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ABSTRACT
We use a homogeneous catalogue of 42 000 main-sequence wide binaries identified by Gaia
to measure the mass ratio distribution, p(q), of binaries with primary masses 0.1 < M1/M�
< 2.5, mass ratios 0.1 � q < 1, and separations 50 < s/au < 50 000. A well-understood
selection function allows us to constrain p(q) in 35 independent bins of primary mass and
separation, with hundreds to thousands of binaries in each bin. Our investigation reveals a
sharp excess of equal-mass ‘twin’ binaries that is statistically significant out to separations
of 1000–10 000 au, depending on primary mass. The excess is narrow: a steep increase in
p(q) at 0.95 � q < 1, with no significant excess at q � 0.95. A range of tests confirm the
signal is real, not a data artefact or selection effect. Combining the Gaia constraints with those
from close binaries, we show that the twin excess decreases with increasing separation, but
its width (q � 0.95) is constant over 0.01 < a/au < 10 000. The wide twin population would
be difficult to explain if the components of all wide binaries formed via core fragmentation,
which is not expected to produce strongly correlated component masses. We conjecture that
wide twins formed at closer separations (a � 100 au), likely via accretion from circumbinary
discs, and were subsequently widened by dynamical interactions in their birth environments.
The separation-dependence of the twin excess then constrains the efficiency of dynamical
widening and disruption of binaries in young clusters. We also constrain p(q) across 0.1 � q
< 1. Besides changes in the twin fraction, p(q) is independent of separation at fixed primary
mass over 100 � s/au < 50 000. It is flatter than expected for random pairings from the initial
mass function but more bottom-heavy for wide binaries than for binaries with a �100 au.

Key words: binaries: general – binaries: visual – stars: formation – stars: statistics.

1 IN T RO D U C T I O N

Binary stars are ubiquitous: roughly half of all field stars have
binary companions (Duquennoy & Mayor 1991; Duchêne & Kraus
2013; Moe & Di Stefano 2017), and the binary fraction is even
higher in star-forming regions (e.g. Ghez, Neugebauer & Matthews
1993; Leinert et al. 1993; Mathieu 1994; Connelley, Reipurth &
Tokunaga 2008; Sadavoy & Stahler 2017; Duchêne et al. 2018).
Significant progress has been made in developing theoretical models
to explain the population statistics of observed binaries (e.g. Kroupa
1995; Marks, Kroupa & Oh 2011; Bate 2012; Lomax et al. 2015),

� E-mail: kelbadry@berkeley.edu

but fundamental aspects of the binary formation process remain
imperfectly understood.

The distribution of binary mass ratios has been a subject of
interest for at least a century (e.g. van Biesbroeck 1916; Öpik
1924; Kuiper 1935). As a final outcome of the binary formation
process, the mass ratio distribution provides useful constraints
on theoretical models of star formation. Unlike the distributions
of orbital separation and eccentricity, the mass ratio distribution
has been suggested to be insensitive to dynamical evolution after
formation (such that binaries of different mass ratios are disrupted
at similar rates; e.g. Parker & Reggiani 2013). Mapping the mass
ratio distribution over a range of binary masses and separations
has thus been the focus of many studies (e.g. Trimble 1974, 1987,
1990; Eggleton, Fitchett & Tout 1989; Hogeveen 1992; Mazeh et al.

C© 2019 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/489/4/5822/5565061 by guest on 23 June 2022

http://orcid.org/0000-0002-6871-1752
http://orcid.org/0000-0002-5092-6464
mailto:kelbadry@berkeley.edu


Twinning: equal-mass binaries at wide separations 5823

1992; Shatsky & Tokovinin 2002; Burgasser et al. 2007; Söderhjelm
2007; Raghavan et al. 2010; Tokovinin 2014; Gullikson, Kraus &
Dodson-Robinson 2016).

Observational studies of the mass ratio distribution are compli-
cated by incompleteness. All binary detection methods are biased
against low-mass ratio companions, which produce weaker radial
velocity (RV) shifts at fixed separation (e.g. Shahaf & Mazeh 2019),
contribute less light to the observed spectra of unresolved binaries
(e.g. El-Badry et al. 2018a,b), cause weaker eclipses (e.g. Moe &
Di Stefano 2013), and are less likely to be detected as visual com-
panions (e.g. Tokovinin 2011; El-Badry & Rix 2018). The detection
efficiency also varies with primary mass and orbital separation. This
complicates measurement of the mass ratio distribution, because
the distributions of separation, primary mass, and mass ratio are not
independent (e.g. Moe & Di Stefano 2017). It is thus important
for demographic studies of binaries that the selection function
of observed samples is well understood. If possible, binaries of
different masses and physical separations should be considered
independently.

A puzzling feature of the mass ratio distribution identified by
previous works is the so-called twin phenomenon, which refers to a
purported statistical excess of nearly equal-mass binaries with mass
ratios 0.95 � q < 1. Most studies that find an excess of equal-mass
twins have focused on spectroscopic binaries with close separations
(a � 1 au, e.g. Lucy & Ricco 1979; Hogeveen 1992; Tokovinin
2000; Halbwachs et al. 2003; Lucy 2006; Pinsonneault & Stanek
2006; Simon & Obbie 2009; Kounkel et al. 2019). Indeed, several
studies have reported a sharp drop-off in the fractional excess of
twin binaries beyond periods of 40 d (a � 0.2 au; e.g. Lucy & Ricco
1979; Tokovinin 2000; Simon & Obbie 2009). Recent studies have
not confirmed such a sharp drop-off in the twin excess for solar-type
stars (Tokovinin 2014; Moe & Di Stefano 2017), but have still found
it to decline monotonically with increasing separation. At least for
M1 � 1 M� (the mass range on which most previous studies have
focused), the twin excess has been found to decrease with increasing
primary mass at fixed separation and to extend to wider separations
for lower mass primaries (Moe & Di Stefano 2017).

Some works have also argued that the twin phenomenon may be
a selection effect (Mazeh et al. 2003; Cantrell & Dougan 2014),
since equal-mass binaries are brighter, can be detected at larger
distances, and are preferentially selected by several binary detection
methods (e.g. Branch 1976). Such biases are minimized for binary
samples that are nearly volume-complete (e.g. Raghavan et al. 2010;
Tokovinin 2014) and/or have well-understood completeness.

If it is a real effect, the physical origin of the twin phenomenon
is not fully understood. Several mechanisms have been proposed
that could lead to preferential formation of equal-mass binaries,
including fragmentation during the late stages of protostellar col-
lapse, mass transfer between pre-main-sequence (MS) stars, and
competitive accretion (see Tokovinin 2000 for discussion of dif-
ferent formation mechanisms). Several simulations have predicted
that accretion of high angular momentum gas, particularly from a
circumbinary disc, tends to drive binary mass ratios towards unity
(e.g. Bate 2000; Farris et al. 2014; Young & Clarke 2015). However,
it is not obvious why, when averaged over a large population of
binaries, accretion from a circumbinary disc would produce a sharp
peak in the mass ratio distribution at q � 0.95 as opposed to a
gradual increase.

There have also been hints of an excess of twins among spatially
resolved wide binaries with separations ranging from tens to
thousands of au (Trimble 1987; Söderhjelm 2007). The selection
functions of the wide binary samples studied in these works were

poorly understood, causing investigators to remain agnostic of
whether the excess of equal-brightness pairs in their catalogues
was of astrophysical origin or rooted in selection biases. Recently,
Moe & Di Stefano (2017) measured the twin excess at different
separations in a small but relatively complete sample of solar-type
binaries within 25 pc of the Sun. They found the twin excess to
decline with separation, but found it inconsistent with 0 out to
separations of 200 au. At even wider separations, they set an upper
limit of ∼5 per cent on the excess twin fraction.

High-quality parallaxes and proper motions from the recent Gaia
data releases (Gaia Collaboration 2016, 2018) have simplified the
process of constructing samples of wide binaries with (a) little
contamination from chance alignments and (b) a well-understood
selection function. Using data from Gaia DR2, El-Badry & Rix
(2018, hereafter ER18) constructed a high-purity catalogue of wide
binaries within 200 pc of the Sun consisting mainly of AFGKM
dwarfs. In this paper, we use a subset of that catalogue to constrain
the mass ratio distribution over a wide range of primary masses
(0.1 � M/M� � 2.5), mass ratios (0.1 � q < 1), and separations
(50 � s/au < 50 000). The large size of the catalogue allows us
to constrain p(q) in narrow bins of primary mass and separation
independently. This approach make it possible to measure variation
in p(q) with mass and separation, and it minimizes the sensitivity
of our results to imperfectly known inputs such as the initial mass
function (IMF) and separation distribution.

A striking result of our investigation is the unambiguous evidence
that twins are not purely a close binary phenomenon: a significant
excess of equal-mass (q � 0.95) binaries persists out to separations
as wide as 10 000 au. We derive constraints on the excess fraction
of twins and the width of the twin excess as a function of mass
and separation. We also provide constraints on the full mass ratio
distribution over 0.1 � q ≤ 1 in all bins.

The remainder of this paper is organized as follows. Section 2
describes the binary catalogue and tests we have done to verify
that the twin excess is real. In Section 3, we describe how we
forward-model synthetic binary populations to fit for the intrinsic
mass ratio distribution. Results of this fitting are presented in
Section 4. In Section 5, we compare to previous work and discuss
implications of our results for models of binary star formation and
dynamical evolution. The appendices provide additional details
about several aspects of the data and model. There we discuss
sensitivity to the adopted parametric form of p(q) (Appendix A),
systematic uncertainties in our model (Appendix B), evidence for
a twin excess in archival wide binary catalogues (Appendix C),
empirical determination of the selection function (Appendix D),
and validation of the adopted Galactic model and selection function
(Appendix E). Constraints on fitting parameters are tabulated in
Appendix G.

2 DATA

Our primary analysis uses the binary catalogue assembled in ER18.
This catalogue contains ∼55 000 spatially resolved wide binaries
with MS, giant, and white dwarf components, and projected physical
separations of 50 � s/au < 50 000. We refer to ER18 for a full
description of the catalogue’s contents. In brief, it was constructed
by searching Gaia DR2 for nearby (d < 200 pc) pairs of stars
whose positions, proper motions, and parallaxes are consistent with
being gravitationally bound. Resolved higher order multiples and
suspected members of bound and dissolving clusters were removed.
The catalogue is designed to be pure but not complete: cuts on
photometric and astrometric precision ensure that the contamination
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rate from chance alignments is low (�1 per cent), but they also
reduce the number of faint binaries.

We do not use the full catalogue from ER18, but impose the
following additional cuts:

(i) We only consider MS/MS binaries, removing binaries in
which either component is suspected to be a white dwarf, subgiant,
giant, or pre-MS star. We identify non-MS components from the
colour–magnitude diagram (CMD; see below).

(ii) We require both components to have parallax > 5,
parallax over error > 20, phot bp mean flux
over error > 20, and phot rp mean flux over error
> 20. ER18 used these same cuts for the primary, but used less
stringent cuts for the secondary. Here, we apply the same cuts to
both components in order to symmetrize the selection function.

(iii) We reject binaries in which the CMD-inferred mass of the
primary falls outside 0.1 < M1/M� < 2.5. The ER18 catalogue
contains fewer than 100 binaries with estimated primary masses
above 2.5 M�, and none with estimated primary masses below
0.1M�.

These additional cuts remove 23 per cent of the ER18 catalogue,
leaving us with a sample of 42 338 MS/MS binaries.

Fig. 1 shows the CMD of all stars in the ER18 catalogue, with
primaries and secondaries included on the same axes. Overplotted
PARSEC isochrones show that the spread on the lower MS is
primarily attributable to metallicity (upper right panel), while
that on the upper MS and red giant branch is primarily due to
age (lower left panel). A secondary sequence consisting mainly
of unresolved binaries is visible above the MS. Wide ‘binaries’
with one component in this sequence are primarily hierarchical
triples. We do not remove these from our sample but account for
them in our model when fitting for the mass ratio distribution in
Section 3.1

MS components that fall below an MS PARSEC isochrone with
[Fe/H] = 0.5 (black points in the lower right panel of Fig. 1) are
treated as single stars. Those that fall above this isochrone but
below an unresolved binary isochrone for two equal-mass stars with
[Fe/H] = 0.5 (yellow points) are treated as unresolved binaries. Fi-
nally, sources that fall above this binary isochrone (red points; likely
a mix of unresolved triples, pre-MS stars, and giants/subgiants)
are rejected, as are white dwarfs. Of the 42 382 wide binaries in
our catalogue, 35 087 have two components consistent with having
no unresolved sub-components (black points), and 7295 have at
least one component suspected to be an unresolved binary (yellow
points).

We estimate masses for both components of each binary based
on their location in the CMD. The ratios of these masses are not
used explicitly in fitting the mass ratio distribution, but they are
used to assign the primary versus secondary components and to
assign binaries to bins of primary mass. For MS stars that are
suspected to be single, we estimate masses by interpolating from a
grid of single-star PARSEC isochrones. This method is reasonably
effective for single components, but it would yield biased results
for the unresolved sub-components.

To estimate masses for components suspected to be unresolved
binaries, we construct a population of synthetic unresolved binaries
(see Section 3) and, for the subset of this population that falls in

1We also experimented with removing binaries with suspected unresolved
components from the sample; doing so does not qualitatively change any of
our results.

the region of the CMD coloured in yellow in the bottom right panel
of Fig. 1, we calculate the median primary mass as a function of
MG of the unresolved binary. For observed sources in that region of
the CMD, we estimate the primary mass by interpolating from MG

on this median relation. That is, the mass assigned to unresolved
components represents the mass of the primary of the unresolved
component, not the total mass.

This method of assigning masses is not without drawbacks:
masses assigned to unresolved binaries are imprecise, because the
mass ratio is not known. In addition, some pre-MS stars may
be mistaken for unresolved binaries, and some low-mass ratio
unresolved binaries may be mistaken for higher metallicity single
stars. However, we expect the typical accuracy to be � 0.1 M�,
which is good enough for our purpose of assigning binaries to
different bins of primary mass prior to fitting. In modelling the
mass ratio distribution, it is not critical that the mass ratio of any
one binary be measured accurately, but rather that the distribution
of magnitude difference be predicted self-consistently.

Fig. 2 shows ‘postage-stamp’ images2 of some of the binaries in
our catalogue from the Sloan Digital Sky Survey (SDSS; York et al.
2000). We note that SDSS photometry is not used in our analysis or
in fitting the mass ratio distribution; we show it here because raw
images from Gaia are not publicly available. Source contamination
in the SDSS images is generally expected to be more severe than
in Gaia photometry due to atmospheric seeing. To showcase the
diversity of binaries in the catalogue, we choose a selection of
binaries with roughly solar-mass primaries and a range of mass
ratios (top panel), binaries with primary masses of ≈ 0.5 M� and a
range of mass ratios (middle panel), and some examples of equal-
mass ‘twin’ binaries with component masses of ≈ 0.5 M� (bottom
panel). The twins are easily recognized because their magnitudes
and colours are very similar.

An observable quantity that is closely related to the mass ratio
is the difference in apparent magnitude of the two components,
�G = |G1 − G2|. Fig. 3 shows the distribution of �G as a
function of apparent magnitude of the primary, angular separation,
and projected physical separation. The sign of �G is randomized,
such that the distribution about �G = 0 is symmetric. This is
helpful in making the equal-brightness population stand out, since
it would otherwise be squished against the x-axis. An excess of
equal-brightness binaries is evident over a wide range of apparent
magnitudes; it is strongest at close separations. As we will show, the
feature is quite narrow: the density of binaries is enhanced primarily
at magnitude differences of �G < 0.25 mag. This is much narrower
than the range over which the selection function varies significantly:
at θ > 2.5 arcsec, the contrast sensitivity is basically constant over
0 < �G < 2 (see ER18; their appendix A).

The middle panel of Fig. 3 shows that there are no binaries
with small separations and large �G in the catalogue. This is
a consequence of photometric contamination at small angular
separations. The dashed line shows the contrast sensitivity limit
derived in Appendix D2; this is the value of �G at which the
sensitivity is 50 per cent of its value at asymptotically large
separations for a given θ . The contrast limit is derived from the
correlation function of chance alignment sources subject to similar
quality cuts as real binaries. The fall-off in sensitivity is quite
steep beyond the contrast limit, leading to an envelope in �G(θ )
beyond which no binaries are found. The drop-off towards larger
�G is less steep as a function of physical separation s, since

2skyserver.sdss.org/dr14/en/tools/chart/listinfo.aspx
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Figure 1. CMD of all stars (both primaries and secondaries) in the ER18 catalogue of resolved wide binaries. Right y-axes and upper x-axes show the mass and
effective temperature corresponding to a given magnitude and colour for main-sequence stars with [Fe/H] = 0. In the upper left panel, points are coloured by a
Gaussian kernel density estimate of the local density. We compare PARSEC isochrones with a range of metallicity (upper right) and age (lower left) to the data.
The bottom right panel divides the CMD into three regions. Black points (main-sequence components with no bright unresolved sub-components) comprise
the bulk of our sample, and their masses are estimated using single-star isochrones. Yellow points (components of wide binaries with a bright unresolved
companion) are kept, but their masses are estimated using unresolved binary isochrones. Red points (pre-main-sequence stars, unresolved triples, and evolved
stars) are discarded.

binaries with similar s have different angular separations at different
distances.

