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Abstract: In the present work, two methods, named “continuous” and “discrete”, are proposed to 

model the fragmentation process in brittle solids. Both methods rely on a preliminary analysis of the 

existing flaws population in scanned samples with X-ray micro-Computed Tomography (microCT). 

By converting the size of defects into critical stresses, the density of critical defects versus the 

applied stress level is deduced and used as an input of both a continuum and a discrete method. To 

do so, the concept of critical defects obscuration is implemented. Introduced in the DFH (Denoual-

Forquin-Hild) micromechanics model, this concept consists of describing how cracks propagating 

from triggered flaws prevent neighbouring flaws from being activated. This obscuration 

phenomenon is implemented in the present work by using the flaws population determined via 

microCT analysis as an input. In the continuous method, the differential equation of the obscuration 

probability provided in the DFH model is integrated. In the discrete method, a cubic sub-volume of 

the scanned volume is considered and the growth of obscuration volumes is numerically 

simulated considering the real location of each critical defect and their stress of activation. 

Both methods provide predictions for the material dynamic strength and final cracking density 

according to the applied strain-rate. These two methods are applied to three types of brittle 

materials: an Ultra-High Performance Concrete (UHPC), a porous polycrystalline ice and a 

silicon carbide with spherical “fuse-flaws”. Finally, the obtained predictions are compared to the 

closed-form solution of the DFH model, which is based on a Weibull distribution of the critical 

flaws identified from bending tests. Whereas the three approaches match very well at low 

strain-rates, the continuous and discrete methods diverge from the DFH closed-form solution at 

high strain-rates, due to the activation of smaller and more numerous defects that could not be 

activated in the quasi-static bending tests. 
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1. Introduction 

Achieving a good understanding and modelling of the tensile behaviour of brittle materials until 

failure remains a major challenge for their use in many application areas (Weerheijm, 2013; 

Forquin and Hild, 2010; Forquin, 2017). The main reason for this is the fact that their dynamic 

tensile strength and fracturing energy are strongly sensitive to the applied loading-rate. For the past 

two decades, such behaviour have been extensively studied for several types of brittle materials 

(ceramics, rocks, concretes and polycrystalline ice) by means of spalling tests conducted using 

Hopkinson bar apparatus (Schuler et al, 2006; Weerheijm and van Doormaal, 2007; Erzar and 

Forquin, 2010, Saletti et al, 2019) and plate-impact experiments (Murray et al, 1998; Antoun et al, 

2002; Grote et al, 2001; Paris et al, 2010, Dandekar, 2004) or high pulsed power current facilities 

(Zinszner et al, 2015a) for higher strain-rates. Over a large range of strain-rates, two regimes can be 

distinguished as shown on Figure 1a and 1b. A small strain-rate sensitivity of the tensile strength to 

strain-rate is noted in the quasi-static regime or at low strain-rates, whereas a pronounced increase 

of strength with strain-rate is observed above a strain-rate threshold value (Erzar and Forquin, 2014; 

Weerheijm and Forquin, 2013). The postulate of two regimes interrogates on whether this transition 

strain-rate is an intrinsic property of the material or depends on size and shape of the considered 

sample. Moreover, since (Reinhardt, 1982) many authors have used to express their experimental 

results as an evolution of the DIF (Dynamic Increase Factor), which corresponds to the dynamic 

strength to static strength ratio, according to the applied loading-rates. Again, it must be found out if 

this representation (i.e. DIF versus strain-rate) can be considered as an intrinsic material property or 

not. 

 

Figure 1. Influence of strain-rate on the tensile strength of brittle solids. (a) Case of dry and wet 

microconcrete and common concrete (Erzar and Forquin, 2014; Weerheijm and Forquin, 2013), (b) 

Case of two SiC ceramics (Zinszner et al, 2017), (c) Post-mortem analysis of dry common concrete 

(a) (b) 

(c) (d) 



after a spalling test at 120 s-1 (Erzar and Forquin, 2011), (d) Microscopic view of the SPS-S 

damaged specimen recovered after a test performed at 2,000 s-1 (Zinszner et al, 2017). 

 

As first answer, it is well established that, under quasi-static regime, the mean failure strength of 

most brittle materials is sensitive to the size of the tested sample, i.e. the larger the sample size the 

lower the mean failure strength, and to the stress heterogeneities (Weibull, 1951; Freudenthal, 1968; 

Hild et al, 1992). This size effect and the scatter of failure stress in tension can be related to flaws 

population (Hild and Marquis, 1992; Alava et al, 2006). On the other hand, at high strain-rates 

(respectively above 100 s-1 and 1,000 s-1 for concretes and ceramics), the size effect is supposed to 

subside. In such high-rate conditions, as concretes and ceramics have small tensile failure strains, 

their loading times to failure are limited to a few µs and a few tenths of µs, respectively (Hild et al, 

2003, Forquin and Hild, 2010). Moreover, given the limited crack speed in these materials (about 

few km/s according to (Kanninen and Popelar, 1985; Freund, 1990)), such small loading times 

imply that damage and failure processes should be driven by the simultaneously propagation of a 

large number of cracks in a considered centimetre volume. Therefore, in relatively large volume 

loaded at high strain-rates, what happens in a given location only has an influence on its 

neighbourhood, which could explain why the size effect is expected to vanish in dynamic 

conditions. 

The way the strain-rate transition between both regimes is expected to evolve, according to tested 

sample volume and the strain-rate sensitivity of the considered material, is illustrated on Figure 2. 

Assuming a quasi-static tensile strength σQS and a dynamic strength σDyn, provided by Equations (1) 

or (2), the DIF and transition strain-rate appear to be dependent of the size of the considered volume 

Z, which means that, in a such framework, these concepts of DIF and transition strain-rate cannot 

be considered as intrinsic properties of the brittle solid, 
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where �/�, /�
 are the exponents traducing the strain-rate sensitivity in “quasi-static” and 

“dynamic” regimes and (!��, !��) are the reference strain-rates defined for each regime. In addition, it 

can be observed from Equations (1) and (2) that the lower the strain-rate sensitivity in the dynamic 

regime /�, the higher the sensitivity of the transition strain-rate to the quasi-static strength �� and 

the volume size Z. However, the study of brittle materials tensile strength over a large range of 

strain-rates and considering different sample sizes remains a difficult task due to the many 

measurement bias inherent to dynamic testing. For this reason, the size effect at high strain-rates 

stays a topic hardly explored.  



 

Figure 2. Influence of the volume zone on the transition strain-rate. Cases with (left) and without 

(right) strain-rate sensitivity in the quasi-static regime. 

In parallel to the experimental characterization of the macroscopic tensile strength provided via 

different spalling techniques, extended efforts have been developed to study the growth of damage 

and final fracturing patterns in various types of brittle materials at high-strain-rates. Among the 

numerous existing works, one may mention the use of the edge-on impact testing technique applied 

to ceramics (Strassburger, 2004), concretes, mortars and rocks (Forquin and Hild, 2008; Grange et 

al, 2008; Erzar and Forquin, 2011, Saadati et al, 2014). In ‘open configuration’, an ultra-high speed 

camera is used to visualize the growth of damage ‘in real time’ (Riou et al, 1998). In the 

sarcophagus configuration, a metallic or polymeric casing is used to hold the fragments in place to 

be able to examine the fragmentation patterns via post-mortem observations (Forquin et al, 2003; 

Zinszner et al, 2015b) or determine the fragments size distribution from X-ray tomography analysis 

(Forquin and Ando, 2017). More recently, transparent sarcophagi were used to perform both 

analyses (ultra-high speed imaging and post-mortem analysis) in one single test (Forquin and 

Zinszner, 2017). Ultra-high speed photography and post-mortem analysis were also applied to 

spalling tests performed using Hopkinson pressure bar apparatus (cf. example in Figure 1c). This 

type of analysis is much more difficult for plate-impact experiments, for which the spalled sample is 

more difficult to recover. However, a post-mortem analysis was carried out in spalling tests 

performed with the pulse-power technology (cf. example in Figure 1d). From these numerous 

experimental studies, it can be concluded that the cracking density increases and the mean 

fragments size decreases as the applied strain-rate increases. Moreover, several studies have 

demonstrated the major role played by the microstructure of brittle materials, mainly the flaws 

population, on their fragmentation properties (Hild et al, 2003; Zhou et al, 2005). For instance, the 

fragmentation process induced in a porous SiC ceramic and in the same ceramic after being filled 

with an aluminium alloy though its open porosity was investigated in (Forquin et al, 2003). It was 

concluded that the difference of cracking pattern was due to the effect of the metal infiltration on 

the inception stresses of cracks. In (Forquin et al, 2018), the fragmentation properties of four SiC 

grades were compared by means of edge-on impact, normal impact tests and fragments size 
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distribution analysis. The difference of cracking patterns was explained by the differences of 

Weibull parameters related to the flaws population of each microstructure.  

