Service interruption on Monday 11 July from 12:30 to 13:00: all the sites of the CCSD (HAL, EpiSciences, SciencesConf, AureHAL) will be inaccessible (network hardware connection).
Skip to Main content Skip to Navigation
Journal articles

Glycolaldehyde in Perseus young solar analogs

Abstract : Context. The earliest evolutionary stages of low-mass protostars are characterised by the so-called hot-corino stage, when the newly born star heats the surrounding material and enrich the gas chemically. Studying this evolutionary phase of solar protostars may help understand the evolution of prebiotic complex molecules in the development of planetary systems.
Aims: In this paper we focus on the occurrence of glycolaldehyde (HCOCH2OH) in young solar analogs by performing the first homogeneous and unbiased study of this molecule in the Class 0 protostars of the nearby Perseus star forming region.
Methods: We obtained sub-arcsec angular resolution maps at 1.3 mm and 1.4 mm of glycolaldehyde emission lines using the IRAM Plateau de Bure (PdB) interferometer in the framework of the CALYPSO IRAM large program.
Results: Glycolaldehyde has been detected towards 3 Class 0 and 1 Class I protostars out of the 13 continuum sources targeted in Perseus: NGC 1333-IRAS2A1, NGC 1333-IRAS4A2, NGC 1333-IRAS4B1, and SVS13-A. The NGC 1333 star forming region looks particularly glycolaldehyde rich, with a rate of occurrence up to 60%. The glycolaldehyde spatial distribution overlaps with the continuum one, tracing the inner 100 au around the protostar. A large number of lines (up to 18), with upper-level energies Eu from 37 K up to 375 K has been detected. We derived column densities ≥1015 cm-2 and rotational temperatures Trot between 115 K and 236 K, imaging for the first time hot-corinos around NGC 1333-IRAS4B1 and SVS13-A.
Conclusions: In multiple systems glycolaldehyde emission is detected only in one component. The case of the SVS13-A+B and IRAS4-A1+A2 systems support that the detection of glycolaldehyde (at least in the present Perseus sample) indicates older protostars (I.e. SVS13-A and IRAS4-A2), evolved enough to develop the hot-corino region (I.e. 100 K in the inner 100 au). However, only two systems do not allow us to firmly conclude whether the primary factor leading to the detection of glycolaldehyde emission is the environments hosting the protostars, evolution (e.g. low value of Lsubmm/Lint), or accretion luminosity (high Lint).

Based on observations carried out with the IRAM Plateau de Bure interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).Reduced datacube (FITS file) is available at the CDS via anonymous ftp to ( or via

Complete list of metadata
Contributor : Nathalie POTHIER Connect in order to contact the contributor
Submitted on : Friday, June 10, 2022 - 7:38:11 AM
Last modification on : Friday, June 10, 2022 - 7:38:13 AM


Publisher files allowed on an open archive




M. de Simone, C. Codella, L. Testi, A. Belloche, A. J. Maury, et al.. Glycolaldehyde in Perseus young solar analogs. Astronomy & Astrophysics, 2017, 599, ⟨10.1051/0004-6361/201630049⟩. ⟨insu-03692531⟩



Record views


Files downloads