2.1 Is the twin excess real?

To test whether the narrow excess of binaries with �G ≈ 0 is a real
astrophysical effect (as opposed to a data artefact), we produced a
control sample of chance alignments with similar observable prop-
erties to the real binaries. This sample was produced by repeating
the procedure used to produce the real binary catalogue (applying

the same quality cuts and limits on photometric and astrometric
precision), but requiring that the two stars have parallaxes and proper
motions that are inconsistent rather than consistent. This selects
pairs of stars that are close together on the sky (and thus are affected
by contamination and blending in the same way as real binaries) but
are not physically associated. We applied the same procedure for
removing resolved higher order multiples and potential members of
bound and dissolving clusters that was used for real binaries. Be-
cause chance alignments are intrinsically rare at close angular sepa-
rations, we searched out to 400 pc (rather than 200 pc for the fiducial

MNRAS 489, 5822–5857 (2019)
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Figure 2. SDSS images of a selection of binaries from our catalogue. Top panel shows binaries in which the primary is a solar-type star (0.9 < M1/M� <

1.1) and the mass ratio varies from ≈0.1 to 1. The primary is at the centre of each image, and the secondary is circled. Middle panel shows binaries in which
the primary is a late K dwarf (0.4 < M1/M� < 0.6), again for a range of mass ratios. Bottom panels shows examples of ‘twin’ binaries with near-identical
components, each with 0.4 < M1/M� < 0.6. Each image is 100 (top panel) or 45 (bottom panels) arcsec on a side. Our analysis uses photometry from Gaia,
not SDSS. Because the SDSS photometry is ground based, blending and source contamination affect it more severely.

binary catalogue) to obtain better statistics. We verified that our
conclusions are unchanged when only the sample within 200 pc is
considered.

In Fig. 4, we compare the distributions of magnitude and colour
difference for real binaries in our catalogue (left-hand panels) and
chance alignments (right-hand panels). Chance alignments are more
common at large angular separations. The broad distribution and
outer envelope of �G and �(GBP − GRP) at a given θ is similar

for binaries and chance alignments, reflecting Gaia’s contrast
sensitivity. For the chance alignments, there is no sharp excess
of pairs with nearly-equal magnitude and colour. Because chance
alignments are subject to same cuts on astrometric and photometric
quality and signal to noise as the real binaries, any aspects of the
Gaia source detection algorithm that might be expected to produce
a bias towards equal-brightness pairs should affect real binaries and
chance alignments very similarly. We therefore interpret the lack of a

MNRAS 489, 5822–5857 (2019)
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Figure 3. Apparent G-band magnitude difference between the two components of binaries in our catalogue as a function of the apparent magnitude of the
primary (left), angular separation (middle), and projected physical separation (right). The sign of �G is randomized for easier visualization. There is a clear
excess of equal-brightness binaries with �G ≈ 0. These ‘twin’ binaries are found over a large range of apparent magnitudes, preferentially at closer physical
and angular separations. The middle panel shows the contrast sensitivity limit for our sample; at fixed angular separation, the probability of a companion
passing our photometric quality cuts drops rapidly outside this limit due to source contamination (Appendix D2). The lack of binaries with large �G at small
separations is a selection effect; the narrow excess at �G ≈ 0 is not.

Figure 4. Difference in G-band magnitude (top) and colour (bottom) between the two components of pairs with a range of angular separations. We compare
genuine binaries (left) to chance alignments (right). The chance alignments are required to pass the same quality cuts as the true binaries. A clear excess of pairs
with �G ≈ 0 and �(GBP − GRP) ≈ 0 is evident for the true binaries, but not for the chance alignments. The absence of the excess among chance alignments
bolsters our confidence that the feature found in the real binaries is due to a true excess of equal-mass twins and is not a selection effect or data artefact.

MNRAS 489, 5822–5857 (2019)
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Figure 5. Ratio of the number of binaries with nearly equal magnitudes (�G < 0.25) to the number with slightly different magnitude (0.25 < �G < 0.5)
as a function of physical separation (left) and angular separation (right). This ratio quantifies the excess of equal-brightness ‘twins’. Error bars are 1σ . We
compare binaries at different distances, as well as a control sample of chance alignments. At fixed physical separation, the twin excess is consistent with being
independent of distance. At fixed angular separation, it decreases with distance. Together, these trends strongly suggest that the �G ≈ 0 excess (Figs 3 and 4)
reflects a real excess of equal-mass binaries, not a selection effect or photometric issue at close angular separations.

thin excess at �G ≈ 0 and �(GBP − GRP) ≈ 0 for chance alignments
as strong evidence that the twin excess among real binaries is
astrophysical.

An initial worry was that apparent twins might be duplicate Gaia
sources that were not properly removed: if a source were observed
twice in two different scans without being identified as a duplicate,
it could manifest in our catalogue as an apparent binary pair in
which the two components had essentially identical astrometry and
photometry. We verified that unrecognized duplicate sources are not
the source of the twin signal using the SDSS images: we visually
inspected the postage stamps of several hundred equal-brightness
binaries in the SDSS footprint, and all the systems indeed contain
two stars.

Another useful test to verify that the �G ≈ 0 excess is physical
is to determine whether its strength depends primarily on physical
or angular separation. This can be accomplished by comparing the
�G distributions of binaries at different distances. If the excess of
equal-brightness pairs were due to an observational bias against
binaries that are not nearly equal mass (or if there were an issue
with the Gaia photometry causing close pairs to erroneously have
the same reported magnitude), one would expect the twin excess to
depend on angular separation, manifesting itself at different physical
separations for binaries at different distances. If the excess is due to
an astrophysical preference for equal-mass binaries, then it should
be primarily a function of s, manifesting itself at the same physical
separation but different θ for binary samples at different distances.3

In Fig. 5, we compare the excess of equal-brightness pairs for
binaries in three different distance bins as a function of physical
separation (left) and angular separation (right). We measure the
excess as the ratio of the number of binaries with 0 < �G <

3An implicit assumption here is that the fractional excess of twins is
independent of the intrinsic properties of a binary (e.g. mass), since binaries
that pass our quality cuts at larger distances will be more massive on average
than those that are nearby. We show in Section 4 that this assumption does
not hold up in detail, which could lead to modest variation with distance in
the observed twin excess at fixed physical separation.

0.25 (nearly-equal magnitudes) to the number with 0.25 < �G
< 0.5 (slightly different, but still similar magnitudes). In order to
include binaries at distance larger than 200 pc, we repeated the
binary search from ER18, this time searching out to 400 pc. The
additional binaries with 200 < d/pc < 400 are considered for this test
only and are not included in the sample used to fit for the mass ratio
distribution.

The left-hand panel of Fig. 5 shows that at fixed physical
separation, the fractional excess of twins increases towards closer
separations in a manner that is consistent across the three different
distance samples. The right-hand panel shows that as expected, the
twin excess at fixed angular separation varies with distance. At
fixed θ , larger distances correspond to wider physical separation.
Because the twin excess decreases with physical separation, it
decreases with distance at fixed θ . The excess of equal-brightness
chance alignments is also shown as a function of angular separation
in the right-hand panel of Fig. 5. As expected, this is nearly
consistent with 0 at all angular separations, meaning that there
is no strong bias towards equal-brightness pairs compared to pairs
with slightly different brightness. At the closest angular separations
(θ � 5 arcsec), there is a slight excess of equal-brightness chance
alignments, suggesting that contrast sensitivity begins to play a role.
The excess for the chance alignments is less than that found for the
true binaries at all distances and is self-consistently accounted for
in the selection function (Appendix D2).

Fig. 6 shows distributions of �G for binaries in five different
bins of primary mass. Both the overall shape of the distribution and
the strength of the excess at �G ≈ 0 vary substantially between
mass bins. For the highest mass bin, 1.2 < M1/M� < 2.5, the
excess at �G ≈ 0 is weak, and the observed distribution (without
accounting for incompleteness) peaks at �G ≈ 8, corresponding to
q ≈ 0.3 (see Fig. 8). For 0.8 < M1/M� < 1.2 and 0.6 < M1/M�
< 0.8, there is a clear excess of twins out to s ≈ 1000 au, with
the observed peaks in the �G distribution corresponding to q ≈
0.45 and q ≈ 0.6, respectively. In the two lowest mass bins, the
visible twin excess appears to extend to larger separations, and
there is no secondary peak in the distributions of �G. For all mass
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Figure 6. Magnitude difference as a function of projected physical sep-
aration for binaries with different primary masses. The sign of �G is
randomized for easier visualization, and masses are computed from the
CMD. The thin band of ‘twin’ binaries with �G ≈ 0 is clearly visible
in all but the highest mass bin. In the top three bins, there is a clear
preference for unequal-mass (large �G, low-q) binaries. Incompleteness
to faint companions prevents the detection of large �G companions to low-
mass secondaries.

bins, the binaries with the largest �G have secondaries with M ≈
0.1 M�. The maximum �G in each panel is probably set largely
by observational incompleteness, since at moderately old ages (�
100 Myr), objects below the hydrogen burning limit are several
magnitudes fainter than those just above it. Incompleteness at small
separations due to the angular resolution and contrast sensitivity of
our catalogue becomes significant at different projected physical
separations for different mass bins, because the low-mass binaries
that pass our quality cuts are on average at closer distances than the
higher mass binaries.

3 MO D E L L I N G

We now turn to the intrinsic mass ratio distribution, p(q). Because
we expect that p(q) may vary with primary mass and/or separation,
we split the observed sample into 5 bins of primary mass and 7
bins of projected physical separation, fitting each of the resulting
35 subsamples independently. Our choice of bins is designed to
balance the number of binaries in each bin while still covering a
large dynamic range of mass and separation. We constrain p(q) for
each subsample by forward-modelling a simulated population of
binaries with a given distribution of primary mass, age, metallicity,
distance, physical separation, and mass ratio, passing them through
the selection function, and comparing to the data. The ‘data’ we
consider is the distribution of the observed binaries in the three-
dimensional space of angular separation θ , magnitude difference
�G, and parallax � . The best-fitting p(q) is then the one that
best matches the observed data, and uncertainties in p(q) are
estimated via Markov chain Monte Carlo from the range of p(q) that
adequately reproduce the observed data. This approach requires a
parametrized form of p(q) (Section 3.1), knowledge of the selection
function (Section 3.2), and a Galactic model from which simulated
binaries are drawn (Section 3.3).

To generate a model prediction for a given set of fitting pa-
rameters, we generate a population of N = 106 synthetic binaries
and forward-model their distribution into the space of observables.
Masses, ages, metallicities, and distances are Monte Carlo sampled
from their respective distribution functions. For mass ratios and
separations, we use a regular 1000 × 1000 grid, weighting the
synthetic binary at each gridpoint by the mass ratio and separation
distributions. This approach is chosen because in the fiducial model,
we fit for the mass ratio and separations distributions but leave
the distributions of age, mass, distance, and metallicity fixed. The
number of synthetic binaries generated must be large enough that
Poisson noise is negligible. We verified that N = 106 binaries in
each mass and separation bin is large enough that our constraints
are converged and insensitive to the random seed.

Synthetic photometry is calculated for both components from
isochrones (including the effects of unresolved companions in
hierarchies; see Section 3.3), and the observable properties of each
binary are passed through the selection function. In constructing the
distribution of mock-observables to be compared with the data, each
synthetic binary is weighted by the selection function evaluated for
its observables. Finally, the observed and simulated distributions
are binned on a regular 3D grid. We default to using 100 bins in
�G, 100 bins in log θ , and 5 bins in � (because typical errors
in � are larger than those in �G or θ ). The maximum value of
the �G grid for a given primary mass bin is chosen to include the
largest �G value for the data in that bin, and the 5 bins in � are
chosen so that roughly the same number of observed binaries fall
in each bin. Our constraints are not sensitive to the choice of bins,
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since they are small compared to the scale on which the data exhibit
substructure.

We re-scale the binned model prediction such that the total counts
match the observed data. We calculate the likelihood for a particular
set of model parameters by summing over all cells in the 3D
distribution, assuming that the distribution of counts in each cell
is set by a Poisson process. The log-likelihood function is

ln L =
∑
mi 	=0

[di ln mi − mi − ln(di!)] , (1)

where mi and di are the counts in the ith cell of the binned model
and data (‘!’ denotes a factorial). We sample from the posterior
using EMCEE (Foreman-Mackey et al. 2013), using priors described
in Section 3.1. We use 200 walkers and draw 20 000 samples for
each bin of mass and separation after a burn-in period of 200 steps
per walker. Inspecting the chains, we find this to be sufficient for
convergence in all cases. We carried out tests with mock data
that was drawn from a known mass ratio distribution assigned
with realistic observational uncertainties in order to verify that our
approach yields unbiased constraints on p(q).

This fitting procedure is qualitatively very similar to the method
commonly used to constrain population properties such as the IMF,
star formation history, unresolved binary fraction, or initial–final
mass relation from CMDs (e.g. Dolphin 2002; Bonatto, Lima &
Bica 2012; Geha et al. 2013; El-Badry, Rix & Weisz 2018c).
The difference between our approach and these studies is that we
are forward-modelling the distribution of binaries in the space of
angular separation, magnitude difference, and parallax rather than
colour and magnitude. The approach can in principle be generalized
to include other observables, such as colour difference or apparent
magnitude of the primary, but the computational expense increases
rapidly with the dimension of the space in which the likelihood
function is calculated.

We note that the data uncertainties do not enter equation (1). The
implicit assumption (which does hold for our problem setup) is that
the uncertainties are small compared to the scale of the bins in all
quantities. We also note that for a fine grid, a majority of grid cells
will contain 0 or 1 real binaries. This is not a problem; equation (1)
does not make any assumptions about the magnitude of di.

3.1 Parametrization

We fit the mass ratio distribution by assuming a parametrized form of
p(q) and then obtaining constraints on the parameters. Our fiducial
parametrization is motivated by the one used by Moe & Di Stefano
(2017) and is shown in Fig. 7. p(q) is parametrized as a broken
power law with logarithmic slope γ smallq at q < qbreak and γ largeq at
q > qbreak. A possible excess (or deficit) of twins is added on top of
the power-law component at q > qtwin. This excess is modelled as
a step function, with the magnitude such that the integrated excess
of twins divided by the total number of binaries with q > 0.3 is
Ftwin. The reason for this choice (as opposed to normalizing relative
to all binaries) is that, compared to the constraints at q > 0.3, the
constraints on p(q) at small q are often weak due to incompleteness.
p(q) is set to 0 at q < 0.05 to prevent divergence when γ smallq < −1.
Because we are not sensitive to companions with q < 0.05, this has
little effect on our results.

There is no a priori motivation for this particular parametrization:
because the physics that set p(q) are imperfectly understood, we sim-
ply require a functional form that is sufficiently flexible to reproduce
the observed distributions of �G. We have experimented with other
forms of p(q), including adding an additional break point to the

Figure 7. Parametrized mass ratio distribution. The broad part of the
distribution is modelled with a broken power law of logarithmic slope γ smallq

at q < qbreak and γ largeq at q > qbreak. Ftwin is the excess fraction of nearly
equal-mass binaries with q > qtwin, relative to the underlying power-law
distribution for q > 0.3. For this particular example, Ftwin = 0.04, qtwin =
0.95, γ smallq = 0.3, γ largeq = −1.3, and qbreak = 0.5.

power law and modelling the twin excess as ramping up linearly
instead of increasing stepwise. However, we find the form shown in
Fig. 7 to provide a good fit in all mass and separation bins, with more
complicated models providing only marginal improvements. We
thus use this functional form for our main analysis. In Appendix A,
we show results of using alternative parametrizations, including one
that smoothly transitions between the two power laws instead of in-
cluding a sharp break and one that leaves the shape of the twin excess
flexible.

