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1. Introduction
Dust aerosol has a widespread impact on air quality and visibility (Huang et al., 2008; Moulin et al., 1998) and 
modulates the Earth's radiation budget (Pachauri et al., 2014) via scattering and absorbing both shortwave and 
thermal infrared radiation (Xu et al., 2017), leading to large uncertainties in climate projection. The radiative 
forcing and spectral fingerprints of dust particles depend on their bulk optical properties, including the extinction 
coefficient, single-scattering albedo, and phase matrix. While these properties can be computed exactly based on 
the Lorenz-Mie theory for spherical particles (Mishchenko et al., 2002), most mineral dust particles have highly 
irregular shapes with a wide range of particle sizes, posing significant challenges to both remote sensing and 
climate modeling (Wang et al., 2003, 2004).

Various techniques have been developed for estimating non-spherical particle properties, such as the discrete 
dipole approximation (DDA; Draine & Flatau,  1994; Yurkin et  al.,  2007), the extended boundary condition 
method (EBCM) as an implementation of the T-matrix (Mishchenko et al., 1997; Mishchenko & Travis, 1994), 

Abstract A neural network (NN) model is trained with a database widely used in the aerosol remote 
sensing community to rapidly predict the single-scattering optical properties of spheroidal dust particles. 
Analytical solutions for their Jacobians with respect to microphysical properties are derived based on the 
functional form of the NN. The Jacobian predictions are improved by adding Jacobians from a linearized 
T-matrix model into the training. Out-of-database testing implies that NN-based predictions perform better 
than the business-as-usual method that interpolates optical properties from the database. Independent validation 
further demonstrates the efficacy of the NN-based predictions by reducing computational costs while 
maintaining accuracy. This work represents the first use of machine learning-based function approximation 
to computationally expedite the application of the existing spheroidal dust properties database; the resultant 
NN model can be implemented in atmospheric models and satellite retrieval algorithms with high accuracy, 
computational efficiency, and the rigor of analytical solutions.

Plain Language Summary Dust particles affect both solar and terrestrial radiative transfer, but 
whether they cool or warm the climate is currently an open question in the literature. Accurate estimation of 
dust scattering and absorption properties, while critical for climate studies, is hindered by the fact that dust 
particles have irregular shapes and large size ranges; hence, no single method can be applied for all particle 
sizes and shapes. Often, a comprehensive look-up table of these properties is created by combining multiple 
methods. The application of such databases, however, is cumbersome and inaccurate due to the need for 
multi-variable interpolation. Furthermore, the look-up-table approach lacks the mathematical rigor needed to 
determine the sensitivity (Jacobians) of the single-scattering properties to the dust size, shape, and refractive 
index that are needed in remote sensing algorithms. The aforementioned challenges are tackled here by 
developing a novel approach within the neural network (NN) framework. This NN-based approach is fast, 
accurate, and able to predict Jacobians with analytical formulas. The NN model can be readily applied to the 
dust retrieval algorithm and radiative forcing modeling. The concept of deriving Jacobians from the NN model 
in this study can also be generalized for application to other problems involving gradient calculations.
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the invariant imbedding T-matrix method (IITM; Bi & Yang, 2014; Johnson, 1988; Yang et al., 2000, 2019), the 
finite-difference time domain (Kane, 1966; Sun et al., 1999; Yang et al., 2000; Yang & Liou, 1996a), and the 
physical-geometric optics method (PGOM; Yang & Liou, 1996b). Collectively, each of these models has inherent 
limitations on certain particle sizes or shapes. For example, in the case of spheroidal particles with an aspect ratio 
of 2, EBCM is applicable to size parameters (𝐴𝐴 𝐴𝐴𝑠𝑠 =

2𝜋𝜋𝜋𝜋

𝜆𝜆
 , r is particle radius and 𝐴𝐴 𝐴𝐴 is incident light wavelength) up 

to approximately 110, while IITM is applicable to size parameters up to 500. Hence, past works have combined 
different techniques to generate a large database, in the form of look-up tables (LUTs), by assuming the parti-
cles to be axially symmetric spheroids (Dubovik et al., 2006) or three-axial ellipsoids (Meng et al., 2010). Saito 
et  al.  (2021) used a combination of IITM and PGOM to develop a dust optical property database assuming 
dust particles to be an ensemble of irregular hexahedral particles. In these LUTs, the dust optical properties are 
archived for a set of discrete microphysical parameter points (such as particle size, shape, and index of refraction). 
Consequently, interpolation is needed when desired input parameters do not fall at those entry points, especially 
in cases where the bulk optical properties are desired from integration over a given particle size distribution. Such 
interpolation-based application of LUT can lead to non-trivial errors due to non-linearity.