For the last three decades, several analytical and numerical models have been proposed to describe 

and simulate the fragmentation process in brittle solids. Among them, energetic approaches provide 

analytical predictions of the fragments size distribution generated from dynamic loadings (Grady 

and Kipp, 1985), from which the spall strength strain-rate sensitivity of brittle solids can be deduced 

(Grady, 1988). This approach was coupled to a statistical distribution of fracture in (Grady and 

Olsen, 2003) for predicting the dynamic fragmentation of U6N rings. Based on an irreversible 

cohesive law, a cohesive model was proposed by Zhou et al (2005) to predict the one-dimensional 

fragmentation process taking into account for elastic wave propagation and equally-spaced or 

randomly-distributed point defect distributions. This approach allowed predicting the fragment size 

distribution in a circular ring that is dynamically expanded Zhou et al (2006). The dynamic fracture 

of brittle materials was numerically investigated considering element interfaces, therefore including 

parameters related to interfacial strength, fracture energy and crack opening. These approaches 

allowed the prediction of fragmentation processes at a meso-scale (Camacho and Ortiz 1996, 

Espinosa et al, 1998; Maiti et al, 2005) or taking into account for a heterogeneous distribution of 

defects (Levy and Molinari, 2010). However, such approaches present the main limitation of having 

prohibitive calculation time, as they simulate a fragmentation process that implies up to few tens of 

thousands of individual cracks generated in the loaded sample. In addition, parameters related to 

cracks inception (linked to the flaws population) and crack propagation (crack speed) can be 

difficult to implement. 

In parallel to discrete approaches, continuum damage models have been continuously developed to 

overcome these difficulties and better capture the physics of multiple-fragmentation induced in 

brittle materials due to the nucleation, growth and coalescence of multiple cracks in mode I (Ravi-

Chandar, 1998) or in the case of sliding cracks uniformly distributed in a brittle material subjected 

to biaxial compressive loading (Ravichandran and Subhash, 1995). Based on a continuum approach, 

Lu and Xu (2004) presented an isotropic damage model built on the concept of micro-crack 

nucleation, growth and coalescence. Even if this model is meant to describe micromechanical 

behaviours, it requires parameters identified from dynamic testing to properly describe the strain-

rate sensitivity of concrete. However, the role of microstructural parameters remains insufficiently 

addressed in the literature. Whereas mesoscopic models constitute a possible way to account for 

microstructural properties, they present a number of drawbacks such as calculation costs, 

difficulties in parameters identification and validation procedure. An alternative is the development 

and implementation of so-called micromechanics-based models that rely on a description of the 

physical phenomenon involved in the macroscopic mechanical response of the concerned solid, as it 

is the case in the Denoual, Forquin and Hild model. This anisotropic damage model is based on the 

concepts of obscuration probability (Denoual and Hild, 2000) and local weakest-link hypothesis 

(Forquin and Hild, 2010). Microstructural parameters are introduced through an explicit law of 

critical defects and through parameters related to crack propagation. This model was extensively 

used in the last two decades to predict the fragmentation properties of ceramics (Denoual and Hild, 

2000; 2002; Forquin et al, 2003; 2018), concretes (Forquin and Hild, 2008; Forquin and Erzar, 

2011) and rocks (Grange et al, 2008; Saadati et al, 2015). In the present work, the “standard DFH 



model” is presented and applied to predict the fragmentation properties of three different brittle 

materials. However, these model predictions rely on the Weibull distribution of flaws deduced from 

a series of quasi-static bending tests. To overcome the limitations that this implies, the density of 

critical defects of each three material is identified from X-ray tomographic analysis. These data are 

used as an input of a modelling based on a continuous and a discrete method. The new possibilities 

offered by both methods, to suitably predict the dynamic strength and final crack density of brittle 

materials according to the applied strain-rate, are then discussed. 

 

2. Predictions and limitations of the DFH (Denoual-Forquin-Hild) model 

2.1 The obscuration probability concept (Denoual and Hild, 2000; Forquin and Hild, 2010) 

The fragmentation process induced in brittle materials subjected to low or high strain-rates tensile 

loading corresponds to the initiation and propagation of a unique, a small or a large number of 

cracks from volume or surface defects that originally exist in a structure Ω of size Z, with Z being a 

length, a surface area or a volume. The material flaws are assumed to be randomly distributed in 

space and activated at random levels of stress. The activation stress of each defect can be expressed 

as function of its size, as considered in (Jayatilaka and Trustrum, 1977). The number of flaws in Z 

for which their activation stress is exceeded, named critical defects, can be represented through a 

density function corresponding to the number of critical defects for a given applied stress level 

λt (σ). A schematic of a dynamic fragmentation process assuming that the stress level varies linearly 

or monotonously with time is presented in Figure 3. The defects are distributed along the horizontal 

axis (spatial scale) and the vertical axis represents the time-scale or stress-level scale. As the stress 

level raises (σ° > 0), the number of activated defects increases. However, the first cracks that 

propagate from the first critical defects lead to the relaxation of tensile stresses in their 

neighbourhood (σ° < 0). Such local stress release prevents the activation of any other critical defect 

in an “obscured domain” of size Zo(T – t) centred on the crack, where T – t corresponds to the time 

interval between the crack inception t and current T times. The growth of obscuration domains 

(zones in which σ° < 0) from activated defects is represented by triangles (obscuration hyper-cones) 

in Figure 3, considering a constant speed for crack propagation. The fragmentation process ends 

when the whole domain is obscured. 

The fragmentation process can be described by a probabilistic approach, by considering the 

condition for a point M at a time T not to be obscured. This condition means that none triggered 

defect is present in the inverted hyper-cones named “Horizon of (M, T )”, the top of which is the 

point M at time T. 



 
 

Figure 3. Obscuration phenomenon and horizon of a point (M, T ). 

According to the concept of “local weakest link hypothesis” introduced in (Forquin and Hild, 2010), 

the probability of non-obscuration Pno is equal to the product of the elementary probabilities of no-

inception of new crack Pi∉ in each elementary space–time zones of Ω, belonging to the horizon of 

this point M at time T: 
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where Pi∉ is expressed as a function of the density of critical defects λt  (x, t). If λt is considered as a 

continuous function between t and t+dt, Pi∉ can be written as: 
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Otherwise, if the density λt  (x, t) is discontinuous between ti and ti+dt ( λt(x, ti+dt) - λt(x, ti) = 

[λt]x,ti ), the elementary probability of no-inception of new crack in the space-time area dZ x dt 

located at (x, ti) is expressed as: 
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Finally, by combining Equations (3), (4) and (5), the non-obscuration probability at (M, T) takes the 

following general expression: 
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2.2 Cracking density and dynamic ultimate strength 

Given that new cracks are only initiated in the not-obscured part of the domain, the increment of 

new cracks can be assumed as proportional to the increment of critical defects weighted by the 

fraction of non-obscured zones. By considering that a fraction of non-obscured zones is equivalent 



to the probability of non-obscuration, the increment and derivate of the crack density can be 

expressed as: 
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If the initial density of cracks at time (T = 0) is assumed to be equal to zero, the crack density can be 

obtained by integrating its derivate or summing its increments: 
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In addition, in the situation where the horizon of point (M, T ) does not strongly interact with the 

boundaries of the domain (Forquin et Hild, 2010), a multiple fragmentation process takes place. In 

such case, the probability of obscuration can be used as a damage variable and the macroscopic 

stress Σ can be calculated as a function of the microscopic stress σ, such as: 

 Σ(Τ  ) = (1 - Po(T ))σ (Τ  ) (9) 

Therefore, the ultimate (maximum) macroscopic strength can be deduced: 
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u
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Finally, the knowledge of the density of critical defects appears to be essential to predict the 

macroscopic strength and cracking density in brittle solids, when subject to high strain-rate tensile 

loadings. 

2.3 Influence of the domain volume-size on the type of fragmentation process. 

The way the size of the considered domain Ω influences the nature of the fragmentation (single or 

multiple) is illustrated in Figure 4. If the domain Z is large compared to the mean size of the 

obscuration zones, the horizon of a points M in Ω at a time T (M, T ) is far from interacting with the 

domain boundaries. Therefore, other defaults are likely to be triggered, thus leading to a multiple 

fragmentation process (Figure 4a). Contrary, if the domain size Z is small compared to the size of 

obscuration cone, the horizon of (M, T ) quickly interacts with the domain boundaries, thus 

preventing the triggering of any other defects. In such case, a single fragmentation process occurs 

(Figure 4b). 

A closed-form solution of the obscuration probability was proposed in (Forquin and Hild, 2010) by 

splitting the horizon of (M, T ) above and below the time tz, which corresponds to the intersection of 

the “horizon inverted cone” with the domain boundaries: 
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In the specific case of a uniform stress field, the non-obscuration probability is described as: 
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At low strain-rates, the time tz approaches the current time T and a single fragmentation process 

occurs. In such conditions, the obscuration probability (Po = 1-Pno) converges towards the failure 

probability as proposed in the Weibull model (1939; 1951): 

 ( )( ) 1 ( ) 1 exp ( )failure no eff tP T P T Z Tλ= − = − −  (13) 

At high strain-rates, the time tz is equal to zero or small compared to T and a multiple fragmentation 

process develops. Therefore, the obscuration probability (Po = 1-Pno) tends to the damage evolution 

law previously proposed in (Denoual and Hild, 2000). 
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The analytical expressions of the horizon size Zo(T – t) and the density of critical defects λt (σ) are 

given in the next subsection. 

 

Figure 4. Illustration of the influence of the relative sizes of the domain Z and the obscuration zones 

on the type of induced fragmentation. A large domain Z leads to a multiple fragmentation process 

(left) because the horizon of a point (M, T ) do not interact with the domain boundaries, whereas a 

small domain Z (right) leads to single fragmentation process as the horizon of (M, T ) and the 

domain boundaries interact rapidly. 