There are two differences between our parametrization of p(q)
and the one used by Moe & Di Stefano (2017), who focused
primarily on binaries with M1 � M�. First, they fixed qbreak =
0.3, a value that was appropriate for their analysis because several
studies have found the mass ratio distribution to peak at q ≈
0.2−0.3 for binaries with M1 � M� (Duquennoy & Mayor 1991;
Gullikson et al. 2016; Murphy et al. 2018). We also use qbreak =
0.3 for our highest mass bin, but we find qbreak = 0.5 to provide a
better fit at lower masses (see Appendix A2). Secondly, they fixed
qtwin = 0.95, roughly the value found for spectroscopic binaries
(e.g. Tokovinin 2000). In order to identify or rule out trends with
mass and separation, we leave qtwin as a free parameter.

Along with the parameters of the mass ratio distribution, we also
fit for γ s, the local logarithmic slope of the separation distribution
in each bin of primary mass and separation. Opik’s law (a uniform
distribution of log (s)) corresponds to γ s = 0.

Our adopted priors are listed in Table 1. For the lowest mass bin,
the smooth component of p(q) is modelled as a single power law,
because no useful constraints can be obtained at q � 0.5. Our priors
on γ smallq and γ largeq are loosely motivated by constraints from
the literature (particularly Tokovinin 2014 and Moe & Di Stefano
2017) but are fairly weak. We use a uniform flat prior on Ftwin.
We require qtwin > 0.93 in order to prevent cases where a large
Ftwin is combined with qtwin � 1 such that a broad ‘twin excess’
simply modifies the overall shape of p(q) but does not actually
correspond to a sharp increase near q = 1. We show in Appendix A1
that, where a twin excess is significant, it is always narrow
(qtwin � 0.94).
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Table 1. Summary of priors adopted in each primary mass bin. We use the same priors for all separation bins. U (a, b) represents a
uniform distribution over [a, b], and N (μ, σ ) represents a normal distribution with mean μ and dispersion σ . γ s is the logarithmic
slope of the local separation distribution; i.e. p(s) ∝ sγs . Other parameters are described in Fig. 7.

0.1 < M1/M� < 0.4 0.4 < M1/M� < 0.6 0.6 < M1/M� < 0.8 0.8 < M1/M� < 1.2 1.2 < M1/M� < 2.5

Ftwin U (−1, 1) U (−1, 1) U (−1, 1) U (−1, 1) U (−1, 1)
qtwin U (0.93, 1) U (0.93, 1) U (0.93, 1) U (0.93, 1) U (0.93, 1)
γ largeq N (0.5, 1) N (−1, 1) N (−1, 1) N (−1, 1) N (−1, 1)
γ smallq – N (0.5, 0.5) N (0, 0.5) N (0, 0.5) N (0, 0.5)
γ s N (−1.5, 1) N (−1.5, 1) N (−1.5, 1) N (−1.5, 1) N (−1.5, 1)
qbreak – 0.5 0.5 0.5 0.3

3.2 Selection function

Because both components of a binary must pass astrometric and
photometric quality cuts, the binaries in our catalogue are relatively
bright. The median apparent magnitude of all stars in our fitting
sample (considering primaries and secondaries together) is 〈G〉 =
14.5, and 90 per cent (99 per cent) of stars fall in the range 9.1 < G
< 17.4 (6.6 < G < 18.1). For stars in this magnitude range, Gaia
DR2 is nearly complete outside of crowded fields (Arenou et al.
2018; Sollima 2019). The completeness is not quite 100 per cent
due to a variety of issues, but it is primarily a function of position
on the sky, not colour or magnitude. The selection function for our
sample is thus determined by the cuts imposed on astrometric and
photometric precision.

In order for a binary to appear in the catalogue, (a) both
components must be bright enough that they individually pass
the cuts we impose on parallax over error and photometric
signal to noise and (b) they must not be so close on the sky that the
photometry of either component is significantly contaminated. The
selection function for binaries can thus be expressed as a product
of the two components’ single-star detection probabilities and a
contrast sensitivity cross-term:

sbinary = s1 × s2 × s�G(θ ). (2)

Here, s1 and s2 represent the independent probabilities of detecting
an isolated star with the observable properties of star 1 and star 2;
they depend primarily on apparent magnitude and colour. s�G(θ )
quantifies the reduction in the probability of detecting star 1 and
star 2 together, relative to the probability of detecting them at
asymptotically large separation. It is primarily a function of the
angular separation of the two stars and their flux ratio. For example,
s�G(θ ) ≈ 0 at θ < 2 arcsec and 1 at θ > 10 arcsec; at intermediate
separations, it depends strongly on �G. We calculate the single-star
selection function given our quality cuts in Appendix D1 and s�G(θ )
in Appendix D2. The derived selection functions are then validated
in Appendix E.

3.3 Model inputs

We draw primary masses and system ages assuming a Kroupa
(2001) IMF and a constant star formation history over the last
10 Gyr. Because suspected members of bound and dissolving clus-
ters are removed from our binary catalogue, we remove synthetic
binaries with age < 100 Myr. We assume that the wide binary
fraction, fwb, scales with mass as fwb ∝ M

αwb
1 , where αwb = 0.4 is

a constant (i.e. higher mass primaries are more likely to have wide
binary companions). The effect of this assumption is that primary
masses are drawn from a distribution with logarithmic slope αIMF +
αwb, where αIMF is the local logarithmic slope of the IMF (αIMF =
−2.3 for M1/M� > 0.5 and αIMF = −1.3 for M1/M� < 0.5). We

find that with this choice of αwb, our model predicts a distribution of
primary magnitudes in reasonably good agreement with that of the
binary catalogue when the selection function is taken into account.

We model the intrinsic spatial distribution of all stars as a plane-
parallel exponential with the Sun at the mid-plane. The exponential
scale height increases with stellar age (e.g. Nordström et al. 2004;
Seabroke & Gilmore 2007), because older stars (a) were born from
kinematically hotter gas and (b) have been dynamically heated more
since their formation (e.g. Ting & Rix 2018). We use a fit to the
empirical age-scale height relation recently measured by Sollima
(2019) using Gaia star counts:

log (hz/pc) = 0.53 log (age/yr) − 2.65. (3)

That is, the scale height increases from 40 pc for stars of age
100 Myr, to 130 pc at age 1 Gyr, to 450 pc at age 10 Gyr. We show
in Appendix E1 that this leads to a predicted distance distribution
in good agreement the data.

We use the tabulated empirical metallicity distribution function
(MDF) for our binary catalogue that was measured in El-Badry &
Rix (2019) by considering a subset of ∼8000 binaries in the
catalogue for which [Fe/H] was measured spectroscopically for
at least one component. Most of the binaries in our catalogue are
disc stars, with a median metallicity of 〈[Fe/H]〉 ≈ −0.1 and tails
extending to [Fe/H] ≈ −1.0 and [Fe/H] ≈ +0.4. We do not include
any variation in the MDF with age or distance.

We generate synthetic photometry in the Gaia DR2 bands from
Evans et al. (2018) using PARSEC4 isochrones (Bressan et al.
2012; Chen et al. 2014). Just as for the real data, we remove
synthetic binaries in which either component has evolved off
the MS. For companions with M2 < 0.1 M�, we supplement the
PARSEC models with BT-Settl models for very low-mass stars
and brown dwarfs (Allard, Homeier & Freytag 2012; Allard 2014).5

We include companions with masses as low as 0.01 M� in our
model for completeness. However, these have very little effect on
our results, because substellar companions are too faint and red to
pass our quality cuts except at very young ages.

Fig. 8 shows the relation between q and �G predicted for
PARSEC isochrones. We show relations for five different primary
masses, corresponding approximately to the median masses of
primaries in each of our five mass bins, and use a minimum
companion mass of 0.1M� in all cases. Comparing to Fig. 6, it
is evident that the lowest mass secondaries have M2 ≈ 0.1M� in all
bins of primary mass. As for the excess of equal-brightness binaries,

4http://stev.oapd.inaf.it/cgi-bin/cmd
5Synthetic photometry in Gaia DR2 bands is computed for the BT-
Settl models using the Pheonix web simulator, available at phoenix.ens-
lyon.fr/simulator-jsf22-26/index.faces.
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Figure 8. Magnitude difference versus mass ratio for binaries of different
primary mass, computed from PARSEC isochrones. We assume both
components have [Fe/H] = 0, adopting an age of 1 Gyr for the highest
primary mass and 5 Gyr for the others. Because the mass–luminosity relation
varies with mass, the relation between �G and q does as well. A magnitude
difference of 0.25 mag (roughly where the twin excess becomes significant
in our catalogue) corresponds to a mass ratio of 0.93–0.97, depending on
primary mass.

it is primarily manifest over 0 < �G < 0.25 (though there is some
variation with mass; see Fig. 10), which corresponds to 0.93� q < 1.

Some components of wide binaries have their own spatially
unresolved close companions. We incorporate these in our models
following observed binary statistics. The probability that a star has
a close companion is taken to be a function of its mass, increasing
from 20 per cent at M < 0.2 M�, to 30 per cent at 0.2 < M/M� <

0.5, to 35 per cent at 0.5 < M/M� < 0.8, to 45 per cent at M/M� >

0.8 (Duchêne & Kraus 2013). For components that are assigned a
binary companion, we draw the unresolved companion mass from a
mass ratio distribution that is uniform between qmin = 0.1 M�/M1

and 1. We assume that the two components’ probabilities of having
a close companion are independent and neglect dynamical stability
constraints. This prescription reproduces the morphology of the
observed CMD reasonably well. In particular, the fraction of stars
within 200 pc that fall in the ‘suspected unresolved binary’ region of
the CMD (yellow points in the bottom right panel of Fig. 1) at a given
MG is reproduced within ∼25 per cent over 0.1 < M/M� < 1.0.

We do not include extinction or reddening due to dust in our
model and do not attempt to correct the data for it. Because the stars
in our catalogue are nearby (d < 200 pc), the effects of extinction
are expected to be modest. The morphology of the CMD (e.g. the
compactness of the red clump and MS; see Fig. 1) validates this
assumption. Moreover, because the two components of a binary
have similar position on the sky (within an arcminute in most cases)
and similar distance, the extinction towards both components is
expected to be similar.

We discuss the sensitivity of our constraints on the mass ratio
distribution to various model ingredients in Appendix B. The largest
systematic uncertainties come from the choice of stellar models. All
the systematics we consider primarily affect constraints at low q.
This is also true for uncertainties in the completeness function:
because the two components of binaries with q ≈ 1 have similar
magnitudes and colours, incompleteness affects them similarly. The

translation between the distribution of �G and p(q) is thus more
straightforward at q ≈ 1 than at q � 1.

4 R ESULTS

Our fitting produces samples from the posterior distribution of
free model parameters for each bin of mass and separation. These
samples translate to marginalized constraints on each parameter of
the mass ratio distribution and the covariances between them. An
example for a single mass and separation bin is shown in Fig. B1.
Marginalized constraints for all bins are listed in Appendix G.

The 35 panels of Fig. 9 show median and 2σ constraints on the
mass ratio distribution for 35 bins of primary mass and separation.
We do not show the y-axis ticks to avoid cluttering the figure, as the
limits are different in each panel. The uncertainties (shaded regions)
are derived by drawing 1000 samples from the posterior, calculating
a normalized p(q) for each sample, and then shading the middle
95.4 per cent range of these samples at each q. Solid black lines
show the median at each q. Because p(q) is normalized, uncertainty
in the mass ratio distribution at any q translates to uncertainty in
the normalization of p(q) at all q. This reflects the fact that it is
impossible to know the total fraction of all binaries that fall in
some mass ratio range if one does not know how many binaries
with low-mass ratios are missed. However, γ largeq, the slope of the
mass ratio distribution at q > qbreak, is usually well constrained.
Dashed vertical lines in each panel show the lowest mass ratio
observed binary included in that bin. This roughly corresponds to
the observational completeness limit and marks the mass ratio below
which meaningful constraints cannot be obtained.

The fact that p(q) is modelled as a double power law with a sharp
break leads to some unphysical artefacts in Fig. 9, including a sharp
change in slope at q = qbreak and artificially low uncertainty just
below qbreak, which is caused by p(q) ‘pivoting’ about this point as
γ smallq varies and p(q) is renormalized. We show in Appendix A3
that these features are not present when we fit a more flexible
‘smoothly broken’ power-law model. However, doing so introduces
parameter covariances that are not present for the fiducial form of
p(q). We use the simpler sharply broken power law as our fiducial
model to facilitate easier comparison between different mass and
separation bins and comparison with the literature.

Fig. 10 compares the observed 1D distributions of �G to the
predictions of the best-fitting model; this is useful for assessing
the quality of the fits. In each panel, we note the number of
observed binaries and the marginalized 1σ constraints on Ftwin.
In generating the model predictions, we use the median of the 1D
marginalized posterior distribution for each free parameter. We then
generate a Monte Carlo realization of the binary population, draw-
ing primary masses, mass ratios, separations, ages, metallicities,
and distances from the appropriate joint distributions, calculating
synthetic photometry, and weighting each binary by the selection
function evaluated for its observables.

Overall, the model predictions are in good agreement with the
observed distributions of �G. This indicates that our parametriza-
tion of p(q) is suitable and sufficiently flexible. In panels where Ftwin

is inconsistent with 0, there is a clear excess of equal-brightness
binaries. The distributions of �G near �G = 0 are also adequately
reproduced by the model, indicating that the simple ‘step function’
model for the twin excess is consistent with the data. Although it
is not shown here, we also find the best-fitting models to predict
distributions of other observables (angular separation, parallax,
and apparent magnitude of the primary) in good agreement with
the data.
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Twinning: equal-mass binaries at wide separations 5833

Figure 9. Mass ratio distribution constraints. Each panel corresponds to a single bin of primary mass (increasing left to right) and physical separation
(increasing top to bottom). Grey shaded regions show 95.4 per cent probability. Normalization is arbitrary; the scale of the y-axis is linear and begins at 0.
Vertical dashed lines show the lowest mass ratio of observed binaries in each bin.

Fig. 11 shows the constraints on Ftwin as a function of mass
and projected physical separation. Light and dark error bars show
middle 95.4 per cent and 68.2 per cent of the marginalized posterior
distributions. Note that the y-axis scale is different in the top panel.
In all bins of primary mass, the excess twin fraction falls with
increasing separation and is negligible at the largest separations we
consider (s > 15 000 au). At fixed separation, the magnitude of the
excess varies with primary mass. For close separations (50 < s/au

< 350), Ftwin is largest in the lowest bin of primary mass (0.1 <

M1/M� < 0.4). This may be in part because low-mass primaries in
our sample are at closer distances on average, such that the median
separation within the (50 < s/au < 350) bin is smaller than for
higher mass primaries.

The maximum separation out to which there is a significant twin
excess also varies with primary mass. For the highest mass bin,
Ftwin is consistent with 0 at s > 600 au. For solar-type primaries,
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Figure 10. Magnitude difference between the two components of a binary (linear y-axis; normalization is arbitrary). Black histograms show real binaries, split
into bins of primary mass (increasing left to right) and physical separation (increasing top to bottom). The twin excess can be seen in many panels as an excess
of binaries with �G ≈ 0. Red histograms show Monte Carlo populations generated from the best-fitting model. The number of observed binaries (black) and
the marginalized 1σ constraints on Ftwin (red) are listed in each panel. Overall, the model is quite successful in matching the observed distributions.

MNRAS 489, 5822–5857 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/489/4/5822/5565061 by guest on 23 June 2022



Twinning: equal-mass binaries at wide separations 5835

Figure 11. Marginalized constraints on Ftwin, the fractional excess of
binaries with nearly equal mass, versus physical separation. Each panel
shows a separate bin of primary mass. Dark and light error bars show 1σ

and 2σ constraints. In all mass bins, Ftwin declines with increasing separation
and is consistent with 0 at the largest separations. The twin excess reaches
the widest separations for 0.4 < M1/M� < 0.6, where Ftwin is ∼5 per cent
out to 15 000 au. We compare to constraints from the nearby solar-type
binary sample of Raghavan et al. (2010, panel 4) and the adaptive optics
imaging survey from De Rosa et al. (2014, panel 5); these were derived by
Moe & Di Stefano (2017).

Ftwin is only consistent with 0 at s > 5000 au, but it is < 3 per cent
for s > 1000 au. The fall-off in Ftwin with increasing separation is
shallowest for 0.4 < M1/M� < 0.6 and 0.6 < M1/M� < 0.8, with a
larger normalization for 0.4 < M1/M� < 0.6. Here, Ftwin is almost
independent of separation over 350 < s/au < 15 000. Finally, the
fall-off steepens again in the lowest primary mass bin, where Ftwin

≈ 0 beyond 2500 au. We discuss possible interpretations of these
trends in Section 5.2.1.

