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ABSTRACT
The local properties of turbulence driven by the magnetorotational instability (MRI) in rotating,
shearing flows are studied in the framework of a shearing-box model. Based on numerical
simulations, we propose that the MRI-driven turbulence comprises two components: the
large-scale shear-aligned strong magnetic field and the small-scale fluctuations resembling
magnetohydrodynamic (MHD) turbulence. The energy spectrum of the large-scale component
is close to k−2, whereas the spectrum of the small-scale component agrees with the spectrum
of strong MHD turbulence k−3/2. While the spectrum of the fluctuations is universal, the outer-
scale characteristics of the turbulence are not; they depend on the parameters of the system,
such as the net magnetic flux. However, there is remarkable universality among the allowed
turbulent states – their intensity v0 and their outer scale λ0 satisfy the balance condition v0/λ0

∼ d�/dln r, where d�/dln r is the local orbital shearing rate of the flow. Finally, we find no
sustained dynamo action in the Pm = 1 zero net-flux case for Reynolds numbers as high as
45 000, casting doubts on the existence of an MRI dynamo in the Pm ≤ 1 regime.
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1 IN T RO D U C T I O N

Magnetorotational instability (MRI), the instability of rotating,
shearing flows of plasmas or conducting fluids in the presence of a
weak magnetic field (Chandrasekhar 1960; Balbus & Hawley 1991),
is thought to play an important role in many natural systems. It was
proposed as a mechanism driving angular momentum transport in
astrophysical accretion discs (Balbus & Hawley 1998), and it was
also studied in the solar dynamo (Kagan & Wheeler 2014) and geo-
dynamo (Petitdemange, Dormy & Balbus 2008) contexts. The MRI
is finally an excellent prototype of subcritical magnetic dynamo
action (Rincon, Ogilvie & Proctor 2007; Herault et al. 2011; Riols
et al. 2013).

Many analytic, numerical, and laboratory studies have been de-
voted to the onset of the instability and the resulting magnetic
turbulence (e.g. Sisan et al. 2004; Gissinger, Ji & Goodman 2011;
Seilmayer et al. 2014; Latter, Fromang & Faure 2015; Meheut et al.
2015). At present, however, it is hardly possible to address the
full-scale dynamics of natural systems exhibiting the MRI, as it
incorporates the effects of stratification, global geometry, boundary
conditions, etc. However, the local and fundamental properties of
MRI-driven turbulence may be studied in the framework of reduced
models, such as the shearing box, which isolates the principal ingre-
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dients required for the MRI (e.g. Goldreich & Lynden-Bell 1965;
Hawley, Gammie & Balbus 1995; Fromang et al. 2007; Longaretti
& Lesur 2010; Lesur & Longaretti 2011; Riols et al. 2015). Mod-
elling of the small-scale dynamics produces the angular momentum
transport coefficient α that can be used in global modelling of the
disc, star, or planet interior (e.g. Shakura & Sunyaev 1973; Lesur
& Ogilvie 2010).

Numerical studies of the shearing-box model reveal non-trivial
properties of the resulting magnetic turbulence. In the case of zero
net magnetic flux through the system – the so-called MRI-dynamo
case – the turbulence was found to be sustained for magnetic Prandtl
numbers exceeding unity, while it was observed to eventually decay
for smaller values (Fromang et al. 2007; Balbus & Henri 2008; Riols
et al. 2013, 2015). Larger Reynolds numbers seem to facilitate the
MRI dynamo action by lowering the Prandtl number threshold.
However, present numerical limitations do not allow one to establish
whether this dependence persists at asymptotically large Reynolds
numbers. In the case of non-zero net magnetic flux, it was found
that the steady state is eventually reached that depends on the value
of the flux and also on the magnetic Prandtl number (Longaretti &
Lesur 2010).

In order to understand the numerically observed behaviour, it is
instructive to understand the properties of the magnetic turbulence
that develops in the system. This is the goal of this Letter. It is
motivated by several puzzling results obtained in previous works.
In particular, previous studies did not find a power-law scaling
of the energy spectrum of magnetorotational turbulence (Lesur &
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Longaretti 2011). It remained unknown whether such a system de-
velops a turbulent cascade similar to that found in forced magne-
tohydrodynamic (MHD) turbulence (e.g. Mason et al. 2012; Perez
et al. 2012), and whether there is any universality among the turbu-
lent states corresponding to different parameter regimes.