Furthermore, the optimal estimation algorithm for aerosol retrieval requires the input of not only the spectral 
intensity but also its derivatives with respect to the state vector (aerosol microphysical properties) of the retrieval, 
that is, Jacobian matrices (Rodgers, 2000). To meet this need, Wang et al. (2014) developed a Unified Linearized 
Vector Radiative Transfer Model that integrates a linearized Mie model and a linearized EBCM T-matrix code 
(R. Spurr et al., 2012) into the Vector LInearized Discrete Ordinate Radiative Transfer ( R. J. D. Spurr, 2006). 
However, challenges remain for computing Jacobians for large non-spherical particles from linearized EBCM 
T-matrix code (hereafter shortened to “T-matrix model”). As a replacement, the finite difference (FD) method 
could approximate these Jacobians using a LUT, but the resolution of input data points in the LUT is often too 
coarse for the FD method. Moreover, both FD and interpolation will add a burden for computing in the retrieval, 
especially from the hyperspectral measurements.

We present a method based on machine learning (ML) to derive both optical properties and their respective Jaco-
bians for spheroidal particles covering a large size range accurately and efficiently, thereby meeting the emergent 
requirements in both remote sensing and atmospheric modeling of dust particles. In recent years, ML methods 
have been increasingly applied in the field of atmospheric remote sensing. For example, a neural network (NN) 
and a convolutional NN are used in the classification of satellite images (Hughes & Hayes, 2014; Mohajerani 
et al., 2018; Saponaro et al., 2013). Furthermore, an NN can provide a fast and accurate replacement for radiative 
transfer model (RTM) calculation (Takenaka et al., 2011), especially for hyperspectral and multi-angle simula-
tions, which accelerates the optimal estimation retrieval of atmospheric properties for aerosol and clouds (Chen 
et al., 2018; Nanda et al., 2019; Segal-Rozenhaimer et al., 2018).

This study is the first application of ML methods for aerosol particle scattering and their derivatives approxi-
mation at the same time, which differs from the past study that only predicts aerosol scattering properties with 
ML (Yu et al., 2022). Here, the rigor and constraints of aerosol optical properties (e.g., the normalization prop-
erty of phase function) are retained to a degree at least comparable to the LUT or FD method. This approach 
is conducted by training an NN model with a database for spheroid mixed dust particles developed by Dubovik 
et al. (2002,2006) (hereafter, the Dubovik data) to derive dust single-scattering optical properties and their Jaco-
bians to microphysical parameters, simultaneously. Moreover, the new method adds a limited number of analyt-
ically computed Jacobians from a linearized T-matrix model to the training process to improve NN Jacobians 
prediction. Finally, the performance of this NN model in predicting optical properties and their Jacobians is 
evaluated. The NN model and its training method are presented in Section 2. Data used in this study is described 
in Section 3, while the validation of the NN model predictions is presented in Section 4. Section 5 provides a 
summary and discussion.

2. Methods
NN is a machine learning model in which artificial neural networks adapt and learn in a data-driven fashion. 
As a universal function approximator, the feed-forward NN is ideally suited for modeling nonlinear processes. 
Specifically, it is used here to establish the relationships between the microphysical parameters of dust particles 
and corresponding single-scattering properties, as well as to derive their analytical derivatives. The description of 
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the dataset is given in Section 2.1. The formulation of feed-forward multi-layer NN and derivation of Jacobians 
are introduced in Section 2.2. The model optimization procedure is given in Section 2.3. Section 2.4 describes 
the tuning of NN model hyperparameters. The process to evaluate NN predictions is presented in Section 2.5.

