh
f

f















. Altimetry trends 

are from Shepherd et al. (2019). Superscript * denotes non-overlapping uncertainty ranges from altimetry and from the model ensemble.  2 2/  ratios show 
contributions of the sources of uncertainty to the ensemble spread
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of altimetry data, inter-satellite bias correction, and other processing steps induce uncertainty in altimetry 
signals (Shepherd et al., 2019). We use several basins where ensemble- and altimetry-based trends disa-
gree to illustrate these factors. In basins 4 and 5, Medley et al.  (2018) demonstrated that global climate 
models underestimate recent increases in snowfall. A similar underestimation from the RCMs used here 
would explain the lower ensemble trend compared to the observed elevation trend. In basin 12, significant 
changes in ice discharge may hint at a dynamic imbalance causing the disagreement (Rignot et al., 2019). 
However, this area also shows major discrepancies in SMB anomalies from different model estimates (Wang 
et al., 2016) and from probabilistic inversion techniques (Martin-Español et al., 2017), suggesting that mod-
eling SMB in this region is challenging. Basin 15 is characterized by sparse satellite sampling but also shows 
a large spread in our model ensemble and is thus poorly constrained. The relatively high model- and altime-
try-uncertainties may both be related to the complex topography of this basin. Finally, a robust evaluation of 
FDM-reliability in all possible EAIS areas and climatic conditions does not exist and models may fail to pre-
dict true compaction rates. The objective of comparing ensemble firn thickness trends and altimetry trends 
is not to draw hasty conclusions about dynamical imbalance, but rather to highlight areas which deserve 
greater attention because recent measurements and current state-of-the-art model scenarios do not match.
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Figure 1. Ensemble mean 1992–2017 firn thickness change ( tot
fdh ) in each EAIS basin. Simulation results are interpolated by nearest-neighbor to a common 

12.5 km grid. The map uses a 3×3 median filter. Each inset shows the basin-averaged modeled time series of all the 54 model scenarios. Red, yellow, and blue 
curves represent scenarios forced with RACMO2, HIRHAM, and MAR, respectively. Each curve represents a particular RCM-FDM-ρ0 combination. The thick 
black curve represents the ensemble mean. Basin numbers are displayed within the insets. Frame colors show whether tot

fdh  is significantly positive (blue), 
negative (red) or not significantly different from zero (black) (at ± 2 ). Basin limits follow Zwally et al. (2015).
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In critically evaluating our work, it is important to highlight sources of uncertainty that are not accounted 
for in the ensemble. We use three RCMs forced by ERA-Interim at their boundaries. Different atmospheric 
reanalyzes could, in theory, be used to force the RCMs or could be directly taken over the EAIS domain 
itself. Both the L11 and fixed-350 parameterizations of ρ0 assume a time-invariant surface density because 
possible seasonal and interannual variabilities are unknown. The ensemble is limited by the deterministic 
RCM, FDM, and ρ0 combinations considered here. In the future, the work could be extended to consider 
stochastic perturbations and parametric uncertainties in climate input, FDMs, and ρ0, thereby providing a 
larger range of results. In principle, the process of emulation might lead to localized discrepancies between 
the emulator and a corresponding FDM, although evaluation (Supplementary Information) shows that this 
is unlikely when averaged over large spatial areas, as is done here. One critical assumption is the reference 
climatic period of 1979–2009. Different ice core analyses and model-based studies disagree on the exist-
ence of a trend in Antarctic SMB over the last decades and centuries, but several agree on existing regional 
trends (Frezzotti et al., 2013; Medley & Thomas, 2019; Monaghan et al., 2006; Previdi & Polvani, 2016). The 
year 1979 coincides with the start of satellite data assimilation into atmospheric products, and thus with 
the earliest RCM output, motivating this choice of reference period for practical reasons (e.g., Ligtenberg 
et al., 2011; Rignot et al., 2019). However, we cannot discount that substantially lower/higher past accumu-
lation rates would result in under/over-estimating recent firn thickness change, thus providing a possible 
cause of disagreement with elevation change measurements. Nevertheless, because all model scenarios use 
the same reference period, it has a minor impact on both the total ensemble uncertainty and the uncertain-
ty partitioning; using another reference period could shift the estimates of each scenario but would affect 
differences between the estimates only marginally.

4. Conclusions
Our model ensemble experiment provides a range of modeled scenarios of 1992–2017 firn thickness change 
on the EAIS that encompass current state-of-the-art modeling capabilities. Using statistical emulation of 
firn model output, we compute a total of 54 scenarios to assess variability associated with different RCMs, 
FDMs and surface snow density parameterizations. The ensemble agrees that firn thickness changes in the 
interior are minor, but there are pronounced thickening and thinning patterns in coastal areas. At basin-lev-
el, the uncertainty on the model estimates ranges between 0.2 and 1.0 cm yr−1 and is generally dominated 
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Figure 2. Comparison of 1992–2017 altimetry-based elevation trends and firn thickness trends of the ensemble, with 
their respective 1  uncertainty ranges. Map shows the absolute ensemble-altimetry differences, crosses highlight basins 
with non-overlapping uncertainty ranges.
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by differences between RCMs due to the strong and direct effect of SMB on firn thickness. However, in 
basins with high snowfall and with large spatial variability of climatic conditions, FDM-related variability 
increases up to 46% of the total ensemble uncertainty. The surface snow density factor has a large impact on 
uncertainty in basins with recent increases in snowfall rates, reaching a maximum contribution of 28%. Fi-
nally, non-linear interactions between the three sources of uncertainty are substantial across the EAIS. Our 
results demonstrate that refining SMB estimates in RCMs is the priority for constraining future assessments 
of firn thickness change. However, as snowfall and temperatures are expected to increase in Antarctica 
(Lenaerts et al., 2019; Ligtenberg et al., 2013), FDMs and snow density will increasingly contribute to model 
uncertainty and should not be neglected. By comparing the ensemble scenarios with satellite measurements 
of elevation changes over the same 1992–2017 period, we find that these estimates are consistent over a 
majority of basins. Nonetheless, we identify several basins where model estimates do not match altimetry 
measurements. While ice dynamical imbalance could be the source of the discrepancies in these regions, 
so too could be inadequacies in the respective uncertainty characterizations. As such, our analysis serves to 
highlight specific areas where further focus on potential sources of errors in model and altimetry results is 
needed in order to better constrain mass balance assessments in East Antarctica.

Data Availability Statement
All the modelled annually averaged firn thickness change time series of this study are available at: https://
doi.org/10.5281/zenodo.4515142. All the altimetry data shown in Table 2 and Figure 2 are from Table 1 in 
Shepherd et al. (2019).
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