In this study, we find that in the cases when a steady or quasi-
steady turbulent field is observed, it develops two distinct compo-
nents. The first component consists of strong magnetic fluctuations
almost in the direction of the shear. The spectrum of this compo-
nent declines as k−2; therefore, this component is concentrated at
large scales. The remainder of the fluctuations comprise the second,
small-scale component that exhibits a turbulent cascade with the
shallower spectrum of −3/2, similar to that of standard MHD tur-
bulence. The large-scale component of the turbulence plays the role
of the guide field for the small-scale component. We observe that
the intensity of the resulting turbulence depends on the net magnetic
flux. However, there is remarkable universality among all the ob-
served turbulent regimes – the level of turbulence and its outer scale
are adjusted in such a way as to ensure that the rate of non-linear
interaction is proportional to the shear rate of the background flow.

2 N U M E R I C A L S E T U P

We use the shearing-box (or shearing-sheet) approximation of Gol-
dreich & Lynden-Bell (1965), developed to study the local dynam-
ics of shearing, rotating flow. In this approximation, one considers
a small, Cartesian box orbiting at some radius r0 and solves for
perturbations from a mean flow. The shearing rate is defined by
q ≡ −(d ln �/d ln r)r0 , where �(r) is the angular speed and the
derivative is evaluated at the radial location r0. For a Keplerian flow
we have q = 3/2. We also denote �0 = �(r0). The Cartesian co-
ordinates inside the box are chosen in the following way: x is the
radial direction, y is the direction of the background velocity, and
z is the vertical direction (the direction of �). For simplification,
we assume that the flow is incompressible, corresponding to the
so-called ‘small shearing-box limit’; the details of the derivation
can be found in Umurhan & Regev (2004). When the background
mean shear profile is removed, the remaining fluctuating parts of
the velocity and magnetic fields obey the following system of equa-
tions:

Dtv = −(v · ∇)v − ∇P + B · ∇ B + ν∇2v −
−2�0×v + q�0vx ey, (1)

Dt B = ∇×(v×B) + η∇2 B − q�0Bx ey, (2)

∇·v = 0, ∇·B = 0, (3)

with Dt ≡ ∂t − q�0x∂y .
The variables are non-dimensionalized using the inverse of the

rotation rate of the disc t0 = �−1
0 as the unit of time, the box (disc)

height Lz as the unit of length, �0Lz as the unit of velocity, and the
Alfvén speed vA = B/

√
4πρ as the unit of magnetic field strength.

The density ρ and angular speed �0 are chosen to be unity. In
general, when a uniform field B0 = B0ez is imposed, we define the
fluctuating part of the magnetic field b according to B = B0 + b.

The relevant dimensionless quantities are the Reynolds number
Re = �0L

2
z/ν, the magnetic Reynolds number Rm = �0L

2
z/η, the

Elsasser number 	η = B2
0 /�0ν, and the parameter β = �2

0L
2
z/B

2
0 ,

which measures the strength of the imposed magnetic field and mim-
ics the plasma β in vertically stratified discs. We also introduce the

dimensionless transport coefficient α ≡ 〈vxvy − bxby〉/�2
0L

2
z and

the energy injection rate α̃ ≡ q�0〈vxvy − bxby〉, where 〈 · 〉 denotes
an average performed over the entire volume. From equations (1)
and (2), the energy balance equation has the form (Longaretti &
Lesur 2010):

d

dt

〈
v2

2
+ b2

2

〉
= −ν

〈
(∇×v)2

〉
− η

〈
(∇×b)2

〉
+ α̃. (4)

The Reynolds numbers are chosen to be equal so that the magnetic
Prandtl number Pm = ν/η is unity.

Equations (1)–(3) are solved using the pseudo-spectral code
SNOOPY (Lesur & Longaretti 2007). SNOOPY uses the Fourier trans-
forms of the FFTW 3 library and a low-storage, third-order Runge-
Kutta (RK3) scheme for time integration of all terms except the
dissipation terms, which are treated implicitly. The shearing-street
equations solve for fluctuations from a mean background shear, as
described above. In order to resolve the solution for a long time,
SNOOPY periodically remaps the fields every �tremap = |Ly/(q�0Lx)|.
Greater detail of the mathematical algorithm is given in Umurhan
& Regev (2004).

