Skip to Main content Skip to Navigation
Journal articles

Bidirectional reflectance spectroscopy of carbonaceous chondrites: Implications for water quantification and primary composition

Abstract : In this study, we measured bidirectional reflectance spectra (0.5-4.0 μm) of 24 CMs, five CRs, one CI, one CV, and one C2 carbonaceous chondrites. These meteorites are known to have experienced an important variability in their relative degrees of aqueous alteration degree (Rubin et al. [2007]. Geochim. Cosmochim. Acta 71, 2361-2382; Howard et al. [2009]. Geochim. Cosmochim. Acta 73, 4576-4589; Howard et al. [2011]. Geochim. Cosmochim. Acta 75, 2735-2751; Alexander et al. [2013]. Geochim. Cosmochim. Acta 123, 244-260). These measurements were performed on meteorite powders inside an environmental cell under a primary vacuum and heated at 60 °C in order to minimize adsorbed terrestrial water. This protocol allows controlling of atmospheric conditions (i.e. humidity) in order to avoid contamination by terrestrial water. We discuss various spectral metrics (e.g. reflectance, band depth, single-scattering albedo, …) in the light of recent bulk composition characterization (Howard et al. [2009]. Geochim. Cosmochim. Acta 73, 4576-4589; Howard et al. [2015]. Geochim. Cosmochim. Acta 149, 206-222; Alexander et al. [2012]. Science 337, 721; Beck et al. [2014]. Icarus 229, 263-277; Garenne et al. [2014]. Geochim. Cosmochim. Acta 137, 93-112). This study reveals variability of reflectance among meteorite groups. The reflectance is not correlated with carbon or hydrogen abundance neither with measured grain size distribution. We suggest that it is rather controlled by the nature of accreted components, in particular the initial matrix/chondrule proportion. Band depth, integrated band depth, mean optical path length, normalized optical path length, effective single-particle absorption thickness were calculated on the so called 3-μm band for reflectance spectra and for single scattering albedo spectra. They were compared with hydrated phase proportions from previous study on the same meteorites by thermogravimetric analyses and infrared spectroscopy in transmission. We find that normalized optical path length (NOPL) is the most appropriate to quantify water abundance, with an absolute error of about 5 wt.%. These datasets also reveal a variability of the band shape between 2.8 and 2.9 μm, which is interpreted as reflecting variation in the chemical composition and structure of phyllosilicates. This chemical variation could also be used to quantify the aqueous alteration degree between meteorite groups. The combination of reflectance at 2 μm and the depth of 3-μm band can be combined, to classify carbonaceous chondrites in reflectance in term of primary composition (e.g. matrix/chondrule ratio, carbon content) and secondary processes (e.g. aqueous alteration, thermal metamorphism). This could be used to decipher the nature of aqueous alteration in C-complex asteroids.
Document type :
Journal articles
Complete list of metadata

https://hal-insu.archives-ouvertes.fr/insu-03691578
Contributor : Nathalie POTHIER Connect in order to contact the contributor
Submitted on : Thursday, June 9, 2022 - 10:51:38 AM
Last modification on : Saturday, June 25, 2022 - 3:06:22 AM

Identifiers

Collections

Citation

A. Garenne, P. Beck, G. Montes-Hernandez, O. Brissaud, B. Schmitt, et al.. Bidirectional reflectance spectroscopy of carbonaceous chondrites: Implications for water quantification and primary composition. Icarus, Elsevier, 2016, 264, pp.172-183. ⟨10.1016/j.icarus.2015.09.005⟩. ⟨insu-03691578⟩

Share

Metrics

Record views

1