In the bottom two panels of Fig. 11, we compare our constraints
on Ftwin to the 1σ constraints obtained by Moe & Di Stefano
(2017, their tables 8 and 11) for binaries in similar mass and
separation ranges. The constraints for solar-type stars (0.8 < M1/M�
< 1.2) were obtained from the solar neighbourhood sample of
Raghavan et al. (2010). Those shown in the bottom panel were
obtained from the AO-assisted survey of visual binaries with A-
type primaries (1.7 < M1/M� < 2.3) described in De Rosa et al.
(2014). Reassuringly, constraints for both mass bins are consistent
with those obtained from our catalogue. Because the binary sample
we analyse is larger than the Raghavan et al. (2010) and De Rosa
et al. (2014) samples, we can tighten the uncertainties on Ftwin at
large separations, showing, for instance, that Ftwin for solar-type
primaries is inconsistent with 0 out to s ≈ 5000 au.

Fig. 12 shows constraints on γ largeq as a function of separation,
again separating binaries by primary mass. The dashed line in
each panel shows the slope that would be expected for random
pairings from the IMF. This is obtained by fitting a power-law mass
ratio distribution over the same range of primary masses and mass
ratios to a simulated population of binaries in which the masses of
both components are drawn from a Kroupa (2001) IMF and paired
randomly.

Consistent with previous work (e.g. Lépine & Bongiorno 2007;
Reggiani & Meyer 2011; Duchêne & Kraus 2013; Moe & Di Stefano
2017), we find that the mass ratio distribution is not consistent with
random pairings from the IMF, but is weighted towards higher mass
ratios than would be expected in such a scenario. Whether this
is an imprint of the binary formation process or in part reflects
the fact that binaries with higher mass ratio have higher binding
energy and are thus more difficult to disrupt is an open question.
Any trends in γ largeq with separation are weak over the separation
range we probe: at the 2σ level, our constraints are consistent with
a separation-independent γ largeq over 100 � s/au < 50 000 in all
mass bins. However, they are not consistent with being independent
of primary mass: p(q) becomes increasingly bottom-heavy (lower
γ largeq) with increasing M1.

The fact that γ largeq does not vary much with separation can
serve as a strong constraint on formation models for wide binaries.
It has frequently been argued that while binaries with separations
of 100 � s/au � 5000 formed primarily by core fragmentation,
those with s � 5000 au (the size of typical cloud cores) formed by
another process. Candidate processes include cluster dissolution
(Kouwenhoven et al. 2010; Moeckel & Bate 2010), unfolding
of hierarchical triples (Reipurth & Mikkola 2012), or pairing of
adjacent cores (Tokovinin 2017a). One might naively expect a
change in the mass ratio distribution at s ∼ 5000 au if the binary
formation mechanism changes there, but none is observed.

The mass ratio distribution for wide solar-type binaries is not
uniform, but is weighted towards low-mass ratios. For example,
companions with q ≈ 0.5 are roughly twice as common as those
with q ≈ 0.9. The dominance of low-mass ratio companions can
be seen clearly in the data at wide separations (Fig. 10) and cannot
be due to selection effects, which all work against low-mass ratio
binaries. p(q) is thus more bottom-heavy at wide separations than
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Figure 12. Marginalized constraints on γ largeq, the logarithmic slope of
the power-law component of the mass ratio distribution at large q, versus
projected separation. Dark and light error bars show 1σ and 2σ constraints.
The range of q over which γ largeq is fit in each mass bin is noted in the
upper left of each panel. Dashed lines show the slope expected if binary
component masses were drawn from the IMF and paired randomly. Except
in the lowest mass bin, p(q) is more bottom-heavy than uniform, but it is
always more top-heavy than expected for random IMF pairings.

at close separations, where it is basically uniform (Mazeh et al.
1992; Tokovinin 2014). Analysing the 25-pc Raghavan et al. (2010)
sample of solar-type binaries, Moe & Di Stefano (2017) found
the mass ratio distribution to transition from γ largeq = −0.4 ± 0.3
(close to uniform) across 10 < s/au < 200 to γ largeq = −1.1 ± 0.3
across 200 < s/au < 5000.6 Combined with our constraints at
wide separations, this implies that the transition between a uniform
mass ratio distribution at close separations and a bottom-heavy
distribution at wide separations occurs relatively abruptly at s ∼
100 au. Several other binary population properties are observed to
change at s ∼ 100 au (see El-Badry & Rix 2019 and references
therein), perhaps due to a transition in the dominant binary for-
mation mechanism at this separation. This sharp transition, and
the fact that γ largeq is nearly constant over 300 � s/au � 50 000,
provides a useful constraint for star formation models. Because the
effects of dynamical processing after formation on the mass ratio
distribution are imperfectly understood, similar constraints obtained
in star-forming environments will prove useful for disentangling
the primordial mass ratio distribution from the effects of dynamical
processing.

We show constraints on other parameters obtained from our fitting
in Fig. 13. The left column shows qtwin. This parameter is only
meaningful if Ftwin is non-zero, so we do not show constraints
for bins of mass and separation where Ftwin is consistent with 0
at the 2σ level. There are no strong trends in qtwin with mass or
separation; the typical best-fitting value is qtwin ≈ 0.95. In a few
bins (e.g. 1.2 < M1/M� < 2.5 and 350 < s/au < 600), the constraint
runs up against the prior, implying that a broader excess may be
preferred. However, the width of the observed �G ≈ 0 excess is
still reproduced reasonably well in these cases (Fig. 10).

Constraints on γ smallq are shown in the middle column. Most
constraints are consistent with γ smallq = 0 (a flat distribution at small
q), and trends with separation are weak. For the lowest mass bin
(M1 < 0.4 M�), we fit a single power law, so γ smallq = γ largeq. Unlike
for γ largeq, there are no strong trends with primary mass. We note that
our data cannot strongly constrain γ smallq for low-mass primaries, so
the constraints are influenced somewhat by the priors (Section 3.1).

Finally, the right column of Fig. 13 shows constraints on the
local slope of the separation distribution γ s, which is defined
such that p(s) ∝ sγs . The dashed line shows γ s = −1.6, which is
approximately the value that has been found for wide binaries when
marginalizing over a larger range of primary masses and separations
(Andrews, Chanamé & Agüeros 2017; ER18). The constraints we
find here are similar to this value on average but show some evidence
for a steepening in p(s) with increasing separation. Any trends with
primary mass at fixed separation are weak. We emphasize that these
constraints come from the gradient in binary counts as a function
of s measured within a narrow bin of s, which is necessarily noisy:
trends in γ s with separation represent the second derivative of p(s).

5 D ISCUSSION

5.1 Comparison to previous work

Although most work on twin binaries to date has focused on
spectroscopic binaries, hints of a twin excess at wide separation

6Because we use qbreak = 0.5 for solar-type primaries and Moe & Di Stefano
(2017) used qbreak = 0.3, our measurements should not be directly compared.
p(q) flattens at q < qbreak, so at fixed γ largeq, a lower qbreak corresponds to a
more bottom-heavy mass ratio distribution.
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Twinning: equal-mass binaries at wide separations 5837

Figure 13. Constraints on qtwin (left; the mass ratio above which the twin excess begins), γ smallq (middle; the logarithmic slope of the mass ratio distribution
at small q), and γ s (right; the logarithmic slope of the local separation distribution). Dark and light error bars show 1σ and 2σ constraints. Primary mass
increases from top to bottom. Constraints on qtwin are only shown for mass and separation bins where Ftwin is inconsistent with 0 at the 2σ level. Dashed line
in the left-hand panels shows q = 0.93, the lower limit set on qtwin by the prior. Dashed lines in the right-hand panels show γ s = −1.6, the value found by
ER18 when averaging over all masses and separations.

have been reported in several previous works. Trimble (1987)
found a significant excess of equal-brightness pairs among a sample
of bright, nearby visual binaries. She suggested that this excess
might point towards a formation mechanism that favours equal-mass
systems but found significantly different distributions of magnitude
difference when comparing different samples of wide binaries and
thus did not rule out the possibility that the q ∼ 1 peak was the result
of selection effects. Similar conclusions were reached by Giannuzzi
(1987). Halbwachs (1988) argued that the mass ratio distribution of
wide, common proper motion binaries was likely consistent with
random pairings from the IMF once selection effects were corrected
for.

Larger and more homogeneous samples of bright wide binaries
were identified using astrometry from the Hipparcos satellite for

one or both components (e.g. Söderhjelm 2000, 2007; Eggenberger
et al. 2004; Lépine & Bongiorno 2007; Shaya & Olling 2011). The
mass ratio distribution of Hipparcos binaries with A and F star
primaries was modelled in detail by Söderhjelm (2007), who found
evidence for a q ≈ 1 peak at 100 � s/au � 1000. The strength of the
peak decreased with primary mass. He argued that the twin excess
was not the result of any known selection effect, although he did not
reject the possibility that an unknown bias in the Hipparcos input
catalogue could explain it. The twin feature identified by Söderhjelm
(2007) is likely the same feature apparent in our catalogue. We
note, however, that most of the binaries observed by Hipparcos fall
in our highest primary mass bin (where the twin excess is weaker
than at lower masses), as Hipparcos only observed bright stars
(G � 13).
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Figure 14. Cumulative distribution function of short-period double-lined
spectroscopic binaries with q > 0.76 in the volume-limited 67-pc sample of
FG dwarfs from Tokovinin (2014). We compare predictions for models with
three values of qtwin (see Section 5.1.1). For this sample, we find qtwin =
0.964 ± 0.013, consistent with the values we find for wide binaries with
periods P = 105−9 d.

A preference for equal-brightness pairs was also noticed among
wide common proper motion disc and halo binaries identified by
Chanamé & Gould (2004) and Dhital et al. (2010). The authors could
not rule out the possibility that it was the result of selection effects,
which were not well understood for their samples. The twin excess
in our catalogue is visually quite striking (e.g. Fig. 4), so a natural
question is why it was not as clear in earlier binary catalogues. In
Appendix C, we show that a twin excess is apparent in the large,
low-mass wide binary catalogue produced by Dhital et al. (2015)
using SDSS photometry, but it only becomes obvious once objects
with blended photometry are removed. It is also clearer in the Gaia
photometry than in the ground-based SDSS photometry.

More broadly, the twin excess we identify is visually striking
because it is narrow, but it represents only a few per cent of the
total twin population. This means that it will only become obvious
when (a) the photometry is sufficiently precise and uncontaminated
that the difference in the components’ apparent magnitude can be
measured with precision that is good compared to the intrinsic width
of the twin excess and (b) the sample considered is large, containing
(at least) hundreds of objects. A twin excess among solar-type visual
binaries is also observed in the Raghavan et al. (2010) 25-pc and
Tokovinin (2014) 67-pc samples, extending out to s ≈ 200 au at a
statistically significant level Moe & Di Stefano (2017). This excess
is consistent with our constraints (e.g. Fig. 11); at wider separations,
these samples did not contain enough objects to detect or rule out a
few-per cent excess with high significance.

5.1.1 Width of the twin excess

Among spectroscopic binaries, there has been some disagreement
in the literature over whether the twin excess is limited to a narrow
peak in the mass ratio distribution at q � 0.95 (e.g. Tokovinin 2000)
or is a broader feature, corresponding simply to a positive slope in
p(q) at q� 0.8 (e.g. Halbwachs et al. 2003; see Lucy 2006 for further
discussion). In our sample, the twin feature is unambiguously
narrow, only becoming significant above qtwin ≈ 0.95 (Fig. 13).
In Appendix A1, we show that p(q) is always consistent with a flat
or negative power law at q < 0.94; for the majority of the mass and

separation bins, the twin excess only becomes strong at q > 0.97
(see Fig. A1). To allow better comparison between close and wide
binaries, we now re-examine the twin excess among spectroscopic
binaries.

In the volume-limited 67-pc sample of FG dwarfs, Tokovinin
(2014) identified 98 double-lined spectroscopic binaries (SB2s)
with periods P = 1−100 d, 70 of which have dynamical mass ratios
0.76 < q < 1. Nearly all binaries with P < 100 d and q > 0.76
will appear as SB2s, so the 70 observed systems in this parameter
space represent a relatively complete subsample. In Fig. 14, we
plot the cumulative mass ratio distribution of the 70 short-period
SB2s with q > 0.76, about half of which have q > 0.95. We model
a uniform mass ratio distribution across 0.76 < q < 1 with an
excess twin fraction Ftwin above q > qtwin. We use the maximum-
likelihood method described in Moe & Di Stefano (2017) to fit the
two free parameters Ftwin and qtwin and draw 1000 bootstrap samples
to estimate their uncertainties. We show in Fig. 14 the best-fitting
models obtained when fixing qtwin = 0.93, 0.95, and 0.97. The value
qtwin = 0.93 is inconsistent with the data (p = 0.014), while qtwin =
0.95 and 0.97 both provide reasonable fits. We formally measure
qtwin = 0.964 ± 0.013 (1σ uncertainties).7 By using a larger and
more complete sample of short-period SB2s, we thus confirm the
conclusions of Tokovinin (2000) and Moe & Di Stefano (2017) that
close solar-type binaries with a < 0.5 au exhibit a large excess twin
fraction and that the twins are narrowly distributed above qtwin �
0.95.

In Fig. 15, we show constraints on Ftwin and qtwin for solar-type
binaries across a wide range of periods and separations. At wide
separations, the constraints from Gaia wide binaries are reproduced
from Figs 11 and 13. At closer separations, we show the constraints
on Ftwin obtained by Moe & Di Stefano (2017) from the Raghavan
et al. (2010) sample, as well as the constraint on qtwin at P =
1−100 d derived above for the Tokovinin (2014) sample (Fig. 14).
At intermediate periods (P = 102−6 d), we show qtwin ≈ 0.95 ± 0.02
based on the Moe & Di Stefano (2017) analysis of the Raghavan
et al. (2010) sample. This constraint is not the result of formal fitting
but provided a good fit to the data (see fig. 30 of Moe & Di Stefano
2017). Fig. 15 shows that while Ftwin decreases with separation,
qtwin ≈ 0.95 is consistent with being constant over all separations in
this mass range. Similar values of qtwin are also found for massive
binaries at the short periods where there is a significant twin excess
(Moe & Di Stefano 2013).

5.2 Origin of twin binaries

It is typically assumed that the components of binaries wider than
a few hundred au formed nearly independently of one another
(e.g. White & Ghez 2001; Moe & Di Stefano 2017; Tokovinin
2017a; Moe, Kratter & Badenes 2019; El-Badry & Rix 2019) during
turbulent core fragmentation (for binaries with separation less than
a few thousand au; e.g. Offner et al. 2010) or by becoming bound
at slightly later times (for those with the widest separations; e.g.
Parker et al. 2009; Kouwenhoven et al. 2010; Moeckel & Bate
2010; Tokovinin 2017b).

The existence of a narrow twin excess at q � 0.95 suggests
that the components of a fraction of binaries with s � 100 au
formed at closer separations in a highly correlated way. We do

7We do not present constraints on Ftwin for this sample, because Ftwin

depends on p(q) at 0.3 < q < 1, and many lower mass ratio binaries will not
be double-lined.
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Figure 15. Ftwin (top) and qtwin (bottom) for solar-type binaries (0.8 �
M1/M� � 1.2). We compare results from Gaia wide binaries (dark and
light error bars show 1σ and 2σ constraints) to 1σ constraints at closer
separations from the samples of Raghavan et al. (2010) and Tokovinin
(2014, see Fig. 14). Ftwin decreases with separation and is consistent with 0
at a� 5000 au. However, qtwin ≈ 0.95 is basically constant at all separations.

expect that the dynamical process of becoming and staying bound
may lead to a preference for roughly equal-mass binaries (say, q
> 0.5), because these have higher binding energy. This could quite
reasonably explain, at least in part, why the power-law component
of the mass ratio distribution is shallower than expected for random
pairings from the IMF (Fig. 12). But we do not expect dynamical
processes to produce a sharp twin feature like what is observed:
at fixed primary mass, the binding energy at q = 0.9 is not much
less than that at q = 1. And indeed, simulations of binary formation
during cluster dissolution find larger typical mass ratios at wide
separations than predicted for random pairings, but they do not
predict a narrow excess of twins (Kroupa 1998; Kouwenhoven et al.
2010; Moeckel & Bate 2010).

The excess twin fraction uniformly decreases with separation and
eventually goes to 0 at s > 15 000 au in all mass bins. The shape of
the twin excess (i.e. qtwin and the slope of p(q) at q > qtwin) does not
vary much between 50 and 15 000 au in our catalogue. Moreover, it
is effectively the same for spectroscopic binaries (with separations
as close as 0.01 au) and wide binaries (Fig. 15). Invoking Occam’s
razor, it seems more likely that the wide binary twin phenomenon is
an extension of the phenomenon that has previously been observed
at s � 100 au than that it is produced by a qualitatively different
process.