In this Letter, we consider the simulation box with dimensions
Lx: Ly: Lz = 2: 4: 1 (Bodo et al. 2008) and numerical resolution of
Nx × Ny × Nz = 1024 × 1024 × 512. All cases have a Reynolds
number Re = 45 000. We consider three steady-state cases and one
decaying case.

Case I has a net flux of B0 = 0.03, corresponding to β ≈ 1100. The
initial conditions are random fluctuations at large scales that are then
evolved over ∼50t0 to achieve a steady state. Case I is this steady
state after the initial growth period, with averages performed over
the final ∼50t0. The spectra of magnetic and kinetic fluctuations
measured in this case are presented in Figs 1 and 2, and the energy
injection rate α̃ is shown in Fig. 3.

Case II is another steady-state case that has a weaker net flux of
B0 = 0.010 and used a snapshot of Case I as its initial condition. Af-
ter the steady state had been reached, the averages were performed
over the final ∼20t0.

Case III corresponds to a very weak net flux of B0 = 0.005. To ini-
tiate this run, the weak magnetic field was added to the simulations
of our zero net-flux setup – Case IV below – such that 	η ≈ 1. This
was so that the linear MRI, which is quenched at high wavenumbers
for 	η < 1, would be excited with a minimal injection of energy.
We observe that the turbulence reaches a new, lower-energy steady
state in this case. Averages were performed over the final ∼100t0.

Case IV is a zero net-flux case that used as its initial condition
a snapshot of Case I in which the mean field was manually zeroed.
We observe that in this case the energy declines very slowly, on

Figure 1. The total energy spectrum, the kinetic energy spectrum, and the
magnetic energy spectrum, compensated by k3/2, from Case I.
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Figure 2. The total energy spectrum, the total energy spectrum without by,
and the spectrum of by, compensated by k3/2, from Case I.

Figure 3. The cumulative energy injection rate at scale k, defined as
CI (k) = ∫ ∞

k α̃(k)dk/
∫ ∞

1 α̃(k)dk, from Case I.

Figure 4. Time history of Case IV showing energy E, energy injection rate
α̃, and energy dissipation rate ε.

the time scale of ∼100t0, consistent with the fact that the energy
injection and dissipation rates nearly balance each other, see Fig. 4.
This suggests that the role of the imposed field and the associated
MRI in the steady-state Cases I–III is merely to compensate for the
very slight mismatch between the non-linear energy injection and
dissipation rates.

We also note that we were not able to observe the MRI dynamo
action in the Pm = 1 case despite a Reynolds number twice as large
as in Fromang et al. (2007).

Figure 5. Snapshot of by during Case I showing elongation of structures in
y direction and regions of strong, counter-aligned by field.

3 R ESULTS

In all the turbulent states, the total energy spectra do not display
good power-law scaling, see e.g. Fig. 1. This is consistent with
previous studies (e.g. Fromang 2010; Lesur & Longaretti 2011),
where it was also found that while the total energy spectrum does
not have good scaling, the kinetic spectrum exhibits the scaling
somewhat close to k−3/2.

We find, however, that a more informative analysis can be per-
formed if the field by is separated from the total energy spectrum.
As seen in Fig. 2, the energy in by is larger than in the rest of the
fields; it is peaked at large scales and rapidly declines with decreas-
ing scale. Indeed, due to the �-effect, fluctuations of magnetic field
in a sheared flow become more aligned with the shear, enhancing
the strength of the field in the shear direction, see Fig. 5. The energy
spectrum of the by fields scales closely to k−2 which is possibly
related to the domain structure seen in Fig. 5, with sharp boundaries
between the domains where the direction of the field reverses. The
large-scale field by may be responsible for the energy supply through
the MRI instability, which is also concentrated at large scales, see
Fig. 3.