2.1. Data and Transformation

Dubovik's LUT is used as the dataset in this study. The input features x are defined as the microphysical parame-
ters of spheroid dust particles, including the particle effective radius (r), the real and imaginary parts of the refrac-
tive index (n and k), and scattering angle (𝐴𝐴 𝐴𝐴 ). Accordingly, the output targets y are the particle single-scattering 
properties, including volume extinction coefficient (𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒, 𝜇𝜇𝜇𝜇

−1 ), absorption coefficient (𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 ), and six nonzero 
elements of the scattering phase matrix F:

𝐅𝐅 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐹𝐹11 𝐹𝐹12 0 0

𝐹𝐹12 𝐹𝐹22 0 0

0 0 𝐹𝐹33 𝐹𝐹34

0 0 −𝐹𝐹34 𝐹𝐹44

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

 

The details about the range of features and datapoints definition in Dubovik's LUT are provided by Dubovik 
et al. (2002) and are briefly summarized in Table S1 and Figure S3 in the supplement. In total, there are more than 
2 million datapoints for four features and eight targets in our research. 10 percent of total LUT data is randomly 
selected as our test data. Then, we select 20% from the remaining 90% as validation data and the balance as 
training data.

Before training, the input and output 2D matrices, X and Y consisting of feature and target vectors (x, y) for multi-
ple data points, and the corresponding true Jacobians from the linearized T-matrix model at different training data 
points must be normalized or transformed due to the different magnitudes of each feature or target. Details on data 
distribution and transformation are provided in the supplement (Figure S3).

2.2. Feed-Forward Multi-Layer NN and Jacobian Derivation

In the NN framework, for each datapoint, g dust microphysical parameters are regarded as input features (x = [x1, 
x2, …, xg]) and l single-scattering properties (y = [y1, y2, …, yl]) are output targets. As illustrated in Figure S1, in 
forward propagation, the input layer signal of 𝐴𝐴 𝒙𝒙 is transformed to the output layer y via multiple fully connected 
neurons in multiple hidden layers. The output of the ith neuron in the jth layer (𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 ) is related to the neurons in the 
previous (j-1)th layer as follows:

��� = �
(

∑��−1

�=1
��−1

�� ��(�−1) + ���
) (1)

where 𝐴𝐴 𝐴𝐴𝑘𝑘(𝑗𝑗−1) represents the kth neuron in the (j-1) th layer, 𝐴𝐴 𝐴𝐴
𝑗𝑗−1

𝑘𝑘𝑘𝑘
 is the weight (called model parameters with 𝐴𝐴 𝐴𝐴

𝑗𝑗

𝑖𝑖
 ) 

determining the connection between the neuron 𝐴𝐴 𝐴𝐴𝑘𝑘(𝑗𝑗−1) and neuron 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 , and 𝐴𝐴 𝐴𝐴
𝑗𝑗

𝑖𝑖
 is the bias added for the neuron 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 . 

The elementwise activation function 𝐴𝐴 𝐴𝐴 is often defined as a simple but differential function to introduce non-lin-
earity into the output of a neuron.

Following Equation 1, due to the differential nature of 𝐴𝐴 𝐴𝐴 and linear expressions of neurons via w and b, the deriv-
ative of 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 to 𝐴𝐴 𝐴𝐴𝑘𝑘(𝑗𝑗−1) is:

����
���(�−1)

= ��−1
�� �′

(

∑��−1

�=1
��−1

�� ��(�−1) + ���
)

= ��−1
�� �′ (���) (2)

where 𝐴𝐴 𝐴𝐴
′ represents the derivative of the activation function and ��� =

∑��−1
�=1 ��−1

�� ��(�−1) + ��� . Hence, via the 
chain rule, it is feasible to derive the gradient of each output target (yp) to each input feature (xq) analytically from 
the model parameters (w, Z, and 𝐴𝐴 𝐴𝐴

′ ) in all layers of the NN model as follows:
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𝜕𝜕𝜕𝜕𝑝𝑝

𝜕𝜕𝜕𝜕𝑞𝑞

= 𝑓𝑓

(
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝑞𝑞

, 𝑤𝑤
𝑖𝑖

𝑘𝑘𝑖𝑖
, 𝜎𝜎

′
(𝑍𝑍𝑖𝑖𝑖𝑖)

)
= 𝑔𝑔

(
𝑤𝑤

𝑖𝑖

𝑘𝑘𝑖𝑖
, 𝜎𝜎

′
(𝑍𝑍𝑖𝑖𝑖𝑖)

)
 (3)

The explicit expressions of function f and g are shown in the supplement. In other words, from a trained NN 
model, the Jacobians of single-scattering optical properties to microphysical parameters could be derived analyt-
ically by forward propagation without more training. This type of Jacobian derivation is more efficient than that 
of the FD method.