Even for close binaries, there is not a clear consensus in the
literature about the physical origin of the twin phenomenon. Some
models for the formation of twins can only apply to very close
binaries. In the first paper to highlight the twin phenomenon for
spectroscopic binaries, Lucy & Ricco (1979) suggested that twins
were formed by fragmentation of rapidly rotating pre-MS stars

during the late stages of dynamical collapse, at scales of a �
1 au. Alternatively, Krumholz & Thompson (2007) proposed that
twins could be produced by mass transfer between stars of initially
different masses during pre-MS evolution.8 It seems implausible
that such mechanisms can explain the twin phenomenon among
wide binaries, because there is no known mechanism to widen the
orbits of twins from the separations at which they operate – a few,
or at most a few tens of, solar radii – to the separations at which
they are observed today. Such widening would require a very strong
velocity kick, the magnitude of which would have to be fine-tuned
in order to not unbind the binaries completely.

A more plausible formation mechanism for equal-mass twins
at wider separations is through competitive accretion from a
circumbinary disc. Many studies have found that the accretion rate
from a circumbinary disc is usually higher for the secondary than
the primary (e.g. Bate & Bonnell 1997; Bate 2000; Farris et al.
2014; Young & Clarke 2015; Nelson & Marzari 2016; Matsumoto,
Saigo & Takakuwa 2019). Because the secondary’s orbit is larger
than that of the primary, it sweeps out a larger radius in the disc
and can accrete more rapidly than the primary, unless the material
being accreted has low angular momentum.9 Preferential accretion
on to the secondary will necessarily drive the mass ratio towards
unity. If such accretion continues for long enough, binaries within
circumbinary discs should thus end up with q ≈ 1. An appeal of this
formation mechanism is that it can operate at scales comparable to
the size of circumbinary discs, s � 100 au.

It is plausible but not obvious that preferential accretion on to the
secondary will give rise to a sharp twin feature like the one found
observationally. In order to end up at q ≈ 1, a binary that initially
had an intermediate-mass ratio must accrete a large fraction of its
mass from a circumbinary disc, such that there is enough time to
drive the mass ratio to 1 even while the primary continues to accrete.
If twins are formed by accretion from circumbinary discs, then the
width of the twin feature (i.e. qtwin) can tell us about the fraction
of the total mass accreted from the disc, as well as the mass ratio
above which the accretion rate on to the two components becomes
nearly equal. A sharp twin feature could be expected if a fraction
of binaries accrete most of their mass from a circumbinary disc
(becoming twins) and the rest either do not develop circumbinary
discs or only accrete a subdominant fraction of their total mass from
them.

In accretion-driven explanations of the twin excess, the increase
in Ftwin towards close separations has been interpreted as evi-
dence that gravitational torques within circumbinary discs (e.g.
Artymowicz et al. 1991; Shi et al. 2012) shrink the orbits of

8These authors sought to explain the observed twin excess in massive stars.
The specific mechanism they proposed, which relies on deuterium shell
burning causing protostars to expand and overflow their Roche lobes, cannot
operate in solar-type or lower mass stars. Moreover, the twin excess for
massive stars appears to be limited to close separations (Moe & Di Stefano
2017), so mass transfer may adequately explain it. Here, we simply suppose,
for the sake of argument, that there is some mechanism through which stable
mass transfer in lower mass stars could drive the mass ratio to unity.
9It is worth noting that there has not been a full consensus in the literature
whether this mechanism works: some simulations of accretion from a
circumbinary disc have actually predicted the opposite trend, with accretion
favouring the primary (Ochi, Sugimoto & Hanawa 2005; Hanawa, Ochi &
Ando 2010; de Val-Borro et al. 2011). These simulations assumed a higher
gas temperature than those which have found accretion to favour the
secondary; Young & Clarke (2015) showed that accretion only favours the
secondary when accreted gas is cold, as is appropriate for stellar binaries.
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twins (Young & Clarke 2015). Indeed, the observed twin excess is
largest at separations a < 0.2 au (Fig. 15), too close for binaries
to have formed at their current separations. This implies that
some combination of gravitational torques, viscous dissipation, and
dynamical interactions (e.g. Bate 2012; Moe et al. 2019) must have
shrunk the orbits of twins at very close separations.

However, several recent simulations of circumbinary discs have
found that, contrary to previous results in the literature, accretion can
also widen binaries within circumbinary discs, when the advective
torque dominates over the gravitational torque (Miranda, Muñoz &
Lai 2017; Moody, Shi & Stone 2019; Muñoz, Miranda & Lai 2019).
Whether gravitational or advective torques dominate depends on
details such as the sink prescription used for accretion (Tang,
MacFadyen & Haiman 2017). Further work is needed to clarify
the effects of circumbinary discs on orbital evolution. However, the
fact that the twin excess extends to very wide separations suggests
that orbit shrinkage is not a ubiquitous outcome of accretion from
circumbinary discs.

High-resolution studies of the dynamics of individual circumbi-
nary discs are generally too idealized, run for too short a time, and
are focused on too narrow a range of initial conditions to make ab ini-
tio predictions of the full mass ratio distribution. However, they do
typically find that gas is preferentially accreted on to the secondary
for realistic accretion geometries once a steady state is reached. On
the other hand, global simulations of the fragmentation of molecular
clouds (e.g. Bate 2009, 2014, 2019) are reaching the point where
they can make realistic predictions of the mass ratio distribution
with minimal fine-tuning. Such studies have lower resolution than
idealized simulations of individual binaries, so it is not guaranteed
that the dynamics within discs are well resolved, but they are able
to predict the accretion rate and angular momentum distribution of
accreted material, and the mass and size distribution of discs (e.g.
Bate 2018). Such global calculations predict an excess of equal-
mass binaries out to separations of order 100 au (see e.g. Bate 2014,
fig. 18). Because they typically only form a few dozen binaries in
a cloud, such calculations do not yet have the statistical power to
predict or rule out a few-per cent effect at wider separations.

Accretion can plausibly explain an excess of twins out to
significantly larger separations than mass transfer or late-stage
fragmentation, but it alone cannot explain a signal reaching out to
thousands of au. Observed circumstellar and circumbinary gas discs
have typical radii of order 100 au (Ansdell et al. 2018; Eisner et al.
2018). The largest observed circumbinary discs have radii of order
500 au and host binaries with separations of 50–200 au (e.g. Hioki
et al. 2007; Brinch et al. 2016; Tobin et al. 2016; Takakuwa et al.
2017; Comerón et al. 2018; Czekala et al. 2019); these preferentially
host relatively massive binaries. There are no observed discs with
radii exceeding 1000 au, and simulations also predict the largest
circumbinary discs to have radii of several hundred au (Bate 2018).
It thus seems exceedingly unlikely that twin binaries with s �
200 au formed at their present-day separation by accretion from a
circumbinary disc. This implies that either (a) twin binaries formed
at closer separations and their orbits were subsequently widened or
(b) some other process is responsible for producing twins at very
wide separations. Lacking a good candidate mechanism for (b), we
here consider the plausibility of orbit widening.

5.2.1 Dynamical orbit widening in young clusters

In the Galactic field, dynamical interactions have a negligible effect
on most binaries with s � 10 000 au (e.g. Weinberg, Shapiro &

Wasserman 1987). However, dynamical interactions are expected to
be more efficient in binaries’ birth environments, where the typical
stellar density is higher. The dynamical evolution of binaries within
their birth clusters has been the subject of considerable study. As
a general rule, interactions within birth clusters are expected to
widen the orbits of binaries with orbital velocities lower than the
cluster velocity dispersion, and to tighten the orbits of those with
orbital velocities greater than it (Heggie 1975; Hills 1975). There
are several complicating factors in real clusters. For example, the
mass distribution within clusters at early times is not smooth but
clumpy (Dorval et al. 2017), both stars and gas can be dynamically
important, and cluster density and velocity dispersion change as
clusters age, in part because energy is redistributed among binaries
(see e.g. Kroupa & Burkert 2001; Parker et al. 2009; Goodwin
2010). Observed binary populations provide constraints on models
for binaries’ dynamical evolution, but a unified model to explain the
diversity of binary populations found in different environments does
not exist. We summarize some relevant observational constraints on
disruption below.

(i) Over a wide range of separations (10 � s/au < 3000), the
binary fraction in low-density star-forming regions (e.g. Taurus) is
higher than in the field by roughly a factor of 2 (e.g. Leinert et al.
1993; Duchêne 1999). This is true especially at wider separations,
where the separation distribution of young binaries is roughly log-
uniform, but that of field stars declines more steeply (e.g. Connelley
et al. 2008; Kraus et al. 2011).

(ii) In dense young clusters (e.g. the ONC), the binary fraction
at separations of s � 100 au is similar to the field (lower than
in low-density star-forming regions) and declines steeply at wide
separations (Reipurth et al. 2007). At closer separations (10 � s/au
� 60), the binary fraction in dense clusters is comparable to that in
low-density star-forming regions, and higher than that found in the
field (Duchêne et al. 2018).

(iii) At very close separations (s � 5 au), the binary fraction in
star-forming regions (over a range of densities) is consistent with
that in the field (e.g. Kounkel et al. 2019).

Some models (e.g. Kroupa 1995; Marks et al. 2011; Marks &
Kroupa 2012) postulate that the initial binary fraction and separation
distribution are insensitive to local properties, such that observed
variation in binary populations must be due to disruption. These
models interpret the higher wide binary fraction in low-density
clusters as the primordial population, which is transformed into the
field population by dynamical widening and disruption. Because
disruption of wide systems is more rapid in dense clusters, these
models also predict the binary fraction at s � 100 au to decrease
with cluster density, in agreement with observations. However,
if such models are correct, it is not clear what happens to the
excess of relatively tight binaries (10 � s/au � 100), which are
overrepresented relative to the field in both high- and low-density
star-forming regions. Such systems have high enough binding
energies that they can only be disrupted in very dense clusters.
Thus, the lower binary fraction in the field at 10 � s/au � 100
would imply that a large fraction of field stars formed in dense
environments.

In any case, the fact that the binary fraction in the field is lower
than that in star-forming regions down to fairly close separations
implies that a significant fraction of young binaries undergo quite
energetic interactions, the cumulative effect of which is sufficient
to disrupt binaries with initial separations as close as 10–100 au.
In many cases, binaries will be disrupted by such interactions,
but in some cases, they will only be widened (e.g. Kroupa &
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Burkert 2001). It is in this latter context that the twin fraction
at wide separations is informative about the fraction of stars at
a given present-day separation that formed at significantly closer
separations.

The fact that the dependence of Ftwin on separation varies with
binary mass in a non-monotonic way (Fig. 11) suggests that, if the
twin excess at s � 100 au is due to dynamical widening of orbits,
then the primordial twin statistics (e.g. the twin fraction and the
range of separations over which twins are form) must also vary with
mass. This may not be unreasonable, since the physical properties
of discs do vary with mass (Bate 2018; Eisner et al. 2018), but it
means that disentangling the effects of dynamical widening and the
primordial separation distribution of twins is non-trivial.

We use a simple toy model to explore how the separation-
dependence of the twin excess may depend on the initial twin
population and the strength of dynamical interactions. We suppose
that twin formation is efficient out to a separation of atwin, max ≈
100 au and does not operate at wider initial separations. We consider
primordial populations of equal-mass binaries with components
of mass M and a uniform distribution of log a between 10 and
104 au. At a < atwin, max, we assign a random subset of 20 per cent
of the binaries the label of ‘twin’. We then assume that dynamical
interactions add an energy Eint to each orbit (for both twins and non-
twins), such that the new orbital energy is Enew = Einitial + Eint, where
Einitial = −GM2/ainitial. Values of Eint for each binary are drawn
from a uniform distribution between 0 and Emax, interactions. If Enew

is positive, then the binary is considered unbound and is discarded.
The new separation after interactions is anew = −GM2/Enew. Finally,
we measure what fraction of the surviving binaries bear the twin
label as a function of final separation. This fraction is proportional
to the fraction of binaries at a given present-day separation that
formed with a < atwin, max. We do not model dynamical hardening
of close binaries, and thus implicitly assume that all binaries we
consider are soft; i.e. that they reside in clusters with velocity
dispersion larger than the highest orbital velocities of binaries
being widened. For an initial separation of 100 au and binaries
with typical component mass of 0.5 M�, this corresponds to a
dispersion of σ ≈ 1.5 km s−1; for an initial separation of 10 au,
to σ ≈ 5 km s−1.

We plot the results of this experiment in Fig. 16, varying atwin, max

(top), Emax, interactions (middle), and M (bottom). The final separation-
dependence of the twin fraction depends significantly on all of these
parameters. The twin excess extends to larger separations, and falls
off less steeply with separation, when (a) the initial separation out
to which twins form is larger, (b) dynamical interactions are more
energetic, or (c) the binding energy of twins is lower. In order
to obtain a non-zero twin fraction at very wide separations, it is
necessary that a fraction of binaries undergo dynamical interactions
energetic enough to unbind binaries at separation at which twins
form. Once this is satisfied, twins can contribute significantly
to the binary population at wider separations, because the same
interactions that widen close binaries will unbind a large fraction
of initially wider non-twin binaries. Wide twins are produced most
efficiently in clusters where the velocity dispersion is comparable to
the orbital velocity at a separation of atwin, max: significantly denser
clusters produce few wide binaries, since most binaries that are not
close are disrupted completely.

The toy model generically predicts that Ftwin decreases with
separation and that low-mass twins can be more efficiently widened
than high-mass twins due to their lower binding energy. It thus
predicts that the excess twin fraction will fall off less steeply for
lower mass binaries. This trend is found in the observed binaries

Figure 16. Predictions of the toy model for orbit widening described in
Section 5.2.1. We assume that the initial twin fraction is 20 per cent for
a < atwin, max (varied in the top panel; 100 au by default) and 0 at larger
separations. We consider an initial separation distribution that is flat in log
space. We then widen the orbits of all binaries by adding energy, representing
the cumulative effect of gravitational interactions within a birth cluster. The
total added energy is drawn from a uniform distribution between 0 and
Emax,interaction. Binaries that are disrupted are discarded. We plot the final
twin fraction as a function of separation, varying Emax,interaction (middle
panel; default is G (0.5M�)2 / (100 au)) and mass (bottom panel; default is
0.5 M�).

over 0.4 < M1/M� < 2.5 (Fig. 11), but it is reversed for the lowest
mass subsample: Ftwin falls off significantly more steeply for 0.1
< M1/M� < 0.4 than for 0.4 < M1/M� < 0.6. This is not easily
explained in the context of the toy model.

It is thought that a fraction of wide binaries (likely at a � 1000 au)
form at later times (perhaps during cluster dissolution) than wide
binaries at closer separations. Dilution of the twin excess due to
these binaries is not accounted for in the toy model. If the fraction
of binaries at fixed separation that formed during cluster dissolution
were higher at lower masses, this could explain the observed steeper
decline in Ftwin with separation at low masses.

An addition complication is that the observed population of field
binaries is an average over a wide range of formation environments,
from low-density regions to dense clusters. The trends in Fig. 16
rely on a number of crude approximations and should not be used
to directly interpret the observed trends in Ftwin (and we have not
attempted to tune the model to match observed trends). Here, we
simply emphasize that the separation distribution of twins is quite
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Figure 17. Magnitude difference between the two resolved components of
all wide binaries in which one or both components is suspected to have a
bright, unresolved companion (N = 7, 295; yellow points in Fig. 1). There
is no obvious excess at �G ≈ 0 (compare to the right-hand panel of Fig. 3).

sensitive to dynamical processing. We conclude that dynamical orbit
widening provides a plausible explanation for the existence of the
wide twin excess, but more realistic theoretical modelling is needed
to determine whether the observed trends in Ftwin with primary mass
and separation can be reproduced when averaging over a realistic
population of star-forming environments.

5.2.2 Widening of unstable triple systems?

Another possible mechanism for dynamically widening twins is
through unfolding of unstable triple systems, in which initially close
companions can be scattered to much wider orbits (e.g. Reipurth &
Mikkola 2012). Triples are not uncommon: more than a third of
all wide binaries contain subsystems (e.g. Tokovinin & Smekhov
2002; Tokovinin 2014), and a large fraction of binaries are thought
to have formed as higher order multiples that subsequently decayed
(e.g. Sterzik & Durisen 1998).