2.4 Close-form solution the DFH model in the case of a multiple-fragmentation 

In order to be able to express the obscuration probability of Equation 14, two parameters need to be 

considered: the density of critical defects and the size of the horizon between time T and t (Fig. 3). 

In the present subsection, the density of critical flaws is considered to be a power law of the positive 

(tension) principal stress (Weibull distribution of critical defects): 

 8���9

 = 8� �〈��;
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where the constants m and ���8�
−1/? are respectively the Weibull modulus and scale parameter. 

The Weibull modulus gives a direct indication on the scatter in failure stresses. The higher the 

Weibull modulus, the lower the scatter of failure stresses with respect to the average value. The 

hypothesis are made for each zone of stress release (obscuration zone) to be centred on the point of 

crack initiation and for all the obscuration zones to be growing in a self-similar way, with a 

diameter proportional to the crack size. Under these two assumptions, the size of the obscuration 

zone at a time T, corresponding to a single crack created at time t, can be expressed as: 
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where S is a shape parameter of the obscuration volume equal to 3.74 (Denoual and Hild, 2002), C 

is the one-dimensional wave speed (@ = AB/C) and k is a dimensionless parameter related to the 

crack propagation velocity. Based upon the concept of conservation of energy, it was demonstrated 

that when the crack length becomes significantly larger than the initial crack size, the cracking 

velocity tends to a limit close to 0.38C (Broek, 1982; Kanninen & Popelar, 1985). It is the reason 

why, the parameter k is kept constant and equal to 0.38 in the present work. Moreover, by assuming 

a constant stress rate �� , the obscuration probability, from Equation (14), can be expressed as a 

function of the space dimension n, the Weibull modulus m, and the dimensionless time T/tc: 
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where the characteristic time tc is given by (Denoual and Hild, 2000): 
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For any value of m higher than 3 and considering (n = 3), it can be observed that the obscuration 

probability is less than 5% at (T = tc) and greater than 95% at (T = 2tc). Therefore, the characteristic 

time represents the time from which most of the obscuration phenomenon occurs. In addition, a 

characteristic stress is defined in the following way: 

 σc = σ°.tc, 
1 1

0

m nn

m n m nm n
m n

c o
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, (19) 

and a characteristic density is defined as following: 

 λc = λt (σc), 
1 1

0

m n m nm n
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− −
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. (20) 



By combining the closed-form solution of the non-obscuration probability (Eq. 17) and the 

Equations (7) and (8), the final crack density is expressed as a function of m, n and the characteristic 

density: 
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 (21) 

Under the assumption that the non-obscuration probability can be assimilated to the ratio between 

the obscured and total volumes, a damage variable D and a macroscopic stress Σ may be defined 

(Denoual and Hild, 2000): 

 ��9
 = D'�9
   and   Σ�9
 = E1 − ��9
F��9
 (22), (23) 

In the same way, by merging the closed-form solution of the non-obscuration probability (Equation 

(17)) and Equations (9) and (10), the ultimate macroscopic strength ΣG (maximum value of the 

macroscopic stress) and the time HG at which this maximal stress is reached can be expressed as 

function of the characteristic stress: 

 ΣG = �I ��J �=K
L�
!=!
! � �NO�
  and  HG = HI ��=K
L�
!=!
! � �NO�

 (24), (25) 

Equations (21), (24) and (25) are used in the next section to compare the fragmentation properties 

of three brittle materials. 

 

3. Identification of the Weibull parameters and predictions of the DFH model for three brittle 

materials 

The first material considered in the present study is an Ultra-High Performance Concrete (UHPC) 

called Ductal®, provided by Lafarge-Holcim Company, characterised by a high compressive 

strength (170 MPa). This type of concrete benefits from a formulation with a reduced size of grains 

(≤ 0.6 mm), forming an optimal granular skeleton which provides a good homogeneity of the grains 

and matrix elastic properties. Such structural features allow decreasing internal stresses (Richard 

and Cheyrezy, 1995; Cheyrezy et al, 1995). In addition, the small water to cement ratio (≤ 0.2) 

enables to minimize the amount of porosity in the final concrete material (water porosity 5-6 %). In 

the considered commercial composition, steel fibres reinforce the concrete (length: 13 mm, 

diameter: 0.2 mm). This type of UHPC was studied in (Blasone et al, 2021) to simulate the 

penetration of a small calibre projectile against a 60 mm thick target. The UHPC mechanical 

behaviour was investigated using Quasi-Oedometric Compression tests, bending tests and spalling 

tests at the Hopkinson bar.  

The second microstructure studied is an artificial porous polycrystalline granular ice grown in 

Laboratoire IGE (Institut des Géosciences et de l’Environnement). The specimens are grown from 

isotropic seeds made of crushed ice, having a maximum particle diameter of 2 mm, and surrounded 

by water at 0°C. The air trapped between the snow grains during the process leads to the formation 

of a highly porous microstructure, with about 7 to 10 vol.% of porosity. The final microstructure is 



characterised by equiaxed grains, an isotropic crystallographic texture and a mean grain size of 

about 1-2 mm (Georges et al, 2019).  

The third microstructure, provided by Saint-Gobain, is a dense silicon carbide ceramic. This 

material corresponds to a grade of Hexoloy SA® with size-controlled porosity. These relatively 

large and spherical pores are discrete, non-interconnected and dispersed in a controlled manner 

throughout the body of the material. Their proportion represents less than 2 vol. %, with a maximal 

diameter below 100 μm. This material has a density of about 3.11 g/cm3 and is referred to as porous 

SiC in the present work. 

24 bending tests were performed for each material. The tests on UHPC were carried out with 

12×16×100 (Height × width × span) mm3 Ductal® beams without fibre reinforcement. A servo-

hydraulic Instron testing machine with 100 kN load capacity was used for this material. The failure 

stress was directly derived from the maximum force. The strain rate of the bending tests was 5×10-6 

s-1 (Blasone et al, 2021).  

The bending tests on porous ice were performed with the same testing facility than for UHPC 

samples (i.e. hydraulic press Instron with a 100 kN loading cell) coupled with a climatic enclosure 

supplied with liquid nitrogen to regulate the test temperature (set to -30°C) (Georges, 2020). The 

samples cross-section was 40×20 (height x width) mm² with a support span of 120 mm. The cross-

head speed was set to 4 µm/s.  

Results of 3-points quasi-static bending tests performed on the SiC ceramic were provided by Saint-

Gobain Research Provence (France). The dimensions of the tested specimens were 3×4×45 mm3 

(height × width × length), with a support span of 40 mm. The loading speed was set to 1 µm/s. As 

brittle materials are susceptible to crack nucleation at external and internal flaws, each surface of 

the specimens were polished and the corners chamfered. 

The obtained distribution of failure stresses 
Fσ  allows building the so-called Weibull (1939) 

diagram in which [ ])1ln(ln FP−−  versus )ln( Fσ  is interpolated by a linear function, the slope of 

which is the Weibull modulus m. Next, the effective volume is calculated according to the equation 

provided by Davies (1973), in order to take into account of the stress heterogeneity in the loaded 

volume: 

 PJQQ = R � 〈�〉�NST�= U VW  , (26) 

where the symbol <.> corresponds to the Macaulay brackets, i.e. the positive value. In the case of 

three-point bending tests, the effective volume of the loaded structure is given by the analytical 

solution: 

 PJQQ = XYZ4�=K�
[  , (27) 

where h is the height, b is the width of the tested beams and L is the bottom span length. Finally, the 

Weibull scale parameter ���8�
L�/= is calculated from the following equation: 

 �\�PJQQ
 = ��EPJQQ8�FL �NΓ �=K�= �  , (28) 



where �\ is the mean bending failure stress and Γ the Eulerian function of the second kind. The 

parameters of the DFH model for the three brittle materials are summarised in Table 1.  

Table 1. Parameters used in the DFH model for the three brittle materials. 

 

A transition volume Ztransition between single and multiple fragmentation processes can also be 

defined as a function of the applied strain-rate, considering the equation (�\�	"#$
%&"&'

 =  ΣG�!�
): 
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The final crack density, the ultimate strength ΣG, the time corresponding to the ultimate strength HG 

and the single-multiple transition volume, provided by Equations (21), (24), (25) and (29), are 

plotted as functions of strain-rate (defined as !� = ��/B) for the three materials in Figure 5. To do so, 

the input parameters of the DFH model provided in Table 1 were considered. Strong differences are 

observed between the three materials, in terms of predicted ultimate strength (Figure 5a). However, 

it is interesting to remark that the final crack density, the time corresponding to the ultimate strength 

and the single-multiple transition volume are found to be relatively similar when compared at same 

strain-rate.  

These predictions rely on the Weibull parameters identified from bending tests, which effective 

volumes are between the millimetre and centimetre scales. As explained in the next sections, these 

identification scales may lead to bad predictions when the number of cracks per effective volume 

significantly exceeds one. 