2.3. Model Optimization

Given a dataset of known input and output matrices X and Y, training is performed to optimize the model 
parameters (w and b) in the back propagation to minimize the cost function Cy defined as the error between NN 
predicted 𝐴𝐴 �̂�𝒚 from forward propagation and true values of y. Considering the definition of the neuron in Equation 1, 
Cy is differentiable with respect to the model parameters, w and b; thus, stochastic gradient descent is used as a 
relatively efficient optimization method.

Jacobians can be predicted analytically from NN model parameters using Equation 3, though the predictions may 
be inaccurate since Jacobian values are not typically optimized during training. We add true values of Jacobians 
in the training procedure to improve the NN predictions and the derived Jacobians simultaneously. Here, Jacobian 
predictions are not directly output by the NN but are obtained by evaluating Equation 3. Jacobians from analytical 
linearized T-matrix calculations (Spurr et al., 2012) are added as true values constituting additional constraints 
into the cost function:

� = �� + �1����1 + �2����2 (4)

As a result, the errors of targets and their Jacobians are minimized simultaneously during training to attain good 
accuracy for both of them. Here, ����1 (or ����2 ) indicates the cost function of Jacobian 𝐴𝐴

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕1

 (or 𝐴𝐴
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕2

 ) defined by the 
NN prediction and true values (𝐴𝐴 𝐴𝐴1 and 𝐴𝐴 𝐴𝐴2 represent the real and imaginary parts of the refractive index, n and 
lnk). In the training, Cy is defined as the mean square error (MSE) of targets and ����, � is the mean absolute error 
(MAE) of Jacobians with respect to xi in this study. Details about the expression of cost function C can be found 
in the supplement (descriptions in Table S2). s1 and s2 are the scaling factors of ����, � to adjust the weights of each 
loss function component given their different magnitudes. s1 and s2 are fixed in each NN model training and must 
be selected carefully; hence, they are regarded as hyperparameters and tuned together with others mentioned in 
Section 2.4. The mean relative errors of the Jacobian predictions are used as ����, � in model selection during the 
validation step (details in Table S2). Since multiple targets are needed for prediction, we considered a multi-task 
NN model during model optimization. After comparison, we find that the two-target model has better perfor-
mance than the single-target model for prediction of some phase matrix elements. In conclusion, the structure of 
a single-target or two-target NN model for each target after hyperparameters tuning is summarized in Table S2.

2.4. Hyperparameter Optimization

In addition to the model parameters optimized by the NN training procedure, there are hyperparameters that 
define the model structure and control the learning process, such as the number of hidden layers (nl), the number 
of neurons in each layer (ndim), the activation function (𝐴𝐴 𝐴𝐴 ), and the learning rate of the optimizer (lr). To perform 
hyperparameter optimization, the database is split into training data, validation data, and test data. The training 
data is used to optimize the model parameters. The validation data is used to perform hyperparameter selection by 
evaluating the trained models on a held-out set of data. The set of hyperparameters giving the lowest validation Cy 
is selected as optimal. The test data is used to perform a final model evaluation with the optimal hyperparameters 
to estimate the generalization error in the prospective use case. Here, the tanh activation function (𝐴𝐴 𝐴𝐴(𝑥𝑥) =

𝑒𝑒
𝑥𝑥
−𝑒𝑒

−𝑥𝑥

𝑒𝑒𝑥𝑥+𝑒𝑒−𝑥𝑥
 ) 

is selected empirically and is fixed while different configurations of nl, ndim, and lr are tested. Additional infor-
mation regarding the hyperparameter optimization process can be found in the supplement.

The NN training is performed in the following steps. First, perform hyperparameter optimization and train from 
scratch a neural network, NN0, using optimal nl, ndim, and lr. Second, define a new neural network model, NN1, 
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with the same network architecture as NN0 (the same nl and ndim) and initialize its model parameters from 
the pre-trained model NN0. Third, perform hyperparameter optimization using a new cost function C defined 
as in Equation 4 by adding the T-matrix Jacobians as true Jacobians to get the optimal hyperparameters lr, s1, 
and s2. Finally, train the NN1 model using these optimal hyperparameters with cost function C. As a result, the 
model NN1 is able to predict dust single-scattering properties and their Jacobians to microphysical parameters 
simultaneously.

