Modelling high-energy pulsar light curves from first principles - INSU - Institut national des sciences de l'Univers Accéder directement au contenu
Article Dans Une Revue Monthly Notices of the Royal Astronomical Society Année : 2016

Modelling high-energy pulsar light curves from first principles

Résumé

Current models of gamma-ray light curves in pulsars suffer from large uncertainties on the precise location of particle acceleration and radiation. Here, we present an attempt to alleviate these difficulties by solving for the electromagnetic structure of the oblique magnetosphere, particle acceleration, and the emission of radiation self-consistently, using 3D spherical particle-in-cell simulations. We find that the low-energy radiation is synchro-curvature radiation from the polar-cap regions within the light cylinder. In contrast, the high-energy emission is synchrotron radiation that originates exclusively from the Y-point and the equatorial current sheet where relativistic magnetic reconnection accelerates particles. In most cases, synthetic high-energy light curves contain two peaks that form when the current sheet sweeps across the observer's line of sight. We find clear evidence of caustics in the emission pattern from the current sheet. High-obliquity solutions can present up to two additional secondary peaks from energetic particles in the wind region accelerated by the reconnection-induced flow near the current sheet. The high-energy radiative efficiency depends sensitively on the viewing angle, and decreases with increasing pulsar inclination. The high-energy emission is concentrated in the equatorial regions where most of the pulsar spin-down is released and dissipated. These results have important implications for the interpretation of gamma-ray pulsar data.
Fichier principal
Vignette du fichier
stw124.pdf (10.7 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

insu-03691555 , version 1 (09-06-2022)

Identifiants

Citer

Benoît Cerutti, Alexander A. Philippov, Anatoly Spitkovsky. Modelling high-energy pulsar light curves from first principles. Monthly Notices of the Royal Astronomical Society, 2016, 457, pp.2401-2414. ⟨10.1093/mnras/stw124⟩. ⟨insu-03691555⟩
6 Consultations
9 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More