Widening of the outer orbit in triples generally comes at the
expense of shrinking of the inner orbit. Since the outer orbit is
the more fragile one, a triple-origin of the wide twin excess would
imply that one of the component stars in wide twins had, and in most
cases still has, a close companion, which in most cases would be
spatially unresolved. However, the twin excess at �G � 0.25 mag
cannot be due to systems in which either resolved component has an
unresolved companion any less than ≈2.5 magnitudes fainter than
it; otherwise the light from the unresolved companion would make
it more than 0.25 mag brighter than the other resolved component.
Fig. 17 shows that there is indeed no obvious excess at �G ≈ 0 for
wide binaries in which either component has a bright unresolved
companion. There is thus a photometric upper limit on the mass
ratio of any unresolved companions to twins with �G ≈ 0; it
ranges from q < 0.45 to q < 0.7, depending on primary mass
(see Fig. 8).

Unresolved companions with lower mass ratios cannot be ruled
out based on photometry, but at close separations, they can be
detected from RV variability. In Appendix F, we show that the Gaia
visit-to-visit RV scatter implies a lower close binary fraction for the
components of wide twins than for components of non-twins with
similar separations and masses. This speaks against a triple-origin

of wide twins. It is, however, consistent with our expectations if
twins are formed through accretion in a circumbinary disc, since
the presence of a third close companion in the disc would complicate
the mechanism through which accretion drives the mass ratio of two
stars in a disc towards unity.

6 SU M M A RY A N D C O N C L U S I O N S

We have analysed a pure and homogeneous sample of ∼42 000 MS
wide binaries selected from Gaia DR2 to constrain the mass ratio
distribution of binaries with projected separations 50 � s/au <

50 000 and primary masses 0.1 < M1/M� < 2.5. High-precision
photometry allows us to measure mass ratios with unprecedented
accuracy, and a well-understood selection function makes it possible
to account for biases arising from the magnitude and contrast
sensitivity limits of Gaia DR2 given our quality cuts.

A striking feature of the catalogue is a high-significance excess
of ‘twin’ binaries with nearly equal brightness (Fig. 3). The excess
is present over a narrow range of magnitude differences, 0 < �G
� 0.25, corresponding to mass ratios 0.95 � q � 1, and extends
over a wide range of masses and separations. The twin excess
is reminiscent of the excess of equal-mass binaries historically
reported at very close separations (a < 0.2 au) and recently found
to extend to a ∼ 100 au, but it extends to separations of several
thousand au, where binary formation models do not predict strongly
correlated component masses.

We have done a variety of tests to confirm that the twin feature
is caused by an astrophysical excess of equal-mass binaries, not
selection effects or data artefacts. We first repeated the search that
produced the binary catalogue, but required that the two components
of a pair have inconsistent rather than consistent astrometry. This
yields a catalogue of physically unassociated ‘chance alignments’
that are subject to essentially the same selection function as the
real binaries and have similar distributions of most observable
properties. A narrow excess of equal-brightness pairs is not found
among chance alignments (Fig. 4).

By considering binaries at different distances, we verified that
the strength of the twin feature varies primarily with physical, not
angular, separation (Fig. 5). This speaks to the physicality of the
twin feature, since most observational biases are expected to depend
on angular separation, which is the observable quantity. Finally,
we verified that the twin feature is not an artefact of the Gaia
photometry; it is visible in photometry from other surveys. We also
identified the same twin excess in archival data from another binary
catalogue after removing objects with contaminated photometry
(Appendix C).

In order to measure the intrinsic mass ratio distribution, we
forward-model the joint distribution of magnitude difference, an-
gular separation, and parallax given a Galactic model, a selection
function, and a parametrized mass ratio distribution. We measure
the selection function for our catalogue empirically, using chance
alignments to quantify the contrast sensitivity as a function of
angular separation. Our primary results are as follows:

(i) Twin fraction: We quantify the twin excess as Ftwin, the
fractional excess of binaries with q > qtwin relative to the full
population with q > 0.3 (Fig. 7; qtwin ≈ 0.95 quantifies the width
of the excess). Typical values of Ftwin are 10 per cent at 100 au and
3 per cent at 1000 au, with some dependence on mass (Fig. 11).
These values are lower than the value found for spectroscopic
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binaries (Fig. 15), which is Ftwin ≈ 25 per cent, but they are clearly
inconsistent with 0.

(ii) Width of the twin excess: At all masses and separations where
it is statistically significant, the twin excess we find is quite narrow,
only becoming significant at q � 0.95 (Fig. 13). We experimented
with different functional forms for the enhancement near q ≈ 1, but
we find a step function increase at q � 0.95 to perform as well as
more complicated models (Fig. A1). We also re-measured qtwin at
close separations using a volume-limited sample of spectroscopic
binaries (Fig. 14). The width of the twin excess, qtwin, is basically
constant over six orders of magnitude in separation, from the closest
spectroscopic binaries to wide binaries at s ∼ 10 000 au.

(iii) Mass and separation dependence: The fractional excess
of twins declines with separation and is consistent with 0 at
s > 15 000 au for all mass bins (Fig. 11). The twin excess at s
> 1000 au is strongest for primary masses 0.4 < M1/M� < 0.6.
At closer separations (50 < s/au < 1000), it is strongest for low-
mass primaries (M1 < 0.4 M�) and roughly consistent for other
mass bins. The slope of the fall-off in Ftwin with separation varies
non-monotonically with mass; it is shallowest at 0.4 < M1/M� <

0.6.
(iv) Mass ratio distribution at lower q: We provide broken power-

law fits to the full mass ratio distribution for all mass and separation
bins (Fig. 9; Appendix G). These fits reproduce the observed data
well (Fig. 10). For solar-type stars, the power-law slope is γ largeq ≈
−1.3 for q > 0.5 (i.e. weighted towards lower mass ratios than the
uniform distribution found at closer separations) and γ smallq ≈ 0 for
q < 0.5. p(q) becomes more bottom-heavy with increasing primary
mass but is always flatter than expected for random pairings from
the IMF. Besides variation in the excess twin fraction, p(q) does not
vary much with separation over 100 � s/AU < 50 000 (Figs 12
and 13).

(v) Origin of the twin excess: No theoretical models that have
been proposed to explain twin binaries at close separations predict
them to form at s � 100 au. Dynamical processes may lead to a
formation bias against low-q binaries, but they are not expected to
produce a sharp peak at q ≈ 1. Given the monotonic fall-off in
Ftwin with separation, the similar width of the twin feature between
close and wide binaries, and the lack of a plausible mechanism
for forming twins at very wide separations, we conjecture that the
excess twins must have formed at closer separations (s � 100 au;
likely through accretion from a circumbinary disc) and subsequently
been widened by dynamical interactions.
In this scenario, the separation-dependence of the twin fraction
is an imprint of dynamical orbit widening in binaries’ birth envi-
ronments (see Section 5). The plausibility of this explanation is
not straightforward to assess because (a) present-day field binaries
formed in a wide range of environments and (b) existing models
for widening and disruption of binaries in star-forming regions
do not fully explain the diversity of observed binary populations
in young clusters and in the field. A simple toy model suggests
that a separation-dependence in Ftwin comparable to that which is
observed is predicted if typical dynamical interactions are strong
enough to disrupt binaries at the separation inside which twins are
expected to form (a � 100 au). However, the mass-dependence of
Ftwin at wide separations is not fully explained in such models.
Further theoretical work is required to (a) predict the primordial
separation distribution of twins at different masses and (b) constrain
the efficiency of dynamical orbit widening for a realistic ensemble
of star-forming environments. In future work, we will search for
a wide twin excess in observed star-forming regions to shed more
light on the primordial separation distribution of twins and the
density-dependence of orbit widening.
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A P P E N D I X A : FU N C T I O NA L FO R M O F P(Q)

A1 How sharp is the twin feature?

In our default model, the twin feature is characterized by two
number: Ftwin, the fractional excess of binaries with near-equal
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Figure A1. Constraints on p(q) near q = 1. Solid lines and grey shaded regions represent median and 2σ (middle 95.4 per cent) constraints; y-axis scale is
linear. We model the mass ratio distribution over 0.85 < q < 1 as a histogram with 5 bins of width 0.03, fitting for the height of each bin as a free parameter.
The twin excess generally becomes statistically significant only at 0.97 < q < 1, in some cases with a modest enhancement at 0.94 < q < 0.97. At lower q,
the mass ratio distribution is generally consistent with a smooth power law (dashed line).
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5846 K. El-Badry et al.

Figure A2. Mass ratio distribution constraints (right) and predicted �G distributions (left) for fits with qbreak = 0.5 (red) and qbreak = 0.3 (cyan). We show a
single separation bin (1000 < s < 2500). Top panels show solar-type stars (0.8 < M1/M� < 1.2); bottom panels show A and F stars (1.2 < M1/M� < 2.5). For
each choice of qbreak, we show the best-fitting constraints when qbreak is fixed at that value and other parameters are left free. For solar-type stars, a significantly
better fit can be obtained with qbreak = 0.5 than with qbreak = 0.3. The opposite is true for A and F stars, where the data strongly favour qbreak = 0.3.

masses, and qtwin, the mass ratio above which the excess manifests
itself. The implicit assumption in this model is that (a) the increase in
the mass ratio distribution near q = 1 occurs abruptly, not gradually,
and (b) the amount of twin excess is constant between q = qtwin and
q = 1. In this section, we assess the validity of this assumption by
using a more flexible model for the twin excess.

We model the twin excess between q = 0.85 and q = 1 as a
histogram with five equally spaced bins of width �q = 0.03. As in
the fiducial model, we assume the smooth underlying distribution in
this region is p(q) ∼ qγlargeq . We then introduce a set of uncorrelated
weights, wi with i = 0. . . 5, and multiply p(q) in the ith bin by
wi. With this parametrization, wi = 1 entails no deviation from a
smooth power law in the ith bin, wi = 2 corresponds to a factor-of-
two enhancement relative to the underlying power law, and wi =
0 means that there are no binaries at all with mass ratios in the ith
bin. With a sufficiently large number of bins, this parametrization
is flexible enough to represent any arbitrary shape of p(q). Five bins
of width 0.03 is a pragmatic choice given the size of our binary
catalogue, since the shot noise uncertainty increases as the bin size
is reduced.

Fig. A1 shows results of fitting a histogram model. Consistent
with Fig. 9, a statistically significant excess of twins is found out
to several thousand au for 0.1 < M1/M� < 1.2 and s � 2500 au,
with the excess reaching s = 15 000 au for 0.4 < M1/M� < 0.6. In
most mass and separation bins, the data is consistent with a smooth
power-law distribution (with no twin excess) all the way up to q =
0.97. In a few mass bins, there is also a significant excess relative
to the underlying power law at 0.94 < q < 0.97, but never at q <

0.94. That is, in all bins where it is significant, the twin feature is
‘thin’: there is not a broad peak at q � 0.8, but a narrow excess only

at q � 0.95. It is because of the narrowness of the twin peak that
the excess of equal-mass pairs is so clearly apparent in the observed
data (e.g. Fig. 3), even though twins only make up a small fraction
(<5 per cent; see Fig. 11) of the total binary population at wide
separations.

A2 CHOICE OF qbreak

As discussed in Section 3, we model the mass ratio distribution in all
but the lowest mass bin as a broken power law whose slope changes
at q = qbreak (Fig. 7). In order to make comparison between different
separation bins more straightforward, we do not leave qbreak free,
but instead fix it to a single value in a given mass bin: qbreak = 0.3
for 1.2 < M1/M� < 2.5, and qbreak = 0.5 in all other mass bins.
These values were chosen by trial and error, but it is necessary to
use different values of qbreak in different mass bins, as we now show.

Fig. A2 shows constraints on the mass ratio distribution (right)
and corresponding predicted �G distributions (left) for two choices
of qbreak and two bins of primary mass. A single separation bin
is shown for illustrative purposes: 1000 < s < 2500, where the
twin excess is weak in both mass bins. In the left-hand panels, we
compare the observed distributions of �G to Monte Carlo binary
populations produced for five draws from the posterior.

The top panels show that for solar-mass primaries (0.8 < M1/M�
< 1.2), the best-fitting model obtained while assuming qbreak = 0.5
provides a significantly better fit to the observed �G distribution
than the best-fitting model with qbreak = 0.3: in the latter case, the
observed distribution is poorly reproduced both at 0 < �G � 2 and
at �G ≈ 5. On the other hand, the bottom panels show that qbreak =
0.3 provides a much better fit for A and F star primaries.
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Twinning: equal-mass binaries at wide separations 5847

Figure A3. Top panel shows example smoothly broken power laws for
different values of the smoothing parameter, �. For all cases, γ smallq =
0.3, γ largeq = −1.2, Ftwin = 0.04, and qtwin = 0.95. Increasing �

softens the transition between p ∼ qγsmallq and p ∼ qγlargeq . Bottom: Middle
95.4 per cent constraints on p(q) for 0.8 < M1/M� < 1.2 and 600 < s/au <

1000. We compare constraints obtained by fitting a smoothly broken power
law (red hatched) to those obtained by fitting our default model, a simple
double power law (i.e. forcing � = 0). The constraints we obtain with the
two models are similar, with the most significant difference being that the
smoothly broken model lacks (a) the sharp break at qbreak = 0.5 and (b) the
artificial suppression of uncertainty near a pivot point at q = 0.3.

A3 Smoothly broken power law

As discussed in Section 4, our choice to model the mass ratio
distribution with a broken power law leads to an unphysical sharp
break in the best-fitting mass ratio distribution at intermediate q.
We test the sensitivity of our constraints on p(q) to the assumed
functional form below. As an alternative to a sharply broken power
law, we fit a ‘smoothly broken power law’ with the functional
form

p (q) ∝
(

q

qbreak

)γsmallq
[

1 +
(

q

qbreak

)1/�
](γlargeq−γsmallq)�

. (A1)

This function approaches p ∝ qγsmallq at q/qbreak � 1, and p ∝ qγlargeq

at q/qbreak � 1. The parameter � controls the sharpness of the
transition between the two regimes; in the limit of � → 0, it reduces
to a simple double power law with a sharp transition between the
two slopes.

In Fig. A3, we compare the constraints on p(q) obtained for
a single mass and separation bin when using the fiducial model
(grey) and a smoothly broken power law (hatched red). Overall, the
constraints are quite similar, but as expected, fitting a broken power-
law model smooths the best-fitting profile for p(q) and removes the
region near q ∼ 0.3 where the nominal uncertainty is suppressed.

We find qualitatively similar results for other bins of mass and
separation. However, we note that increasing � shifts the peak of
the distribution towards lower q (upper panel of Fig. A3). Since �

itself is often only weakly constrained, this can lead to parameter
covariances between �, γ smallq, and qbreak. We therefore use the
simpler broken power law as our fiducial model.

APPENDIX B: SENSITIVITY TO
SYSTEMATICS

The uncertainties we report on mass ratio distribution parameters
represent formal fitting uncertainties due to Poisson errors, but they
do not include various systematic uncertainties due to modelling
choices we make that are held fixed during fitting. Here, we vary
several aspects of the model to assess how sensitively our constraints
depend on them. Fig. B1 shows the effects of varying the assumed
IMF, stellar age distribution, and the isochrones used to generate
synthetic photometry, on our parameter constraints. We show a
single primary mass and separation bin with typical uncertainties
and sensitivity to systematics.

Varying the IMF (blue) has very weak effects on our constraints,
primarily because we fit narrow bins in primary mass independently.
Our constraints are also relatively insensitive to the assumed star
formation history (brown). Varying the age distribution has several
effects: it changes the number of low-mass companions that are still
undergoing Kelvin–Helmholtz contraction and are thus brighter, it
changes the mass–luminosity relation at M � 0.7 M�, where age
effects are non-negligible; and it changes the distance distribution
implied in our model because we adopt an age-dependent scale
height (equation 3). Varying the model for unresolved subsystems
has similarly weak effects. The green lines in Fig. B1 show con-
straints obtained when unresolved subsystems are ignored entirely
in the model (i.e. none of the synthetic wide binary components are
assigned an unresolved companion). The thus-obtained constraints
are nearly indistinguishable from those obtained when subsystems
are included in the model.

Changing the adopted stellar models from PARSEC to MIST
(Choi et al. 2016) has the strongest effect on our constraints.
Because the two models predict modestly different mass–luminosity
relations, a given �G corresponds to different q in the two
models. This has weak effects on the constraints on Ftwin and qtwin:
twins necessarily have similar masses, and the mapping between
luminosity and mass varies less over a small range of masses than
over a large one. Differences between the models are largest for
low-mass stars, where isochrones are known to be more uncertain.

We note that while there clearly are uncertainties in our results
associated with the stellar models, the PARSEC models appear to fit
the Gaia data for low-mass stars significantly better than the MIST
models. Particularly on the lower MS MG � 10, we are unable to
reproduce the morphology of the CMD unless we assume a higher-
than-expected mean metallicity of 〈[Fe/H]〉 ≈ +0.2. This is why
we use the PARSEC synthetic photometry in our fiducial model.
We note that the PARSEC models use surface boundary conditions
that are empirically calibrated to match the observed mass–radius
relation at low masses (Chen et al. 2014); without this calibration,
the tension between their predictions and the observed lower MS is
similar to that found for MIST models (e.g. Choi et al. 2018).
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5848 K. El-Badry et al.