2.5. Model Evaluation

To evaluate the NN model, we compare the NN-predicted optical properties with true values in the test dataset, 
which is not used during training and hyperparameter tuning. The advantage of the NN model is illustrated by 
comparing the NN predictions and LUT-interpolated properties for test data. However, it is difficult to validate 
Jacobians developed from the established NN due to the lack of analytical Jacobians in Dubovik's LUT. The only 
way is to interpolate the property via LUT and use the FD method to approximate partial derivatives, which is 
not reliable or accurate, considering the data resolution of LUT and FD approximation. Therefore, more strict 
validation of our results is done here by using the linearized T-matrix method that can compute the analytical 
Jacobians for small particles (here we use a volume equivalent radius smaller than 0.03 μm). Furthermore, the 
linearized T-matrix is also used as the true Jacobians added in the NN1 training as mentioned above. Considering 
T-matrix computation cost, only parts of the training datapoints of LUT (<5%) are calculated as training and 
validation data (called TJ1 hereafter). Meanwhile, an equivalent number of data points is calculated as the test 
data for Jacobians validation (called TJ2 hereafter). The Jacobians from the T-matrix model must be transformed 
to those in Dubovik's LUT using the kernel technique (Dubovik et al., 2006) before application.

3. Results
In this section, we first evaluate the performance of the trained NN by comparing the predicted targets with true 
targets for test data. Second, the Jacobians of predicted targets to input features are derived from trained NN and 
are validated by the Jacobians from TJ2 data as test data (Section 3.3).

3.1. Validation of NN Targets

Inputting the features from the test data not learned by NN and comparing the predicted targets with the corre-
sponding “true” targets can be regarded as an independent and effective method for evaluating the NN perfor-
mance. Figure 1 shows the comparison of eight predicted targets from NN models (having no training inputs of 
Jacobians, NN0) with the corresponding true values in the test data. The linear correlation coefficient between the 
two, R, is 1.0 for all targets, indicating the excellent performance of the NN model. Considering the magnitude 
of each target's variation, the relative error is an important criterion to quantify the accuracy of NN predictions. 
For example, although the root mean square error (RMSE) of 3.94e−3 in F33/F11 prediction is smaller than RMSE 
of 1.36e−2 for ln(F11), its mean relative error (MRE; 4.6%) is larger due to the smaller magnitude of F33/F11 true 
values.

The fits of 𝐴𝐴 𝐴𝐴ext , 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 , ln(F11), and ln(F22) are better than others with smaller than 0.5% MRE, even smaller than 0.1% 
for ln(F11) and ln(F22) MRE. The predicted F33/F11 and F44/F11 do not match their true values as well as above, but 
they still have less than 5% MRE (4.60% and 3.16%). F12/F11 and F34/F11 are the most difficult to train, due in part 
to many small values close to zero, and their MREs are 5.41% and 9.40%, respectively. Even so, the RMSEs of 
F12/F11, F34/F11, F33/F11, and F44/F11 are all comparable and lower than their counterparts in recent work using a 
deep learning model to train a similar LUT for super-spheroids aerosols (Yu et al., 2022), illustrating that our NN 
performs well in predicting each single-scattering property.
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Figure 1. The scatter plots of the predicted targets and corresponding true values for test data. (a–h) are for 𝐴𝐴 𝒄𝒄𝐞𝐞𝐞𝐞𝐞𝐞 , 𝐴𝐴 𝒄𝒄𝐚𝐚𝐚𝐚𝐚𝐚 , ln(F11), 
ln(F22), F12/F11, F34/F11, F33/F11, and F44/F11. In each subplot, the x-axis represents the true value while the y-axis is the 
prediction from the neural network model. The correlation coefficient (R), the mean and standard deviation values respective 
for x and y, the fitting equation between x and y, the root mean square error, the mean relative error, and the total number of 
data used for each target are shown in each subplot. The solid black line is the one-by-one line.
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3.2. Comparison With Linear Interpolation