Material UHPC Porous ice SiC ceramic 

Elastic modulus, density, 1D-wave speed 

Young’s modulus E (GPa) 51.27 5.76 390 

Density ρ (Kg/m3) 2460 840 3110 

1D-Wave-speed C (m/s) 4565 2619 11198 

Bending tests and Weibull parameters 

Number of tests 24 24 24 

Height × width × span (mm3) 12 × 16 × 100 40 × 20 × 120 3 × 4 × 40 

Mean tensile failure stress 

(MPa) 

19.42 1.76 300 

Effective volume (mm3) 97.94 1220 0.830 

Weibull modulus m 8.9 5.27 16 

Other DFH model parameters /�, !�� (s-1) 0.03, 5x10-6 - - 

n, S, k 3, 3.74, 0.38 



 

Figure 5. DFH model predictions for the evolution of (a) ultimate strength, (b) time corresponding 

to the ultimate strength, (c) final crack density and (d) single-multiple transition volume of the three 

brittle materials as function of the strain-rate (defined as !� = ��/B). (Equations (24), (25), (21) and 

(29)). In this figure, the influence of strain-rate on the inception stresses of pores in UHPC concrete 

is not taken into account (see next sections). 

 

4. Identification of the density of critical defects in three brittle materials, based on X-ray 

tomography CT-scan 

In the present work, the microstructure of each of the three studied brittle materials (concrete, 

porous ice and ceramic) is examined by X-ray micro-tomography, using two different X-ray 

devices. This method consists of sending an X-ray beam through an object and collecting the 

released attenuate beam via a panel detector. By placing the studied sample on a rotating platform, 

the 2D radiography of each slide of the object can be stacked to reconstruct a 3D image of the 

specimen. The X-ray attenuation level being linked to the atomic number of the crossed material, 

the grey levels of the resulting 3D image are directly linked to the density gradient in the material. 

From this, the 3D image is binarized to highlight the internal structure of the material, such as 

porosity. A post-processing algorithm is used to label the identified pores (using the multi-

dimensional image processing python package scipy.ndimage) (Weaver, 1985) and evaluate their 

volumes (using the label toolkit of the python package SPAM (Software for the Practical Analysis 

of Materials)). The pore equivalent diameter, determined from these analyses, corresponds to the 

diameter of a sphere having the same volume. Noise limits the ability to reliably identify pores 

(a) (b)

(c) (d)



smaller than a threshold size. For the SiC ceramic and the UHPC, the lower limit of neighbouring 

voxels required to adequately represent a single pore was fixed at 5 pixels in diameter and smaller 

pores were eliminated from the analysis. This criterion is in line with resolution limits presented in 

the literature (Gualda and Rivers, 2006; Tammas-Williams et al, 2015). With porous ice the high 

scanning resolution (7 µm) allowed a characterisation of pores as small as 3 pixels in diameter. 

Consequently, this threshold size was chosen for this material. Pores are classified in descending 

order of size and the cumulative density of pores is calculated as the cumulative number of pores 

divided by the considered volume and can be plotted as a function of the pore equivalent diameter. 

This methodology was applied to analyse the porosity present in each of the three studied materials. 

Two UHPC cylindrical samples (diameter 29 mm, length 38 mm) were scanned using the X-ray 

micro-CT scanner EASYTOM XL Nanofoyer in the Laboratoire SIMaP. The X-ray source 

generates a polychromatic cone beam, which is detected by a flat panel detector of 

2084 × 2084pixels, each pixel of the panel detector having a size of 27 µm. The X-ray source 

operated at 150 kV and 119 μA. The UHPC sample is scanned in a helical mode to maximize the 

resolution, 4,320 projections are acquired during three full platform rotations. This configuration 

allowed reaching a voxel size of 20 μm. Figure 6a shows a slice of the 3D reconstructed image of 

one specimen after thresholding. The isolated groups of voxels were identified as pores. The pore 

size distribution for a volume of 35×40×20 mm3, shown on Figure 6b, was obtained by summing up 

paralepidid crop of the two scanned specimens. 

The second scan (Figure 6c) was performed on a cylindrical ice sample (diameter 45 mm, length 

120 mm) in a cold room set at -20°C. To do so, the tomography equipment TomoCold 

DeskTom130 RX Solutions at the Laboratoire CNRM-CEN (Centres d’Etudes de la Neige, 

Grenoble), specifically adapted to cold temperatures, was used. A current of 238 µA and a voltage 

of 60 kV powered the X-ray tube. The detector was composed of 1920×1536 pixels with a physical 

pixel size of 127 µm. A ring filter with a 20-voxel kernel was applied in order to remove ring 

features, which are artefacts from the acquisition. After reconstruction, the scans are composed of 

approximately 4500 × 1660 × 1660 voxels. After the threshold step, a binary 3D image is obtained 

(slice on Figure 6c) and can be segmented using the python algorithm program in order to identify 

each individual pore with a diameter higher than the chosen cut-off value. The corresponding pore 

distribution is plotted on Figure 6d. 



 

Figure 6. X-ray micro-CT scan of a sample of each brittle material. (a-b) UHPC, (c-d) Porous ice 

sample, (e-f) Dense SiC ceramic with size-controlled porosity. (a, c, e) Slice of the binary 3D 

reconstructed image. (b, d, f) Cumulative flaw density plotted as a function of the flaw equivalent 

diameter λt(Deq) (in log.-log. scale). 

A sample of SiC ceramic with controlled porosity was scanned using the X-ray scanner EASYTOM 

XL Nanofoyer in the Laboratoire SIMaP. A parallelepiped sample of 20 × 1.5 × 1.5 mm3 was 

considered to capture the very small sintering defects of the material (few µm) and include a 

volume large enough to properly represent the microstructure (Fig. 6e). The current and voltage of 

the polychromatic conical beam (source size of 3.5 µm) are respectively set to 26 µA and 100 kV. 

The detector is composed of 2084 × 2084 pixels with a physical pixel size of 24 µm. The post-

(c) 
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(b) 

(f) 



processed 3D image contains 900 × 900 × 900 voxels, and results from the reconstruction of 1856 

projections acquired during one full rotation of the specimen around the vertical axis. Such high-

resolution scan allows reaching a voxel size of 1.33 µm. Threshold and segmentation procedures 

were applied, similarly to both previous materials, in order to identify each individual pore as 

shown on Figure 6e. The distribution of pore size obtained is presented on Figure 6f. 

5. Identification of the density of critical defects versus applied stress in three brittle materials 

5.1 Methodology 

In order to use the previous X-ray tomographic analysis in a fragmentation model, the cumulative 

pores distributions λt(Deq) presented in Figures 6b, 6d and 6f, need to be converted into a function 

connecting the density of critical defects to the applied microscopic stress. As previously introduced 

by several authors (Jayatilaka and Trustrum, 1977; Hild, 1992; Forquin et al, 2004), the Linear 

Elastic Fracture Mechanics (LEFM) theory can be used to link the size of a pore to its expected 

crack-inception stress. According to this theory, the stress intensity factor KI, related to a crack of 

size (Deq = 2.a) is given by the following equation: 

 _̂ = `�√bc  , (30) 

where Y is a dimensionless correction factor linked to the crack geometry, often referred to as the 

geometric shape factor. In the case of a straight crack of length 2a, oriented perpendicularly to the 

loading direction in an infinite plate subject to a uniform stress field, this correction factor is (Y = 

1). In the case of a penny-shaped crack of radius a in an infinite domain under uniaxial tension σ, 

the geometric shape factor value is (Y = 2/π). From this, the macroscopic stress to trigger an 

unstable crack is given by: 

 �"#&ddJ# = efghAi�jk/4  , (31) 

with _̂l  the critical stress intensity factor of the tested material. 

In the present work, it is proposed to determine the parameter Y thanks to the Weibull parameters 

identified from bending tests. Indeed, according to Equation (15), the density of critical flaws is 

expressed as a power law of the positive (tension) principal stress, with the Weibull modulus being 

the power value. The Weibull modulus is identified from the distribution of bending failure stresses. 

The Weibull scale parameter ���8�
−1/? and mean bending failure stress are determined from the 

effective volume and Equation (28), respectively. The Weibull linear regression (in a log-log plot) 

is reported on the plots of Figure 7a, 7b and 7c on the stress range corresponding to the bending 

tests. Moreover, by considering the equivalent diameter of a flaw to be triggered at a stress level 

(�), the previous cumulated flaw density can be expressed as a function of (�): 

 �Jm = 4i �efgh.��4  c/V  8"E�JmF = 8"E�Jm��, `, _̂l
F  , (32), (33) 

where _̂l is the critical stress intensity factor provided in Table (1) and supposed to be constant 

whatever the flaw size and ` is the geometric shape factor to be identified from bending tests. From 

this last equation, it is possible to plot cumulated flaws density 8" considering several values of the 

parameter `, as shown on Figure 7a, 7b and 7c. Next, the appropriate shape factor Y is determined 



by matching the 8" curve from Equation (33) to the Weibull line (Equation (15)), for a stress equal 

to the mean tensile strength σw measured in bending tests. The calibration of Y also compensates the 

uncertainty regarding the critical stress intensity factor reported in Table 2. For each material, the 

identified value of Y is reported in Table 2. It is noted that for the three brittle materials this shape 

factor value is found to be close to one. In the next sections, this quantity is supposed to be constant 

for a given material and the Equations (32) and (33) are used for both the continuous and discrete 

modelling of the fragmentation. In the case of UHPC concrete a strain-rate sensitivity in the “quasi-

static” regime needs to be considered (Blasone et al, 2021), so the 8" curve varies with the applied 

strain rate as the crack-inception stress of the pores increases with the applied strain rate: 

 �"#&ddJ#�!�
 = �"#&ddJ#� � ���� ��
�
  , (34) 

where /� corresponds to an exponent traducing the strain-rate sensitivity in the “quasi-static” 

regime and !�� is a reference strain-rate (Table 1). This equation was already considered in (Forquin 

and Erzar, 2010; Erzar and Forquin, 2014) to account for the strain-rate sensitivity of wet concrete 

tensile strength due to the presence of free-water (Rossi, 1991). According to the identification 

proposed in (Blasone et al, 2021), the following parameters can be considered (/� = 0.03 and !�� =5. 10Lr). Conversely, no strain rate sensitivity in the “quasi-static” regime is considered for the 

porous ice and the SiC ceramic. 