The field by plays the role of a background, ‘guiding field for the
remaining small-scale fluctuations, whose energy spectrum is close
to k−3/2 in the interval k ≈ 4–20. Indeed, this scaling is consistent
with the inertial range of large-scale, driven, steady-state, MHD
turbulence1 (e.g. Maron & Goldreich 2001; Haugen, Brandenburg &
Dobler 2004; Müller & Grappin 2005; Mason, Cattaneo & Boldyrev
2006, 2008; Mininni & Pouquet 2007; Perez & Boldyrev 2010;
Chen et al. 2011; Perez et al. 2012; Chandran, Schekochihin &
Mallet 2015). This was found in both the non-zero and zero net-flux
cases. The energy spectrum Fig. 2 is shown for Case I, and almost
identical plots could be produced for Cases II and IV – Case III
had much less energy and, therefore, a quite limited inertial range,
see Table 1. This suggests that the observed spectral behaviour is
independent of a net flux or of the overall level of turbulence, and
that, instead, it is an inherent property of the shearing, rotating flow.

Further insight in the MRI-driven turbulence can be gained from
Case IV, where no magnetic flux is imposed, and, in our case of
Pm = 1, turbulence intensity declines. The decline is, however,
very slow, on the order of ∼100t0; so the system is observed to
go through a sequence of quasi-steady states. In these states, as
seen in Fig. 4, the energy injection rate α̃ nearly balances the rate
of energy dissipation ε, and, therefore, the rate of energy cascade
due to turbulence. The scaling of the turbulence spectrum does not
practically change during this evolution, while both the turbulent

1 In the studies of driven MHD turbulence (e.g. Perez et al. 2012), one
typically uses the Reynolds number based on the velocity fluctuations. In
our Case I, this would give Rerms = vrms(Lz/2π)/ν ≈ 4000.
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Table 1. Steady-state Cases I, II, and III, and decaying Case IV. The last
two columns show best fits of the exponents of E(k) − 0.5 b2

y (k) ∝ k−ζ⊥

and 0.5 b2
y (k) ∝ k−ζ‖ over the range k ∈ [4, 20]. For Case IV, the spectra are

computed for t/t0 ∈ [20, 50].

Case B0 E α̃ ε/E ζ⊥ ζ ‖

I 0.030 0.71 0.37 0.52 1.50 ± 0.03 1.95 ± 0.02
II 0.010 0.41 0.22 0.54 1.51 ± 0.03 1.96 ± 0.03
III 0.005 0.072 0.039 0.54 1.13 ± 0.08 1.45 ± 0.12
IV 0.0 – – 0.54 1.48 ± 0.04 1.95 ± 0.04

Figure 6. Upper panel: correlation functions for steady-state Cases I, II
and III, each scaled to its respective maximum. Lower panel: the x-axis
is rescaled by R

γx
0 , where γ x ≈ 0.43 minimizes the distance between the

curves.

energy E and the energy injection rate α̃ slowly decay with time.
An interesting property of such evolution is that the ratios ε/E and
α̃/ε remain nearly constant, as seen in Fig. 4 and in Table 1. This
indicates that the energy cascade time at the outer scale of turbulence
is the same for all the observed quasi-steady states.

A similar behaviour is observed in the steady-state, MRI-driven
cases, which we now analyse in greater detail. We compare the
three steady-state Cases I–III, whose parameters and results are
summarized in Table 1. Similarly to the decaying Case IV, we
observe that while energy, dissipation and injection rates all change
with the imposed flux, the ratios ε/E and α̃/ε remain constant. For a
quantitative analysis of this phenomenon, in Fig. 6 we plot the auto-
correlation function of the fluctuations R(x) = 〈v(r + xex) · v(r) +
b(r + xex) · b(r)〉. The width of the auto-correlation function gives

the typical scale (i.e. the outer scale) of the fluctuations, while its
amplitude R0 = 〈v2〉 + 〈b2〉 2 gives their typical strength.

We observe from the lower panel of Fig. 6 that the auto-correlation
functions become remarkably similar if their spatial scales are renor-
malized by R

γx

0 . The best fit is given by γ x ≈ 0.43, which is close
to the value γ x = 0.5 expected for the constant non-linear interac-
tion rate of large-scale turbulent fluctuations. Indeed, a simple phe-
nomenological consideration estimates this rate as ∼v0/λ0, where
v0 = R

1/2
0 is the intensity of fluctuations. A slight discrepancy be-

tween the two scalings may be related to the limited Reynolds
numbers currently available to our analysis. For larger Reynolds
numbers, we expect the form of the renormalized correlation func-
tion to be largely independent of Reynolds number.