The predicted targets from NN for test data points are compared with results interpolated linearly from the LUTs 
to reveal the possibility and advantages of replacing the LUTs approach with the NN model. Here, the NN model 
is trained from only LUT without additional Jacobians (NN0), similar to Figure 1 and Section 3.1. To simplify, 
only one-dimensional linear interpolation is applied for each test data point based on the two closest data points in 
the rest. For this purpose, a small number of data points (<2000) are selected from the whole LUT as the test data. 
As a result, the true values of these test data from the original LUT are compared with those predicted using NN 
and linear interpolation, respectively, as shown in Figure 2. It is clear that although the predicted 𝐴𝐴 𝐴𝐴ext , 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 , ln(F11), 
and ln(F22) from both methods have a strong correlation with the true values, the NN predictions present <0.2% 
MRE, much less than the interpolated results (1–3% MRE). The RMSE of NN predictions is also one order of 
magnitude smaller than those from interpolation for these four targets (Figures 2a–2d). For F33/F11 and F44/F11, 
there are obviously many more outliers from linear interpolation compared with NN predictions, even though the 
correlation between interpolated and true values is strong, with 1.0 R. Both the MRE and RMSE of interpolation 
results are larger than the NN-predicted targets for these two targets (Figures 2g and 2h). Moreover, it is difficult 
to estimate F12/F11 and F34/F11 from linear interpolation when considering many results that are far from correct 
values, as demonstrated by Figures 2e and 2f. Not only are the MRE and RMSE of interpolations far larger than 
those for NN predictions, but the correlation coefficients of interpolation decrease to 0.98 and 0.87 for F12/F11 and 
F34/F11, respectively. Undoubtedly, the accuracy of the interpolation depends on the grid resolution of the LUT. 
In other words, higher resolution results in better performance of interpolation. Based on the current resolution 
of this LUT (details in the supplement), linear interpolation is not suitable to approximate the single-scattering 
properties for unknown data points. On the other hand, greater than 1% MRE of interpolation can lead to incorrect 
Jacobians derived from the FD method, which requires highly accurate interpolation within small differences 
in input data. Even though reducing the grid interval of LUT improves the accuracy of interpolation, it is not 
efficient and requires computation cost and storage. The NN model, on the other hand, can provide good predic-
tion when training from coarse-resolution data. In conclusion, the NN model shows better performance than the 
interpolation method, especially for data with strong nonlinearity.

Considering the range of feature values in the training data, the performance of NN to predict features outside the 
training data is evaluated in the supplement (Figure S5). The prediction RMSE and MRE are found to be larger 
than those cases that have features within the training data range, indicating that more care needs to be taken when 
applying this NN in the extrapolation problem. However, given that the Dubovik LUT covers the most possible 
range of dust spheroids parameters (Dubovik et al., 2006), our NN is robust for applications in radiative effect 
simulation and remote sensing of dust particles.

3.3. Validation of NN Jacobians

The NN Jacobians are validated using TJ2 data as test data. Considering the application in remote sensing of 
dust microphysical properties, we mainly focus on the Jacobians with respect to refractive index (n and k) in 
this study. First, comparing with Jacobians predicted from the NN0 model (without Jacobians for training), their 
predictions from NN1 are more accurate by adding true Jacobians in the cost function (Section 2.3) when show-
ing 𝐴𝐴 𝐴𝐴ext in Figure S4 as an example. Both the MRE and RMSE of Jacobians (𝐴𝐴

𝜕𝜕𝜕𝜕ext

𝜕𝜕ln𝑘𝑘
 and 𝐴𝐴

𝜕𝜕𝜕𝜕ext

𝜕𝜕𝜕𝜕
 ) are reduced in NN1, 

while the errors of 𝐴𝐴 𝐴𝐴ext remain low (more details are found in the supplement). This demonstrates the feasibility 
and efficiency of adding the true Jacobians in the training for the highly accurate prediction of both targets and 
Jacobians. Then, the Jacobians of all targets predicted from NN1 models are evaluated with TJ2 true values in 
Figure 3. In general, all Jacobians predicted from NN1 have a strong correlation with true values (R = 1.0), 
although the RMSE and MRE differ due to their different magnitudes. The Jacobians of 𝐴𝐴 𝐴𝐴ext and 𝐴𝐴 𝐴𝐴abs are predicted 
with the highest accuracy with MRE <1% compared with other targets' Jacobians. The Jacobians of phase matrix 
elements have worse prediction performance with 2–5% MRE, in which the 𝐴𝐴

𝜕𝜕(𝐹𝐹12∕𝐹𝐹11)

𝜕𝜕𝜕𝜕
 and 𝐴𝐴

𝜕𝜕(𝐹𝐹34∕𝐹𝐹11)