 



 

Figure 7. Plot superposition of the critical flaws density, provided by the bending tests (Weibull 

law, black solid straight line), by tomographic analysis for three different values of the parameter Y, 

and interpolated function (black curved dash-dotted line) used in the continuous method (Equations 

(34), (35) and (36)), as a function of the applied stress, for (a) concrete, (b) ice and (c) ceramic. The 

final shape factor value Y is defined for each material when both first types of curves provide the 
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same critical flaws density for a stress equal to the mean tensile strength measured from the bending 

tests. For concrete, two levels of strain-rate are considered (5×10-6 s-1, 100 s-1).  

 

5.2 Identification of the cumulative flaw density function for each brittle material 

The DFH model presents the strong hypothesis that the critical flaws density is considered to be a 

power law of the positive (tension) principal stress (Equation (15)). A piece-wise function matching 

the cumulative flaw density expressed as a function of � obtained from the tomography analysis, 

was identified with the aim of suitably including the full flaw population in the model. The 

calibrated interpolation function is given in Table (2) for each material. 

 

Table 2. Parameters considered in Equations (32) and (33) and interpolation function of the 

logarithmic cumulative flaw density versus the logarithmic stress 

 

In the case of UHPC (Fig. 7a), the critical stress intensity factor (0.627 sDc√?) was deduced from 

a Single-Edge Notched Bending (SENB) test performed in (Forquin, 2003) with a notched sample 

of UHPC (Ductal®) of dimensions 5×3×20 mm3  (h×w×L, with L the span length). Given the initial 

notch length a of 1.3 mm (α = a/h) and F the peak force reached in the test (24.2 N), the critical 

stress intensity factor K1c is deduced according to the following formula (ASTM D5045-14, 2014): 

Material _̂l  �sDc√?) Y Interpolation function of Λ = tuv 6λ" w �Nxy7 

+,
-z ≤ z� → Λ = |��z
                                                z& < z ≤ z&K� → Λ = |&�z
|&K��z
�|&�z
m~+|&K��z
m~
�/m~z > z
 → Λ = |
�z
                                                 

��Hℎ   i ⊂ {0, 1, … , n-1} |&�z
 = c&�z − z&
 + &̀ ,                         c/V  z = tuvE�[�$]F                      

UHPC 0.627 0.83 �  z� = 7.172tuv � ���� ��
� ,  �̀ = 5.90,  c� = 8,  �� = 15 
 z� = 7.672tuv � ���� ��
� ,  �̀ = 8.53,  c� = 1.8                     

(35) 

Porous ice 0.0919 

(Nixon and 

Schulson, 1988) 

0.80 

+�,
�- z� = 6.1,  �̀ = 4.95,  c� = 7.5,  �� = 50      z� = 6.2,  �̀ = 6.91,  c� = 5.0,  �� = 50       z4 = 6.59,  4̀ = 7.48,  c4 = 0.7,  �4 = −45 z� = 6.72,  �̀ = 8.05,  c� = 8.0,  �� = 40    z� = 6.9,  �̀ = 8.74,  c� = 1.2                       

      (36) 

SiC ceramic 2.89 0.80 � z� = 1.4,  �̀ = 5.8,  c� = 18 ,  �� = 10   z� = 4.65,  �̀ = 6.4,  c� = 0,  �� = −10 z4 =  7.3,  4̀ = 6.8,  c4 = 12                           (37) 



 �̂ = � �Z\.Y�.�� |��
 ,        |��
 = 1.5 ��.���.��L���L�
E4.��L�.���K4.��[F���K4�
��L�
�.� . (38) 

Next, a dimensionless parameter Y very close to 1 (Y = 0.83) provided the best fit of the Weibull 

line for a stress equal to the mean tensile strength of the bending tests (Figure 7a). For stresses close 

to the mean failure stress of bending tests (σw = 19.42 MPa), the slope of the curve, based on data 

from tomography analysis, matches quite well the slope of the Weibull straight line, which 

corresponds to the Weibull modulus (m = 8.9, Table 1). For concrete, as the inception stresses of 

pores are supposed to be strain-rate dependent according to Eq. (34), the critical flaws density 

versus strain-rate function also depends on the strain-rate. The critical flaws density versus applied 

stress is plotted in Figure 7a considering two strain-rates (the red curved dash-dotted line is 

corresponding to 100 s-1). The Weibull line of the porous ice, identified from bending tests, is 

compared to the data extracted from the tomography analysis in Figure 7b. For this material as well, 

a shape parameter very close to 1 (Y = 0.8) provides the best fit in a stress range close to the mean 

failure stress value (σw = 1.76 MPa, Table 1), and the slope of the curve is found to fit pretty well 

with the Weibull modulus (m = 5.3, Table 1). 

The fracture toughness of the SiC ceramic with fuse flaws was measured on a SENB specimen, via 

a 4-point bending test (crack length 1.6 mm). The dimensions of tested specimen were 4×3×45 mm3  

(height × width × total length). The distances between the internal and external cylindrical supports 

were set to 20 and 40 mm, respectively. The obtained value, in this configuration, is 2.89 sDc√?. 

Finally, a shape parameter close to 1 (Y = 0.8) provides a good match between the tomographic data 

and the Weibull linear regression (Figure 7c) for a range of stresses close to σw (300 MPa, Table 1). 

In addition, the slope of the curve coincides very well with the Weibull modulus (m = 16, Table 1). 

The high Weibull modulus value obtained for this material is due to the good size homogeneity of 

the large pores (~ 45 µm), which correspond to the flaw population triggered during quasi-static 

bending tests, therefore resulting in a low scattering in the flexural strength measurement. 

The final interpolation function of the cumulative flaw density (Equation (33)) expressed as 

function of the parameters of Table (2) ( �̂I, `, z�, `�, c�, ��) is plotted according to the applied stress 

on the Figures 7a, 7b and 7c for each material (curved dash-dotted lines).  

 

6. Predictions of the fragmentation properties of three brittle materials based on tomographic 

analysis: The continuous method 

6.1 Methodology 

The obscuration probability of the DFH model, expressed in Equation (14), can be rewritten by 

using the size of the obscuration zone proposed in Equation (16) (with n = 3), but without making 

any assumption on the density of critical defects λt (σ(t)), except it is a continuous and derivable 

function.  

 ln�1 − D'�9

 = − R �λ����"

�" �� @�9 − H

�VH;�  (39) 



Considering that 	'�0
 = 0  (with 	'�9 − H
 = �E @�9 − H
F�
), the derivative of the previous 

equation with respect to time leads to (cf. appendix): 

 
��L�¡ ��¡�;
�" = R �λ����"

�" 3�� @
��9 − H
4VH;�  (40) 

From the second derivative, the following differential equation is obtained (Denoual and Hild, 

2000): 

 
�[�"[ � ��L�¡ ��¡�;
�" � = 6�� @
�λ"���9

 (41) 

By applying a triple integration of the equation (41), the evolution of the obscuration probability 

can be determined over time for a given loading history σ(t). When the obscuration probability is 

assimilated to a damage variable (Equation (22)), its determination provides the evolution of a 

macroscopic stress, according to Equation (23). From this, the ultimate macroscopic strength of the 

material (i.e. maximum macroscopic stress) can be deduced. In addition, the final crack density is 

obtained by integrating Equation (7). This methodology was applied to each brittle material, 

assuming a linear increase of the microscopic stress as a function of time (��9
 = �� . 9), and 

considering a large range of strain-rates, supposed proportional to the stress-rate (!� = ��/B). The 

obtained results are detailed in the next subsection. 

6.2 Application of the continuous method to the three brittle materials 

The damage evolution law of the UHPC material was calculated by introducing the density of 

critical defects of Equation (35) into Equation (41). The considered values for the parameters (/�, !��, S, k, C) are listed in Table 1. The obtained ultimate macroscopic strength and final cracking 

density are plotted as functions of the strain-rate in Figures 8a and 8b (solid blue lines). These 

predictions are compared to the one obtained using a Weibull density of critical defects (power-law 

function) (Equations (24) and (21), Figures 5a and 5c). Whereas a good match is obtained at a low 

strain-rate, a higher strength level is predicted with the tomography population of defects at a high 

strain-rate compared to the DFH closed-form solution (Weibull flaws population). This difference 

can be explained by the fact that, at the high strain-rates, the defects activated are the smallest ones. 

As densities of critical defects diverge at the highest stress levels (Figure 7a), the predictions made 

from the tomography data and the Weibull power-law function diverge. This precisely demonstrates 

the interest to consider rather the defects population identified from tomography than the Weibull 

one, provided by bending tests. 

 

In terms of ultimate strength, the model predictions are compared to experimental results from 

(Blasone et al, 2021) obtained through spalling experiments using a Hopkinson bar apparatus. As 

shown on the plot of Figure 8a, the tensile strength given by the DFH model, based on the Weibull 

power-law function or on the defects distribution identified from tomography, are in good 

agreement with the experimental data at strain rates in the range of 50-200 s−1. 