We propose the following phenomenological explanation for this
observation. Under the sole action of the orbital shear in equations
(1 and 2) the energy is supplied to the system and transferred in
the direction of large wavenumbers. Under the sole action of non-
linear interaction the energy is removed from all the scales by a
turbulent cascade, lowering the energy at the peak wavenumber. The
rate of non-linear interaction increases with the wavenumber while
the orbital-shear rate remains constant. Therefore, the orbital shear
dominates at small k, while the non-linear interaction dominates at
large k. At small wavenumbers where the orbital shear dominates,
the energy is shifted in the phase space towards large k. This shift
continues until the wavenumbers are reached where the rate of non-
linear interaction competes with the orbital-shear rate and the energy
is removed from large scales by a turbulent cascade. Therefore, the
scale λ0 where the orbital shear is comparable to the rate of non-
linear interaction, v0/λ0 ∼ r(d�/dr), becomes the outer scale of the
resulting turbulence.

This condition constrains possible turbulent states in the shearing
box. According to our consideration, the particular state may depend
on the parameters of the system, such as the net magnetic flux, as
we see in Table 1. However, all such states satisfy the constraint
formulated above.3

The similarity and the universality of behaviour of small scales
in MRI turbulence and in driven MHD turbulence lend support to
the suggestion in (Fromang et al. 2007) that the higher Rm thresh-
old for the dynamo action observed in the low Pm, magnetorota-
tional case may be related to the similar effect observed in driven,
isotropic turbulence. Analytic consideration (e.g. Boldyrev & Catta-
neo 2004; Malyshkin & Boldyrev 2010) and numerical simulations
(e.g. Iskakov et al. 2007) suggest that the turbulent magnetic dy-
namo action has a higher-threshold magnetic Reynolds number in
low-Prandtl-number systems. While in the case of MHD turbulence
the Rm-threshold value saturates as Pm decreases (e.g. Kraichnan
& Nagarajan 1967; Vainshtein & Kichatinov 1986; Boldyrev &
Cattaneo 2004; Malyshkin & Boldyrev 2010), it remains to be seen
whether a similar behaviour holds in the magnetorotational case.

Our simulations show that the MRI dynamo is still non-existent
for Rm = 45 000. This Reynolds number is about eight times larger
than the critical Reynolds number required for the dynamo action
at Pm = 4 (Fromang et al. 2007). This indicates that the MRI

2 〈 · 〉 here and in the definition of R(x) indicates a spatial average over each
snapshot and an additional average over several snapshots.
3 It may seem that more detailed study of this phenomenology could be per-
formed by varying the orbital shearing rate. We note, however, that varying
the shearing rate alone, without changing other dimensionless parameters
of the system, is a non-trivial task. Changing the shearing rate would imply
changing the Rossby number (ratio of shear to rotation) which in turn would
change the intensity of the resulting turbulence (e.g. Pessah & Chan 2008).
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dynamo action at Pm ≤ 1, if possible at all, is much more difficult
to obtain than the magnetic dynamo action in isotropic, non-rotating
turbulence, for which the threshold at Pm � 1 is only about three
times higher compared to the threshold at Pm > 1 (Iskakov et al.
2007).

4 C O N C L U S I O N S

The shearing-box model provides a simplified but highly non-trivial
description of local turbulence in shearing, rotating flows. The math-
ematical properties of MRI-driven turbulence of such a ‘minimal’
model are not fully understood. Based on numerical simulations,
we have proposed a phenomenological picture of the MRI-driven
turbulence. We have shown that (1) the spectrum of MRI turbu-
lence is independent of the mean field and may be understood in the
framework of standard driven MHD turbulence, (2) the outer scale
of MRI turbulence adjusts so that the turnover time is a constant
fraction of the large-scale shear, and (3) the MRI-dynamo action
does not exist at Pm = 1 for Rm as high as 45 000. We believe that
these invariant features will be the founding principles of a future
predictive model for MRI turbulence.
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