Figure B1. Sixty-eight and ninety-five per cent probability contours for one representative bin of primary mass and physical separation. Panels on the diagonal
show marginalized probability distributions. Black contours shows results for fitting the fiducial model. Blue, brown, green, and cyan contours show constraints
obtained when the assumed IMF, star formation history, model for unresolved binaries, and stellar models are varied. Overall, constraints are not very sensitive
to the assumed IMF, SFH, or unresolved binary model; this is particularly true for Ftwin and qtwin. They are moderately sensitive to the choice of stellar models,
particularly at low-mass ratios.

APPENDIX C : TWINS IN OTHER
C ATA L O G U E S

Another large sample of low-mass wide binaries is the
SLoWPoKES-II catalogue created by Dhital et al. (2015) using
SDSS photometry. This catalogue was produced without astrometry
and extends to larger distances than our catalogue (d � 1 kpc).
Despite the lack of parallaxes and proper motions Dhital et al.
(2015) were able to ensure relatively low contamination by limiting
their search to close angular separations (θ < 20 arcsec) and using

an isochrone prior (i.e. requiring both components of a binary to
have similar photometric distance). The selection function of their
catalogue is quite different from ours, so we do not attempt a
full probabilistic model of the mass ratio distribution. However,
we check whether a twin excess is visible in the magnitude
difference distributions of their catalogue and whether its strength
at fixed physical separation is consistent with that found in our
catalogue.

Fig. C1 (top panel) shows the distribution of �r, the difference
in apparent r-band magnitude between the two components, as
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Twinning: equal-mass binaries at wide separations 5849

Figure C1. Excess of twins in the SLoWPoKES-II catalogue (Dhital et al.
2015). Top panel shows the full catalogue with SDSS photometry. Here there
is no obvious excess of equal-brightness twins. Middle panel shows Gaia
photometry from the full SLoWPoKES-II catalogue. The Gaia photometry
is significantly more precise than the ground-based SDSS photometry, so
a slight excess of twins is apparent, but the signal is somewhat weaker
than that found in our catalogue. The bottom two panels show SDSS and
Gaia photometry for the subset of the SLoWPoKES-II catalogue for which
the Gaia photometry passes our cut on phot bp rp excess factor.
This cut removes binaries in which the photometry for either component
is contaminated (either by the binary companion or by a background star).
Once sources with contaminated photometry have been removed, an excess
of twins is visible in both the SDSS and Gaia photometry.

a function of physical separation for the full SLoWPoKES-II
catalogue. Projected physical separations are calculated using the
mean photometric distance of the two stars estimate by Dhital et al.
(2015). We verified that for stars that are bright enough to have
precise Gaia parallaxes, the photometric and geometric distances

Figure C2. Ratio of the number of binaries with nearly equal magnitudes
(�G < 0.25) to the number with slightly different magnitude (0.25 < �G
< 0.5) as a function of projected physical separation (right). Error bars are
1σ . We compare the fiducial sample from this work (solid black line) to
the subsample of the SLoWPoKES-II catalogue (Dhital et al. 2015) with
uncontaminated Gaia photometry (dashed red line; bottom panel of Fig. C1)
and the sample of Gaia binaries from El-Badry & Rix (2019), which reaches
closer angular separations than our fiducial sample but passes less stringent
quality cuts.

are usually in reasonably good agreement. The SLoWPoKES-II
catalogue primarily contains binaries with q � 0.5: there are few
pairs with �r > 5, and at physical separations s � 2000 au, most
pairs have �r < 2. This is primarily a consequence of the catalogue
selection function. No clear excess of equal-brightness twins is
apparent in the top panel of Fig. C1: the distribution of �r at fixed
separation is reasonably smooth.

To check whether the lack of obvious twin excess in the full
SLoWPoKES-II catalogue is a consequence of the SDSS ground-
based photometry being poorer, we cross-matched the catalogue
with Gaia DR2. A Gaia source was found with 1 arcsec for both
components for ∼90 per cent of the binaries in the catalogue. In the
second panel of Fig. C1, we plot all of these sources (many of which
do not pass the photometric and astrometric quality cuts imposed
in our catalogue), showing the difference in G-band magnitude.
Here, an excess of equal-brightness binaries is visible, but it appears
somewhat weaker than in our catalogue.

Finally, in the third and fourth panels of Fig. C1, we show the
SDSS and Gaia photometry for the subset of the SLoWPoKES-II
catalogue in which the Gaia photometry for both components passes
the quality cut on phot bp rp excess factor that is imposed
on our catalogue. This cut removes objects in which the sum of the
flux in the BP and RP bands is not consistent with the flux in the
G band (see Evans et al. 2018). Because the fluxes in the BP and
RP bands are dispersed over several arcsec while the G-band flux
is obtained by profile fitting a narrower image, this cut efficiently
selects objects in which the Gaia photometry (both BP/RP and
G band) is contaminated by a nearby source. Once this cut is
applied, a stronger excess of equal-brightness binaries is apparent
in both the Gaia and SDSS photometry. We show below that for the
subsample of the SLoWPoKES-II catalogue with uncontaminated
Gaia photometry, the twin excess at fixed separation is consistent
with that found in our catalogue.

A natural worry is that the cut on
phot bp rp excess factor could somehow select against
pairs that are close on the sky and do not have nearly identical
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brightness or colour, thus erroneously producing an apparent excess
of equal-brightness binaries. However, the fact that no excess
of equal-brightness pairs is found for chance alignments subject
to the same cut speaks against this possibility. Inspecting the
SDSS images of binaries in which the Gaia photometry for either
component does not pass the phot bp rp excess factor
cut, we find that in most cases the contamination is quite strong:
either the light from the two stars is blended, or another source is
blended with one of the components. In such cases, the individual
magnitudes of the components cannot be measured with high
fidelity, likely leading to underestimated photometric errors.

In Fig. C2, we compare the strength of the twin excess found in
the Gaia photometry for the SLoWPoKES-II catalogue (once the
phot bp rp excess factor cut is applied) at fixed separation
(red) to that found in our catalogue (black). The y-axis is similar
to that in Fig. 5. The strength of the twin excess is consistent
between the two catalogues at all separations. We note that at close
physical separations, binaries are only spatially resolvable if they
are nearby, so at s � 500 au, there is substantial overlap between the
two catalogues. At s � 1000 au, there is little overlap, because most
of the SLoWPoKES-II binaries are too distant and faint to enter our
catalogue.

We also show in Fig. C2 the excess of equal-brightness bi-
naries found in the catalogue of Gaia binaries constructed in
El-Badry & Rix (2019), which targeted closer separations. This
catalogue only contains binaries with s < 500 au. Unlike our
primary catalogue, it did not require the components to have
measured GBP and GRP magnitudes, and it did not apply any
cuts on phot bp rp excess factor. This makes it possible
to reach binaries with a factor of ∼4 closer angular separations
than our primary catalogue. Fig. C2 shows that in this catalogue,
the twin excess continues to increase towards smaller separations,
at least to s ≈ 50 au. The twin excess is slightly weaker at fixed
separation in this catalogue, likely because the photometry is
more contaminated, but it is strongly inconsistent with 0. This
provides further evidence that the twin excess is not the result of
the phot bp rp excess factor cut creating a bias against
binaries with unequal brightness or colour.

In addition to the comparisons to other surveys described above,
we have also verified that the twin excess we find is not an artefact of
the Gaia photometry. Cross-matching our full binary catalogue with
the Pan-STARRS1 survey (Chambers et al. 2016; Flewelling et al.
2016), we find a twin excess of similar strength in its photometry.
The excess is also apparent in SDSS photometry, but it is somewhat
less narrow there due to the larger typical photometric errors.

APPENDIX D : SELECTION FUNCTION

The selection function of Gaia DR2 is known to exhibit spatial
variation on small scales as a result of the scanning law (e.g.
Arenou et al. 2018). Modelling all the small-scale structure in
the selection function is beyond the scope of this work, but doing
so is not necessary for our purposes. First, spatial variations are
almost negligible for sources within the magnitude range of our
catalogue (G � 18). More generally, since we do not expect the
intrinsic properties of the binary population to vary much with on-
sky position (particularly on small scales), one can construct an
effective selection function averaged over the whole sky without
introducing biases (e.g. Bovy et al. 2016).

We model the selection function for binaries as the product of
two single-star terms and a cross-term that depends on the angular

separation and magnitude difference of the two stars (equation 2).
Both terms are described below.

D1 Single-star term

The single-star term (s1 and s2 in equation 2; here we default to s1)
is set primarily by the following cuts we imposed in creating the
catalogue:

(i) 5 per cent parallax uncertainty: parallax over error>

20
(ii) Precise photometry: phot bp mean flux over error

> 20, phot rp mean flux over error > 20, and
phot g mean flux over error > 20

(iii) Good astrometric model fits:
√

χ2/(ν ′ − 5) < 1.2 ×
max(1, exp(−0.2(G − 19.5)), where χ2 and ν ′ are, respec-
tively, referred to as astrometric chi2 al and astromet-
ric n good obs al in the Gaia archive.

(iv) Uncontaminated photometry: 1.0 + 0.015(GBP − GRP)2 <

phot bp rp excess factor <1.3 + 0.06(GBP − GRP)2.

The motivation for these cuts is described in Lindegren et al.
(2018). We discuss the effects of each cut below. We note that ER18
also required difference in total proper motion of the two stars to be
precise, satisfying σ�μ < 1.5 mas yr−1. We find that for the subset
of the binaries studied in this work, that cut has a negligible effect
on the selection function, as sources that satisfy (i) and (ii) already
satisfy it.

For (i), parallax error is expected to depend mainly on apparent
magnitude. Fig. D1 shows that the parallax error at a given G-band
magnitude roughly follows a lognormal distribution, the mean value
of which increases for fainter stars. This allows us to calculate the
fraction of stars at a given distance and magnitude that will have
parallax over error > 20. In particular, the distribution of
� /σ� at a given distance and magnitude is

P (�/σ� ) = P (log σ� )

∣∣∣∣ d log σ�

d (�/σ� )

∣∣∣∣ , (D1)

where P(log σ� ) is the (Gaussian) distribution of log parallax error.
The fraction of stars with � /σ� > 20 is then

s� (G) =
∫ ∞

20
P (�/σ� ) d (�/σ� ) (D2)

= 1

2

[
1 − erf

(
μf ln 10 + ln (20/� )√

2σf ln 10

)]
. (D3)

Here, μf and σ f represent the mean and dispersion of the log parallax
error distributions at magnitude G; i.e. the quantities plotted in the
lower left panel of Fig. D1. Given equation (D2), we can calculate
the probability that a star with given absolute magnitude at a given
distance will satisfy parallax over error> 20; this is shown
in the lower right panel of Fig. D1.

A similar strategy can be used to calculate the fraction of stars
passing the photometric precision cuts. We find that the cut on
phot bp mean flux over error is the most important: once
it is applied and white dwarfs are excluded, all the sources that pass
it also pass the other cuts in (ii). This quantity depends primarily
on the apparent magnitude in the GBP band. As Fig. D2 shows,
the distribution ofphot bp mean flux over error at a given
GBP is also roughly lognormal. We use the empirical dependence of
the distributions of phot bp mean flux over error on GBP

from the bottom left panel of Fig. D2 to predict the distribution of
phot bp mean flux over error for a hypothetical star with
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Twinning: equal-mass binaries at wide separations 5851

Figure D1. Top panel shows the distributions of log parallax error for nearby stars (D < 100 pc) in 0.5-mag wide bins of apparent magnitude. We find
that the distribution of σ� at fixed apparent magnitude is roughly lognormal; solid curves show Gaussian fits to the observed histograms. Bottom left panel
shows the mean and dispersion of the log parallax error distribution as a function of G-band magnitude. Modelling the distribution of parallax error as a
lognormal with μ and σ following this panel allows us to calculate what fraction of stars with a given absolute magnitude and distance will pass the cut of
parallax over error > 20 (equation D2; bottom right panel).

absolute BP-band magnitude at a given distance, and then calculate
sBP as the fraction of that distribution that exceeds the adopted
threshold of 20:

sBP (GBP) =
∫ ∞

20
P (log (FBP/σBP)) d log (FBP/σBP) (D4)

= 1

2

[
1 + erf

(
μf − log 20√

2σf

)]
. (D5)

Here, FBP/σ BP represents phot bp mean flux over error,
and μf and σ f represent the mean and dispersion of the log
phot bp mean flux over error distributions at apparent
BP-band magnitude GBP; i.e. the quantities plotted in the lower
left panel of Fig. D2.

It is also worth considering whether the quality cuts (iii) and (iv)
change the single-star selection function. We assess the effects of
each quality cut as follows. We begin with the full sample of stars
within 200 pc satisfying � /σ� > 10. We then apply each quality cut
and monitor the effects on the sample. For this nearby sample, it is

straightforward to determine whether most of the sources removed
by a particular cut are erroneous (generally distant faint stars with
incorrect parallaxes) or real, because distant sources with incorrect
parallaxes generally fall in a cloud below the MS (see Lindegren
et al. 2018). What we wish to quantify is the fraction of real sources
that are removed by each cut, and whether these cuts introduce
systematic biases.

Fig. D3 shows the fraction of suspected genuine sources removed
by cuts (iii) and (iv). We conclude that cut (iv) has a negligible effect
on the single-star selection function. The effects of cut (iii) are also
weak, but it does appear to preferentially remove nearby sources.
This may be because unresolved astrometric binaries produce large
deviations from linear motion of the light centroid at close distances.
We tabulate scut due to cut (iv) as a function of parallax. The total
single-star selection function is then

s1 = s� (G)sBP(GBP)scut(� ), (D6)
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5852 K. El-Badry et al.

Figure D2. Top panel shows distributions of phot bp mean flux over error for nearby stars (D < 100 pc) in different 0.5 mag wide bins of GBP

apparent magnitude. Solid lines show lognormal fits; vertical dashed line shows the cut of phot bp mean flux over error > 20 that both components
of a binary must satisfy to enter the catalogue. Bottom left panel shows μ and σ of lognormal fits to these distributions as a function of GBP. From these, we
calculate the probability that a star at a given distance and absolute magnitude MBP will have phot bp mean flux over error > 20 (bottom left panel).

where s� (G) and sBP(GBP) are given by equations (D2) and (D4),
respectively.

D2 Contrast sensitivity for close pairs

A critical aspect of the selection function for binaries is the reduction
in sensitivity to a companion at close angular separations. Whether
a binary enters our catalogue depends both on the angular separation
of the two stars and on their flux ratio, as a secondary is more likely
to be outshone or contaminated by light from the primary at fixed
angular separation if the flux ratio is large than if it is small.

The sensitivity to a companion can be measured by comparing
the two-point correlation function of chance alignments to what
would be expected in the absence of crowding/blending effects
(e.g. Arenou et al. 2018; Brandeker & Cataldi 2019). Of course,
the sensitivity to companions in a particular catalogue depends on
the quality cuts imposed: cuts that remove objects with somewhat
contaminated photometry will lower the sensitivity.

We quantified the reduction in sensitivity to a companion as
a function of angular separation θ and magnitude difference �G
in ER18. There we found that, given our cuts on astrometric χ2

and photometric quality (primarily bp rp excess factor), the
sensitivity to a companion goes to 0 at θ � θ0, where θ0 ≈ 2 arcsec
for sources with similar magnitude, and θ0 increases with �G. We
quantified this dependence by fitting a function:

s�G (θ ) = 1

1 + (θ/θ0)−β
, (D7)

where β ≈ 10 and we fit for θ0 as a function of �G. We note
that the angular resolution of Gaia DR2 is actually significantly
better than 2 arcsec: most companions are detected down 1 arcsec
separations, and the detection fraction only drops to zero at θ <

0.5 arcsec (Arenou et al. 2018; Ziegler et al. 2018). The ∼2 arcsec
limit for our catalogue is a result of our requirement that both stars
have a measured bp rp colour and the cut on bp rp excess
factor.
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Twinning: equal-mass binaries at wide separations 5853

Figure D3. Fraction of suspected genuine sources within 200 pc that survive the cuts we impose on astrometric chi2 al and bp rp excess factor,
as a function of apparent magnitude (left) and distance (right). Both cuts remove only a small fraction of genuine sources. The cut on bp rp excess factor
removes sources with contaminated photometry (section D2). The cut on astrometric chi2 al preferentially removes nearby sources, perhaps because
perturbations from a companion lead to the larger angular deviations from linear motion for nearby sources.