 



 

Figure 8. Predictions of the UHPC concrete macroscopic strength (a) and final crack density (b) 

evolution according to the applied strain-rate. Comparison between the DFH close-form solution 

and the continuous and discrete methods, based on a Weibull flaw distribution (Table 1) and a flaw 

distribution identified from the tomographic analysis (Table 2), respectively.  

The same methodology was applied to the porous ice material. The predictions for the ultimate 

macroscopic strength and final cracking density evolution with respect to the applied strain-rate are 

plotted on Figures 9a and 9b. The ultimate strength predicted by the tomography analysis and 

Weibull-based DFH solution intersect at two different strain-rates. Below 30 s-1 the predicted 

strength with the continuous method is higher than with the closed-form solution, which 

corresponds to activated defects in the part I of Figure 7b. In a range of strain-rates from 30 s-1 to 

500 s-1 it is observed that the predicted strength provided by the continuous solution is slightly 

lower than the one provided by the closed-form solution (Weibull distribution of flaws). In this 

case, the activated defects mainly correspond to those highlighted in the part II of Figure 7b. Both 

predictions are in a relatively good agreement in this strain-rate range in term of crack density 

(Figure 9b). At higher strain-rates, namely above approximately 400-500 s-1, the flaws of the zone 

III start to be subsequently solicited resulting in a divergence between the final crack density 

predicted by the continuous method and Weibull-based solution as the flaw density predicted by a 

Weibull distribution is no longer relevant (Figure 7b). 
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Similarly to UHPC, the ultimate tensile strength predictions of the DFH model are compared to 

experimental results (red dots in figure 9a) of spalling tests conducted with a Hopkinson bar 

apparatus and reported in (Georges et al., 2021). The experiments were performed with porous ice 

samples presenting a microstructure identical to the one considered in the present work. The 

increase of experimental tensile strength with strain rate, over the considered range of strain-rates 

(24-120 s-1), is in good agreement with the predictions provided by both approaches (Weibull-based 

solution and Tomography approach). In terms of tensile strength values, one can notice a slight 

over-estimation compared to the DFH model but predictions remain satisfying. Experimental data at 

higher strain rates would be of interest to validate the model predictions of ice tensile strength over 

a wider range of strain-rates. 

 

Figure 9. Predictions of the porous ice macroscopic strength (a) and final crack density (b) 

evolution according to the applied strain-rate. Comparison between the DFH close-form solution 

and the continuous and discrete methods, based on a Weibull flaw distribution (Table 1) and a flaw 

distribution identified from tomographic analysis (Table 2) respectively. 

(b) 

(a) 



The ultimate macroscopic strength of the SiC ceramic, with fuse-flaws, is plotted as a function of 

the strain-rate on Figure 10a. Two different behaviours can be distinguished in the present case, 

each one corresponding to different domains of the flaw density versus critical stress curve plotted 

on Figure 7c. For strain-rates below 20,000 s-1, the continuous method and the DFH Weibull 

solution match well (Part I and II, Fig. 10a), which is due to a good similarity between the critical 

flaw density versus stress based on tomographic data and the Weibull slope, in the domain I of 

Figure 7c. For higher strain-rates, above 20,000 s-1, the continuous method predicts higher ultimate 

strengths compared to the Weibull-based solution (Part III, Fig. 10a). This is explained by that fact 

that no pores of size between 20 - 50 µm are available in the material to be activated (plateau 

identified as part II in Figure 7c) and the loading rate is not high enough to trigger smaller pores. 

So, the cracking density presents a plateau for a relatively large range of intermediate strain rates, 

between 10,000 and 40,000 s-1 (Figure 10b). Therefore, in this range of strain rates, the volume is 

fully damaged by the growth of obscuration zones spreading from the activation of the large size-

controlled pores. At higher strain rates (> 40,000 s-1), the growth velocity of the obscuration zones 

from the large pores is not sufficient anymore to avoid the trigger of smaller flaws, so the cracking 

density starts to increase again. Very small pores activated in this high strain-rate domain mainly 

correspond to sintering defects or impurities, identified as part III in Figure 7c. Finally, the growth 

of obscuration zones from large flaws prevented the initiation of numerous micro-cracks in the 

material for loading rates between 10,000 and 40,000 s-1.  

One preliminary experimental result on the porous SiC ceramic is compared to the model 

predictions in Figure 10a. This result was obtained from a shockless plate-impact spalling technique 

developed to reach a controlled strain rate in the failure zone. This new experimental technique, 

based on wavy-machined flyer-plates, was developed in view of evaluating the strain-rate 

sensitivity of ceramic tensile strength (Dargaud and Forquin, 2020, submitted for publication). 

According to this preliminary result, the spall strength of the porous SiC ceramic reaches 410 MPa 

for a strain rate of 18,150 ± 1,000 s-1, which is in very good agreement with ultimate strength 

predictions given by the DFH model. Providing more experimental data for validation is an ongoing 

work. Compared to the spall strength values given in (Zinszner et al, 2017) for a dense SiC ceramic 

Hexoloy SA (608 MPa at 17,000 ± 1,000 s-1), the presence of relatively large size-controlled pores 

led to a decrease of the material strength, at least for strain-rates lower than 25,000 s-1. 



 

Figure 10. Predictions of the porous SiC ceramic macroscopic strength (a) and final crack density 

(b) evolution according to the applied strain-rate. Comparison between the DFH close-form solution 

and the continuous and discrete methods, based on a Weibull flaw distribution (Table 1) and a flaw 

distribution identified from tomographic analysis (Table 2), respectively. 

 

7. Predictions of the fragmentation properties of three brittle materials based on tomographic 

analysis: The discrete method 

7.1 Methodology 

Discrete numerical simulations have been developed using the programming language Python. The 

routine is composed of the following steps. Each pore is identified from the tomographic scan using 

the Python package SPAM.A cut-off value was considered to distinguish an effective pore from 

potential noise of the tomographic scan.  This size limit was set to 3 voxels in diameter for the 

porous ice and 5 voxels for the SiC ceramic and UHPC concrete materials. The coordinates of each 
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pore are assimilated to the centre of mass position of ideal ellipsoids fitting the pores (Ikeda et al, 

2000). The considered finite volume was obtained by summing up paralepidid crop of the two 

scanned specimens for the UHPC. The cubic scanned volume is cropped from a large cylindrical 

sample for the ice, and from beam of millimetric size for the ceramic. A numerical cube of equal 

size meshed with elementary cube elements of homogenous size is then used as a receptacle for the 

pores. Detailed parameters for the numerical simulation and the mesh settings are given in Table 3. 

In order to simulate the material behaviour resulting from a tensile loading, a constant stress-rate is 

homogenously applied to the cube. The stress keeps increasing linearly in the whole domain, as 

long as none of the pore critical stresses is reached. Once the applied stress reaches the critical 

stress of one pore, a spherical obscuration volume centred on this pore starts to grow with a radius 

proportional to the constant speed kC. All the neighbouring pores reached by this growing 

obscuration sphere are obscured, meaning they cannot be activated anymore even if the loading 

stress happens to exceed their threshold activation stress. Thus, it is possible for a given strain rate 

to determine how many pores are triggers and how many were simply obscured. 

In parallel, once the spherical obscuration zone of an activated pore reach a new mesh element 

while growing, the corresponding element is considered to be fully damaged. The elements of the 

cube not yet affected by any spherical obscuration volume keep a stress level increasing linearly. 

The damage is defined as the number of damaged elements divided by the total number of elements. 

The macroscopic stress is calculated from the damage, as presented in Equation (9). From this, the 

macroscopic ultimate strength, which is defined as the maximum value of the macroscopic stress, is 

deduced. The discrete numerical simulation ends when the whole volume is obscured. With this 

algorithm, it is also possible to compute the crack density defined as the number of activated pores 

(for which the stress has reached its critical value without being obscured) during the process 

divided by the total volume. Finally, this algorithm is applied for a large number of strain-rates in 

order to evaluate the sensitivity of the macroscopic ultimate strength and crack density to the 

loading rate. For each brittle material considered, the input parameters and obtained results are 

detailed in the next subsection. 

To better analyse the discrete numerical simulation, bar chart histograms, presented on Figures 11 

(a-c-e), show, for three strain-rates and for each material, which are the stresses of the triggered 

pores at times Tu and Tmax, which corresponds to the time for which the ultimate stress is reached 

and the final time (volume fully damage) of the calculation, respectively. Histograms corresponding 

to low strain rates overlap the one of higher loading rates. Moreover, Figures 11 (b-d-f) present the 

evolution of the crack density as function of the applied microscopic stress that evolves linearly 

with time (��9
 = �� . 9), considering the same strain-rates. This figure illustrates which is the 

population of activated defects involved in the macroscopic strength and final cracking density 

determination, for various loading-rates. 

7.2 Application of the discrete method to the three brittle materials 

First, the discrete method was applied to the UHPC material, considering the parameters listed in 

Table 3. A 3D volume 35×40×20 mm3 was considered. This volume was defined as the largest 

volume provided by the tomographic scans. 15073pores, of size ranging between 100 µm and 2.5 



mm were placed in the volume according to their exact position obtained from the X-ray CT scans 

(which represents about 2% of the total volume). This porosity represents the entrapped air during 

the casting process. The mesh element size of 0.5 mm was chosen as a compromised to capture the 

smallest element size providing a reasonable calculation time. This mesh size is much smaller than 

the average distance between the considered pores. For strain rates lower than 10 s-1, the discrete 

approach predicts an ultimate strength that depends only on the weakest defect in the volume 

35×40×20 mm3, therefore resulting in a unique crack density and a higher ultimate strength than in 

the continuous approach (Figure 8). This phenomenon is not captured in the continuous approach as 

this approach does not involve the size of the considered volume. A good match is observed 

between the predictions provided by the continuous and discrete methods between 10 s-1 and 

1,000 s-1, in terms of dynamic strength and crack density versus strain-rate evolution. Even if the 

continuous approach does not consider the exact position of the pores, it leads to results equivalent 

to the one obtained with the discrete approach. Above approximately 1,000 s-1, it is noted that the 

ultimate strength and cracking density predicted by continuous and discrete methods start to 

diverge. This is due to the limited size of the smallest pores (0.1 mm) captured for the discrete 

method, whereas for the continuous method the pore distribution is extrapolated above this 

threshold. Therefore, the continuous approach predicts an increasing number of cracks, whereas the 

discrete approach reaches a plateau. It results in an estimation of the ultimate strength subsequently 

higher than the ultimate strength predicted by the continuous approach.  

The same methodology was applied to the porous ice material with the parameters listed in Table 3. 

Similarly, to the UHPC material, a 3D cubic volume (31.32×31.32×31.32 mm³) was considered. 

25,926 pores were spatially distributed in the volume at their exact positions, extracted from 

microCT data. The corresponding air-content is approximately 6.5 %. A mesh element size of about 

0.3 mm was found to be satisfying regarding the pore sizes and the pore spatial distribution. The 

time step was kept constant to 50 ns for every strain-rate applied as, with this value, the total 

number of time increment was relevant to accurately describe the damage growth in the volume. 

The low resolution of the microCT scan did not allow reaching higher strain-rates, the ratio 

activated pores/total number of pores being close to 1 above 1,200 s-1. The results from the discrete 

method are compared to the ones obtained with the continuous method and the analytical solution 

of the DFH model (Weibull distribution of defects), in terms of ultimate strength and crack density 

in Figure 9(a) and 9(b). The ultimate macroscopic strength obtained from the discrete method is in 

excellent agreement with the continuous solution, whatever the strain-rate in-between 2 s-1 and 

1,200 s-1. Below 2 s-1, a single fragmentation process occurs in the discrete method, whereas the 

continuous method leads to the crack density of a multiple-fragmentation process that would occur 

in larger volume. Above 1,200 s-1, the discrete method is limited by the resolution of the CT scan. A 

reasonable good match is observed at intermediate strain-rate (around 50 s-1) when the 

fragmentation properties provided by both continuous and discrete methods is compared to the DFH 

closed-form solution. Indeed, the flaw density based on a Weibull distribution is a relatively good 

approximation of the actual flaw density extracted from microCT measurements, as long as the 

pores of the Zone III (Figure 7b) are not solicited. However, beyond this point, the crack density 

computed with the analytical distribution is not relevant anymore (especially above 400 s-1). It 

results in an estimation of a final crack density subsequently lower than the final crack density 

predicted by the DFH closed-form solution. However, it can be noted that, even at strain-rate of 



200 s-1, the pores from the Zone III are not significantly activated at the time Tu and have no 

influence on the values of ultimate strength determined from the continuous and discrete methods. 

A series of discrete numerical simulations was conducted on the SiC ceramic with fuse-flaws 

considering the calibration and input parameters listed in Table 3. About 33,752 pores, with a 

minimal diameter of 5 pixels were identified via micro-tomography. The scan volume is cropped 

into a cube of size 1.2 mm3. A mesh of 100 elements in each direction is found to provide a 

sufficient level of discretisation to evaluate the ultimate strength and crack density. A step time of 

10 ns was used for all the strain-rates in order to have a fine resolution of the damage growth. The 

ultimate strength and cracking density sensitivity to the strain-rate obtained with the discrete 

method are compared to the results of the closed-form solution based on Weibull parameters and 

the continuous method. It can be noticed that the discrete and continuous methods lead to similar 

curves on Figure 10, except for strain-rates below 1,000 s-1 and above 300,000 s-1, for the reasons 

detailed hereafter. This first result confirms that the continuous function, identified in Table 2, 

properly describes the flaw population detected by tomography. Even if the continuous method does 

not take into account the exact position of the pores, it leads to results quasi-equivalent to the one 

obtained with the discrete method. For strain rates lower than 1,000 s-1, the discrete method predicts 

a single fragmentation process in the cube of size 1.2 mm3 resulting in a unique crack 

(λcrack × Vcube = 1) and a higher ultimate strength than in the continuous method (Part I in Figure 

10a), which corresponds to the critical stress of the weakest defect in the volume (193.3 MPa). This 

single fragmentation process is not captured in the continuous method as this method does not 

involve the size of the considered volume. For strain rates between 2,000 and 10,000 s-1, 

corresponding to the Part II in Figure 10a, the two methods provide the same estimation of the 

ultimate strength and cracking density than the closed-form solution based on a Weibull distribution 

of flaws. Indeed, in this range of strain-rates, the activated defects are the relatively large pores of 

controlled-size during the manufacturing process, also identified through the bending tests. For 

higher strain rates, the closed-form solution, based on a Weibull distribution of flaws, under-

estimates the ultimate strength and over-estimates the cracking density. This is because the Weibull 

distribution of flaws diverges from the intermediate and small-size flaws populations mainly 

activated at such strain-rates. Therefore, the closed-form solution of DFH model based on the 

Weibull parameters is no longer valid at such relatively high strain-rates. The flaw population 

“plateau” (Part II on Figure 7c) is correctly identified by both methods relying on the tomography 

analysis, thus both methods predict an increase of the material strength and a reduced number of 

crack inceptions for loading rates in the range 10,000-200,000 s-1 (Part III in Figure 10a). At strain-

rates above 200,000 s-1, the discrete method is limited by the scan resolution, as pores with diameter 

lower than 6.6 µm (5 pixels) could not be accurately identified for a tomography scan resolution of 

1.33 µm/voxel. Therefore, for this range of loading rates, whereas the continuous method predicts 

an increasing number of cracks thanks to an extrapolation of the pore distribution, the discrete 

method reaches a plateau (Part IV in Figure 10a).  

To better understand which flaws population is triggered according to the applied strain-rate, the 

number of activated defects at Tu (time at which the ultimate strength is reached) and Tmax (time at 

which the whole volume is obscured) and the evolution of the crack density are plot as functions of 

the microscopic stress of the activated pores in Figure 11, for three different loading-rates. 



For instance, in the case of UHPC, activated defects at a strain-rate of 100 s-1 have a microscopic 

stresses below 32 MPa at Tu and 42 MPa at Tmax. The activated defects above 1,000 s-1 correspond 

to microscopic stresses up to 100 MPa.  

In the same way, in the porous ice, activated defects at strain-rates below 50 s-1 correspond to 

microscopic stresses less than 2.4 MPa at Tu and 4 MPa at Tmax. The activated defects at 500 s-1 are 

characterised by microscopic stresses up to 7 MPa at Tu and 10 MPa at Tmax.  

In the case of porous SiC, the following strain-rates are considered: 2,000, 20,000 and 60,000 s-1. It 

is observed that the crack density plateau around 100 cracks/mm3 results from the plateau in the 

input flaw distribution. For low strain-rate, only large pores are triggered, therefore leading to a low 

ultimate strength. For intermediate strain rates, from about 10,000 to 50,000 s-1, a clear increase of 

the stress is obtained while maintaining a relatively low number of cracks, as the material presents a 

limited quantify of intermediate pores (plateau) available to be triggered. The limited number of 

micro-cracks in this range of strain-rates plays a role on the kinetic of the damage variable, 

therefore resulting in a great increase of the materials strength. For very high strain rates, above 

50,000 s-1, the growth of obscuration volumes surrounding triggered cracks becomes too slow 

compared to the loading rate, so a very high number of small cracks are simultaneously nucleated 

out of these damaged volumes, resulting in a sharp increase of the final crack density.  

Table 3. Parameters used for the discrete numerical simulations carried out the three materials 

Parameters UHPC Porous ice SiC ceramic 

Cube size (mm) 35×40×20 31.32×31.32×31.32 1.2×1.2×1.2 

Element size (mm) 0.5 0.3132 0.012 

Number of elements 224000 1000000 106 

Lowest critical stress value (MPa) 20.2 (!� =100 s-1 ) 1.16 193.3 

Average critical stress (MPa) 73.1 (!� =100 s-1 ) 6.99 655.9 

Max. critical stress value (MPa) 100.9 (!� =100 s-1) 10.79 717.9 

Strain-rates (s-1) ; Time 

increments (ns) 

10;1 

20;1 

100;1 

500;1 

1000,1 

2000;1 

1; 50 

10; 50 

50; 50 

100; 50 

500; 50 

1200; 50 

30 points equally 

spaced in log 

scale, between  

102 and 106 s-1
; 10 

ns 

Strain-rates (s-1) ; Ultimate 

macroscopic strength (MPa) 

10; 19.18 

20; 20.41 

100; 27.43 

500; 43.27 

1000, 55.05 

2000; 71.96 

1; 1.17 

10; 1.41 

50; 2.13 

100; 2.63 

500; 4.99 

1200; 7.16 

100; 302.5 

1000; 314.1 

10000; 403.2 

100000; 878.9 

1000000;1891.6 

Strain-rates (s-1) ; Final crack 

density (mm-3) 

10; 6.30-4 

20; 1.33e-3 

100; 1.55e-2 

500; 0.128 

1000, 0.281 

2000; 0.487 

1; 1.30e-4 

10; 1.37e-3 

50; 1.58e-2 

100; 3.38e-2 

500; 0.491 

1200; 0.747 

100; 1.18 

1000; 1.76 

10000; 98.5 

100000; 5503 
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Figure 11. Results of discrete numerical calculations. (a-b) UHPC, (c-d) Porous ice, (e-f) SiC 

ceramic with size-controlled porosity. (a, c, e) Overlapped histograms of the number of activated 

flaws at Tu (time at which the ultimate strength is reached) and Tmax (time at which the whole 

volume is obscured) for three levels of strain rates. (b, d, f). Evolution of the crack density as 

function of the microscopic stress for three levels of strain rates. The crack density level 

corresponding to the time at which the ultimate strength is reached is circled for each loading rate. 
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Finally, the representation given in the graphs of Figure 11 provides a better understanding of the 

population of flaws (defined as their activated stresses) governing the ultimate strength and final 

cracking density in each considered material according to the applied strain-rate. 