Figure D4. Contrast sensitivity given our quality cuts. θ0 is the angular
separation below which the sensitivity to a companion with magnitude
difference �G drops off rapidly (see equation D7). Companions can be
detected at closer separations when the magnitude difference is small. We
compare the values of θ0 found by ER18 (for all stars passing our quality
cuts in a dense field) to those derived from our all-sky catalogue of nearby
chance alignments with precise parallaxes.

The dependence of θ0 on �G calculated in ER18 was derived
from the source counts of all sources passing our quality cuts
(iii) and (iv) in a dense field, most of which are fainter than
the objects in the binary catalogue. Here, we improve slightly
on the ER18 measurement by repeating their analysis, but using
the sources from the chance alignment catalogue described in
Section 2 instead of all sources in a dense field. The advantage
of this approach is that the sources in the chance alignment
catalogue, being nearby and having precise parallaxes, are more
representative of objects in the binary catalogue. Unsurprisingly
– since it was verified in ER18 that there are no strong trends

in contrast sensitivity with apparent magnitude or source density;
see also Brandeker & Cataldi (2019) – the improved constraints are
fairly similar to those derived in ER18. We compare them in Fig. D4.
On average, we find that the angular resolution at fixed separation is
marginally better for the bright chance alignments than was found
in ER18.

APPENDI X E: MODEL VA LI DATI ON

To test whether the assumptions of the model we use to fit for
the intrinsic mass ratio distribution are valid, we use it to predict
properties of the population of single stars that pass the same quality
cuts as the binaries in our catalogue (Section E1) and the separation
distribution of chance alignments (Section E2).

E1 Single stars

We query the Gaia catalogue for all stars with � > 5 mas that pass
the cuts on astrometric and photometric quality and precision that we
require both members of the binary catalogue to pass. Distributions
of their distance, apparent magnitude, absolute magnitude, and
colour are shown in Fig. E1 with a black histogram. To compare
to the model predictions, we draw masses, ages, metallicities,
distances from the fiducial distributions described in Section 3,
compute synthetic photometry using PARSEC isochrones, and
pass the observables through the single-star selection function
(Appendix 3.2). The resulting selection function weighted dis-
tributions are compared to the data in Fig. E1 (red histogram).
In the upper left panel, we also show the distance distributions
predicted for a uniform spatial distribution and for an exponential
disc with scale height of 300 pc (comparable to the Milky Way;
see Jurić et al. 2008), both assuming no incompleteness. The
distance distribution of single stars is not that different from the
exponential disc prediction, but it begins to deviate at d � 130 pc,
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5854 K. El-Badry et al.

Figure E1. Validation of the single-star selection function and underlying Galactic model. Black histograms show distributions of distance, apparent magnitude,
absolute magnitude, and colour for all stars (not just binaries) within 200 pc that pass the quality cuts of the binary catalogue. Black line shows the distributions
predicted by our model; i.e. assuming the same single-star selection function, IMF, Galactic scale height, star formation history, and metallicity distribution that
we use when fitting the binary population. The reasonably good agreement with the observed distributions suggests that our empirical selection function and
Galactic model are reasonable. Our fiducial model slightly overpredicts the number of faint stars. This tension can be resolved if a shallower IMF is assumed
(with a logarithmic slope of −0.9 instead of −1.3 at M < 0.5M�; gold). Overall, we regard the agreement between the fiducial model and observations as
quite satisfactory.

which is where incompleteness effects become significant for
MG ≈ 14 (Fig. D1).

The agreement between model and data is reasonably good.
However, the fiducial model predicts slightly too many faint stars
and too few bright stars. The gold histograms shows that the
agreement can be improved if a slightly shallower IMF is assumed,
with a logarithmic slope of −0.9 (instead of −1.3, as assumed in
the fiducial model) at M < 0.5 M�.10 This is consistent with the
recent result from Sollima (2019), who used the Gaia nearby star
sample to measure the IMF. For the sake of this work, we are
agnostic of whether Fig. E1 indicates that the low-mass IMF in the
solar neighbourhood is slightly shallower than that assumed in our
fiducial model or points towards a systematic in some other aspect
of the model (such as the MDF or stellar models). We note that
changing the assumed IMF has very little effect on our inferred
mass ratio distribution (Fig. B1).

10This slope was found by fitting the IMF from the CMD, as described in
appendix C of El-Badry, Weisz & Quataert (2017).

We also note that the colour distributions predicted by our model
do not exactly match the observed distribution for either choice of
IMF. This could be due to reddening, the adopted MDF (as the
subset of stars with spectroscopic metallicity measurements is not
guaranteed to be an unbiased sample), or imperfect stellar models.

E2 Chance alignments

To validate our model for the contrast sensitivity as a function
of angular separation, we predict the distributions of magnitude
difference at fixed separation using our model and compare to
the chance alignment catalogue described in Section 2. This is
accomplished as follows. We draw masses, ages, distances, and
metallicities for both ‘components’ of a chance alignment indepen-
dently, and we draw angular separations assuming P(θ )dθ ∝ 2πθ .
Just as for true binaries, we compute the selection function for
each pair by multiplying the two single-star selection functions
and the angular contrast sensitivity term. The results are shown in
Fig. E2 σ 0. The agreement with the real chance alignment catalogue
is good.
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Twinning: equal-mass binaries at wide separations 5855

Figure E2. Distributions of apparent magnitude difference for our observed sample of chance alignments within 400 pc (black) and a simulated sample based
on the same selection function and distributions of mass, age, metallicity, and distance assumed in modelling genuine binaries. Agreement between data and
model validates the model assumptions, particularly the sensitivity to a companion as a function of angular separation and magnitude difference.

APPENDIX F: RV VARIABILITY

Although Gaia DR2 does not contain multi-epoch RV measure-
ments, the published RV uncertainties contain information that can
be exploited to detect a large fraction of RV-variable close binaries.
The radial velocity error reported in the Gaia archive
represents the uncertainty on the median of velocity measurements
from several transits (see Katz et al. 2019). It is calculated as

εRV =
[

π

2Nobs
σ 2

RV + σ 2
0

]1/2

, (F1)

where σ0 = 0.11 km s−1 is a constant term that represents the
minimum achievable RV uncertainty due to calibration issues, Nobs

is the number of RV transits (rv nb transits in the Gaia

Figure F1. Median σRV (equation F2) for main-sequence stars within
200 pc that pass our quality cuts and rv nb transits > 2. Since a
majority of stars are not intrinsically RV-variable, this represents the typical
RV precision for stars of a given brightness and spectral type. Most stars that
have σRV substantially larger than the median for their colour and magnitude
are close binaries.

archive), and σ RV is the standard deviation of the RVs measured in
individual transits. The standard deviation of the measured transit
RVs can thus be reconstructed as

σRV = [
2Nobs

(
ε2

RV − σ 2
0

)
/π

]1/2
. (F2)

We expect σ RV to be larger than usual if the variation in the true
RV of a star between transits is large compared to the observational
RV precision. This suggests that close binaries could be identified
as stars with unusually large σ RV for their colour and apparent
magnitude.

To quantify this, we queried the Gaia archive for all stars within
200 pc that pass the quality cuts imposed on binary components
and additionally have rv nb transits > 2. Selecting MS stars
in bins of bp rp colour and G-band magnitude, we calculated the
median σ RV in each bin (Fig. F1). As expected, the typical RV error
increases with increasing G magnitude and is larger for bluer stars,
which have weaker and broader absorption lines, at fixed magnitude.

We designate sources that have σ RV larger than 2.5 times the
median for their colour and apparent magnitude as likely close
binaries. The factor of 2.5 is a practical choice to balance the
number of false-positives and false-negatives. To assess the false-
negative rate for this designation, we cross-matched Gaia DR2
with the catalogue of RV-variable MS SB1s identified by El-Badry
et al. (2018b) using APOGEE spectra and calculated σ RV for the
subsample of that catalogue that passes our quality cuts. Among
SB1s for which El-Badry et al. (2018b) found the RV to vary by at
least 5 km s−1 between visits, 62 per cent are correctly identified as
binaries based on the Gaia σ RV. This fraction climbs to 82 per cent
for sources whose APOGEE RVs varied by at least 15 km s−1. On the
other hand, the false-positive rate is relatively low: only 2.6 per cent
of the stars classified by El-Badry et al. (2018b) as likely to be
single are classified as binaries based on the Gaia σ RV. This means
that, although some true binaries will be missed and there will be
some false-positives, the Gaia σ RV can be used to obtain an estimate
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5856 K. El-Badry et al.

of the close binary fraction in a population (where ‘close’ means
a � few au).

To assess whether the components of wide twins are more likely
to have an unresolved close companion than the components of
non-twins, we use the σ RV distributions to estimate the fraction
of components of twin (�G < 0.25) and non-twin (0.25 ≤ �G
< 1) wide binaries with an unresolved close companion. We
only consider binaries with 100 < s/au < 500, since at wider
separations, the number of ‘excess’ twins is subdominant relative to
the underlying population (Fig. 10). We consider all components
with masses in the range 0.5 < M/M� < 1.2 that have Gaia
RVs with rv nb transits > 2 (i.e. we do not require both
resolved components to have measured RVs). Among 546 eligible
components of wide twins, 29 have σ RV consistent with having
unresolved close companion, implying a close companion fraction
per wide binary component of

fclose companion, twins = 0.053 ± 0.012. (F3)

Of the 780 eligible components of non-twins, 76 have σ RV consistent
with having unresolved close companion. This implies

fclose companion, non−twins = 0.097 ± 0.013. (F4)

That is, the fraction of wide binary components that have a close
unresolved companion is higher at the 2σ level for non-twins than
for twins. This would seem to speak against a scenario in which
the excess of wide twins is causally linked to hierarchical triples.
Indeed, given the non-zero false-positive rate of the σ RV-based close
binary identification and the fact that ‘excess’ twins represent only
about half of the population with �G < 0.25, the data are consistent
with the excess twins having no close companions at all.

APPENDI X G : FULL FI TTI NG C ONSTRAINTS

Constraints on fitting parameters for all bins of primary mass
and separation are listed in Table G1. Error bars are 2σ (middle
95.4 per cent).
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Table G1. Marginalized 2σ constraints on fitting parameters for all bins of primary mass and separation. For 0.1 < M1/M� < 0.4, we fit a single power law,
so γ smallq = γ largeq.

0.1 < M1/M� < 0.4 0.4 < M1/M� < 0.6 0.6 < M1/M� < 0.8 0.8 < M1/M� < 1.2 1.2 < M1/M� < 2.5

Ftwin

50 < s/au < 350 0.189±0.042
0.049 0.112±0.034

0.038 0.059±0.019
0.021 0.101±0.027

0.029 0.086±0.058
0.075

350 < s/au < 600 0.105±0.036
0.035 0.062±0.018

0.020 0.043±0.016
0.019 0.054±0.014

0.018 0.088±0.037
0.047

600 < s/au < 1000 0.049±0.032
0.039 0.054±0.017

0.020 0.032±0.016
0.019 0.035±0.015

0.016 0.015±0.024
0.034

1000 < s/au < 2500 0.023±0.025
0.033 0.049±0.018

0.022 0.024±0.016
0.016 0.013±0.010

0.011 0.002±0.015
0.020

2500 < s/au < 5000 −0.001±0.048
0.039 0.047±0.025

0.029 0.018±0.020
0.019 0.023±0.017

0.021 −0.003±0.023
0.023

5000 < s/au < 15 000 0.005±0.040
0.043 0.043±0.030

0.031 0.014±0.018
0.021 0.007±0.015

0.015 0.003±0.023
0.035

15 000 < s/au < 50 000 0.024±0.094
0.120 −0.009±0.039

0.043 −0.012±0.028
0.032 0.009±0.024

0.032 0.001±0.037
0.057

qtwin

50 < s/au < 350 0.953±0.010
0.006 0.959±0.023

0.014 0.969±0.019
0.005 0.962±0.014

0.009 0.950±0.018
0.029

350 < s/au < 600 0.937±0.006
0.011 0.959±0.017

0.009 0.954±0.021
0.016 0.967±0.027

0.010 0.936±0.006
0.018

600 < s/au < 1000 0.954±0.022
0.025 0.963±0.025

0.012 0.939±0.008
0.018 0.957±0.023

0.028 0.954±0.022
0.040

1000 < s/au < 2500 0.975±0.043
0.017 0.963±0.029

0.017 0.941±0.011
0.030 0.959±0.025

0.030 0.957±0.026
0.037

2500 < s/au < 5000 0.955±0.025
0.039 0.953±0.022

0.019 0.950±0.019
0.029 0.945±0.014

0.039 0.958±0.027
0.035

5000 < s/au < 15 000 0.959±0.028
0.038 0.951±0.020

0.030 0.965±0.034
0.027 0.970±0.038

0.027 0.960±0.029
0.035

15 000 < s/au < 50 000 0.961±0.030
0.031 0.961±0.029

0.033 0.961±0.029
0.032 0.957±0.026

0.038 0.957±0.026
0.039

γ largeq

50 < s/au < 350 0.52±0.45
0.45 0.17±0.40

0.39 −1.43±0.48
0.51 −1.22±0.66

0.67 −0.89±0.90
1.00

350 < s/au < 600 −0.16±0.43
0.43 −0.01±0.29

0.27 −0.89±0.35
0.33 −1.83±0.42

0.38 −1.88±0.54
0.55

600 < s/au < 1000 0.23±0.41
0.45 −0.44±0.28

0.27 −1.19±0.30
0.30 −1.43±0.30

0.30 −1.16±0.33
0.28

1000 < s/au < 2500 0.39±0.41
0.39 −0.55±0.28

0.26 −0.90±0.26
0.25 −1.54±0.22

0.22 −1.55±0.21
0.19

2500 < s/au < 5000 0.23±0.52
0.52 −0.43±0.40

0.38 −1.04±0.36
0.34 −1.52±0.32

0.33 −1.52±0.29
0.27

5000 < s/au < 15 000 0.22±0.51
0.59 −0.42±0.44

0.42 −0.86±0.37
0.35 −1.35±0.33

0.31 −1.31±0.28
0.25

15 000 < s/au < 50 000 0.53±0.86
0.84 −0.43±0.67

0.67 −0.72±0.65
0.63 −1.39±0.55

0.58 −1.22±0.46
0.43

γ smallq

50 < s/au < 350 0.33±0.60
0.56 0.20±0.51

0.58 0.13±0.64
0.69 0.13±0.98

1.00

350 < s/au < 600 −0.37±0.44
0.47 0.24±0.41

0.47 0.40±0.41
0.43 −0.01±0.79

0.86

600 < s/au < 1000 0.17±0.44
0.46 0.24±0.33

0.36 0.12±0.26
0.26 0.15±0.55

0.72

1000 < s/au < 2500 0.53±0.44
0.44 0.06±0.25

0.27 0.12±0.17
0.16 0.56±0.42

0.47

2500 < s/au < 5000 0.02±0.56
0.58 −0.15±0.33

0.34 −0.14±0.21
0.21 0.09±0.36

0.43

5 000 < s/au < 15 000 0.13±0.59
0.69 0.12±0.39

0.40 −0.20±0.21
0.22 −0.18±0.40

0.40

15 000 < s/au < 50 000 −0.02±0.84
0.88 −0.13±0.69

0.60 −0.24±0.42
0.41 −0.09±0.64

0.66

γ s

50 < s/au < 350 −1.36±0.22
0.21 −1.55±0.18

0.20 −1.22±0.32
0.38 −1.02±0.40

0.46 −0.84±0.77
0.93

350 < s/au < 600 −1.10±0.43
0.42 −1.20±0.29

0.27 −0.89±0.39
0.38 −0.80±0.47

0.43 −1.28±1.00
1.00

600 < s/au < 1000 −1.48±0.48
0.46 −1.16±0.31

0.29 −1.75±0.34
0.37 −1.13±0.36

0.36 −0.03±0.74
0.78

1000 < s/au < 2500 −1.67±0.23
0.26 −1.56±0.14

0.14 −1.52±0.15
0.16 −1.47±0.13

0.13 −1.41±0.24
0.26

2500 < s/au < 5000 −2.05±0.51
0.46 −1.71±0.30

0.30 −1.75±0.30
0.29 −1.67±0.23

0.26 −1.40±0.42
0.45

5 000 < s/au < 15 000 −1.74±0.34
0.36 −1.74±0.21

0.21 −1.62±0.21
0.21 −1.84±0.16

0.17 −1.35±0.28
0.27

15 000 < s/au < 50 000 −1.61±0.90
0.83 −1.68±0.47

0.49 −2.21±0.54
0.50 −2.00±0.37

0.40 −1.50±0.66
0.63
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