 

7.3 Discussion: main advantages and drawbacks of each method 

Finally, the main advantages and drawbacks of each method (DFH closed-form solution based on 

Weibull parameters, the continuous and the discrete methods) are listed in the Table 4. Even if the 

continuous and the discrete methods need a tedious identification of defects from tomographic 

analysis, it provides the huge benefit to consider a non-Weibull distribution of flaws. So far, this 

last hypothesis has limited the predictions of the closed-form solutions of DFH model to a restricted 

range of strain-rates, corresponding to the flaws population activated in bending tests.  

Table 4. Advantages and drawbacks of the continuous and the discrete methods compared to the 

closed-form solution based on Weibull parameters (DFH model). 

Methods Advantages Drawbacks 

DFH closed-form 

solution based on 

Weibull parameters 

- No need of tomographic analysis and 

LEFM 

- No assumption on defects shape 

- Closed-form solution 

- Predictions provided in a small range 

of strain-rate 

- Need to perform bending tests 

(difficult to perform at small scales) 

Common advantages 

and drawbacks of 

continuous and 

discrete methods 

compared to DFH 

closed-form solution 

- Identification of defects through X-

ray CT scan provides non-Weibull 

distribution of flaws 

- Predictions valid over a much wider 

range of strain-rates 

- Defects have to be detected through 

X-ray CT scan 

- Resolution limit in the X-ray 

tomography (voxel size, ability to 

differentiate features from their 

absorption difference, etc.) 

- Need to identify a constant shape 

factor based on LEFM 

Continuous method - Differential equation of the 

obscuration probability is easy to 

program in a spreadsheet 

- Ease to implement in a FE code 

(non-homogeneous stress field) 

- Possibility to extrapolate the results 

- Assumption that the defects are 

homogeneously distributed in the 

volume 

Discrete method - Individual defects are considered at 

their exact position 

- Distribution of defects is not 

necessarily spatially homogeneous 

- Ease to identify which defects 

population is involved in the 

fragmentation process 

- No implementation in a FE code 

- Restricted to the scanned defects 

without possible extrapolation 

 

The continuous and discrete methods were adapted to the study of the three present materials as 

they all presented a good phase contrast between the flaws and the matrix/grains. The continuous 



presents the advantage of being based on the obscuration probability differential equation, which 

can be easily implemented in a spreadsheet or in a Finite-Element code. This offers the opportunity 

to predict the strength and cracking density even in the case of non-homogeneous stress fields, as it 

is the case in edge-on impact tests of spalling tests for instance. 

Although the discrete method cannot be easily implemented in a FE code as the continuous method, 

it presents the substantial advantage to consider the exact location and activation stress of each 

individual defect identified through the CT scan analysis. Predictions of the fragmentation process 

in brittle solids including non-homogeneous distribution of defects (in terms of size and spatial 

distribution) could be easily investigated through this method. 

 

Conclusion 

In the present paper, a new methodology is proposed to model the multiple fragmentation process 

induced in brittle solids subject to high-strain-rate loadings. This method is built on the 

identification of flaws population, provided by micro-tomography analysis. Samples of three 

different types of brittle materials, an ultra-high performance concrete, a porous polycrystalline ice 

and a SiC ceramic including size-controlled and relatively large pores have been analysed through 

an X-ray tomographic analysis. The pore size distribution of each microstructure was extracted 

from a post-processing of the 3D reconstructed images. By using the linear fracture mechanics 

theory, the density of critical defects is expressed as a function of the applied stress. Finally, the 

density of critical defects, obtained from tomography, is used through a continuous and a discrete 

method. In the continuous method, the differential equation of the obscuration probability of the 

DFH model is implemented. The calculation of a damage variable provides the evolution of the 

final cracking density and ultimate macroscopic strength according to the applied strain-rate, 

without making any assumption on the link between the density of critical flaws and the positive 

principal stress (power law function according to the Weibull model). In the discrete method, the 

growth of each spherical obscuration volume centred on its critical defect is simulated considering 

the exact position and activation stress (size) of each defect identified through the tomographic 

analysis. For each considered strain-rate, the macroscopic strength is calculated by considering the 

average value of stresses of all the elements not belonging to any obscuration volumes. The 

cracking density is obtained by considering the number of triggered defects divided by the total 

volume. 

Both methods (continuous and discrete) were applied to the three brittle materials. In the UHPC 

concrete, new predictions are obtained at high strain-rates (above 100 s-1) that differ from the results 

provided by the DFH closed-form solution, relying on the Weibull parameters identified from the 

three-point bending test. For the polycrystalline ice, whereas a reasonably good match with the 

DFH closed-form solution is observed at intermediate strain-rate (for which the flaw density 

extracted from microCT measurements do not stray from the Weibull distribution), the predictions 

in terms of final crack density strongly diverge at the highest strain-rates (especially above 300 s-1). 

For the SiC ceramic, the high-resolution micro computed-tomographic analysis enabled to capture 

the presence of two main flaws populations of distinct sizes. Again, it is observed that, above a 

certain strain-rate, the predictions of the DFH closed-form solution, based on a Weibull distribution 



of defects which correspond to the largest pores triggered in bending tests, diverge from the 

predicted results provided by both the continuous and discrete methods.  

In addition, the discrete and continuous approaches applied to this porous SiC illustrate how the 

availability or unavailability of defects may change the strain-rate sensitivity of ultimate strength 

and crack density.  Indeed, these approaches provided information on the valuable effect of the size-

controlled fuse flaw in the porous SiC ceramic on the cracking density sensitivity to strain rate, for 

strain rate between 10,000 and 40,000 s-1. Depending on the loading rate, a competition between the 

spreading of the obscuration zones and the initiation of new flaws drives the material strength. Such 

kinetic-dependant crack nucleation on pre-existing flaws explains the high rate-hardening strength, 

which is characteristic of brittle materials but magnified for this porous SiC ceramic with well-

controlled pore sizes. 

It illustrates how the use of CT scan to identify the flaws population leads to a better understanding 

of the effect of flaws population on the resulting strength of the material and its fragmentation, as 

function of the applied loading rate. Finally, the tomography technique is demonstrated to be a 

powerful tool to accurately take into account the real flaw distribution of the microstructure in order 

to model and predict the dynamic fragmentation process induced in brittle materials over a large 

range of strain-rates, as long as the flaws population can be characterised by tomography analysis. It 

is also observed that each (continuous and discrete) method presents complementary advantages. 

Indeed, whereas the continuous method is easy to implement and use in a spreadsheet or in a FE 

code in which transient dynamic loading can be considered (such as impact loading), the discrete 

method presents the advantage to consider the exact location and activation stress of each individual 

defects identified through the CT scan analysis, allowing predictions of fragmentation process with 

non-homogeneous distribution of defects. Finally, both continuous and discrete methods provide a 

promising way to better understand and model the effects of microstructural features, such as flaws 

distribution, on the macroscopic behaviour of strain-rate sensitive brittle materials. In particular, 

these methods are particularly promising with a view to optimizing the microstructure of brittle 

materials and their manufacturing process (sintering of ceramics, casting of concrete, surface 

treatment of glass, 3D printing process…) with respect to their use under high strain-rate dynamic 

loading. For each of the three-material studied in the present work, experimental validations of the 

modelling predictions constitute a natural prospect. 
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Appendix 

 

If ones consider the following function: 

 ��9
 = R |�¢, 9
V¢;�  , (1) 

its derivative reads 

  �_�;
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¥; VH;�  , (2c) 

where 
¥Q¥; is the partial derivative of the function f regards to T. Considering (dT → 0) Equation (2) 

becomes: 

  �_�;
�; = |�9, 9
 + R ¥Q�G,;
¥; VH;�  . (3) 

Now, if ones consider the following function ��9
: 
 ��9
 = R �λ����"

�" 	'�9 − H
VH;�  , (4) 

Given that �	'�0
 = 0
, the first term of Eq. (3) vanishes and the derivative of Eq. (4) reads: 
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When assuming the following expression of 	'�9 − H
 = �� @�9 − H


, Eq. (5) becomes: 
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Finally, considering (n = 3) the Equation (39) is obtained from the differentiation of Eq. (38). 

 