𝜕𝜕𝜕𝜕
 have the  

largest uncertainties (5.42% and 6.32% MRE), indicating that they are the most difficult to train, due in part to a 
lot of close-to-zero values. All targets have similar accuracy to NN0 predictions without Jacobians training. Note 
that the MRE is calculated for each Jacobian with an absolute value larger than a threshold, which is defined as 
1e−6 for the 𝐴𝐴 𝐴𝐴ext , 𝐴𝐴 𝐴𝐴abs , F11, and F22 Jacobians but 1e−4 for F12/F11, F34/F11, F33/F11, and F44/F11 Jacobians given their 
larger values. In fact, if the Jacobians are small, we believe the single-scattering properties have little sensitivity 
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Figure 2. The scatter plots of the neural network (NN)-predicted targets (blue circle) and linear interpolated targets (red 
circle) with corresponding true values. In each subplot, the x-axis represents true targets, and the y-axis shows prediction from 
NN or interpolation. (a–h) are for 𝐴𝐴 𝒄𝒄𝐞𝐞𝐞𝐞𝐞𝐞 , 𝐴𝐴 𝒄𝒄𝐚𝐚𝐚𝐚𝐚𝐚 , ln(F11), ln(F22), F12/F11, F34/F11, F33/F11, and F44/F11. Similar to Figure 1, the fitting 
statistics are shown in each panel; texts in blue indicate results from NN prediction and red ones from interpolation method.
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to the microphysical parameters, which means these Jacobians affect the retrieval little. Therefore, even though 
the Jacobians predictions from the NN model only perform well with larger absolute values, they are still helpful 
in dust remote sensing by maintaining both high-speed calculation and good accuracy.

4. Conclusions and Discussions
We developed a feed-forward multi-layer fully connected NN model to replace the LUT approach to obtain the 
bulk single-scattering optical properties of an ensemble of dust particles assumed to be spheroids, as well as 
their Jacobians with respect to dust microphysical parameters, simultaneously. The NN was trained from the 
LUT database developed by Dubovik et al. (2002, 2006) in which the particle radius (sphere volume-equivalent), 
scattering angle, and real and imaginary parts of the refractive index are regarded as input features of NN, and 

Figure 3. The scatter plots of the neural network-predicted Jacobians (y-axis) and true Jacobians from the linearized T-matrix model (x-axis). (a–h) are the Jacobians of 
eight targets (𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 , 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 , F11, F22, F12/F11, F34/F11, F33/F11, and F44/F11) with respect to lnk, while (i–p) are their Jacobians to n. Similar to Figures 1 and 2, the fitting results 
are shown in each panel. The different colors of points indicate the corresponding lnk or n values described by the color bars in the bottom.
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the corresponding particle extinction coefficient, absorption coefficient, and six elements in the scattering matrix 
are defined as targets to be learned. Based on the definition of neuron output in NN, the derivatives of targets 
to features are derived from NN model parameters and an activation function by the chain rule. To improve the 
Jacobians prediction by the NN model, we added the analytical Jacobians from a linearized EBCM T-matrix 
model as true values in the cost function to constrain the training process.

The validation illustrates that 𝐴𝐴 𝐴𝐴ext , 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 , ln(F11), and ln(F22) can be predicted from NN with <0.5% MRE, while the 
other four phase matrix elements are more difficult to train, with 3%–10% MRE. Furthermore, the comparison of 
NN predictions and the results interpolated from LUT also underscores the advantage of replacing the LUT with 
the NN model due to its smaller MRE and higher correlation coefficients for all eight targets, especially for F12/
F11 and F34/F11, whose interpolated results have large errors. When validating NN-derived Jacobians, the compar-
ison before and after adding T-matrix Jacobians in the training indicates the improvement in MRE of our method, 
even though the training of Jacobians used only limited datapoints. The accuracy of NN-derived Jacobians could 
be <7% after adding analytical Jacobians from linearized Tmatrix in the training.

Based on a NVIDIA GeForce RTX 2080 Ti GPU compute node and CUDA tool, the training of a NN model 
without true Jacobians in this study needs ∼6.5 hr. When adding Jacobians in the training, 30–40 hr are necessary. 
Once the NN training is accomplished, the evaluation process can be achieved within 1 min even for 2 million 
data including the model loading and predictions of Jacobians. This efficiency becomes the biggest advantage of 
the NN model for applications in remote sensing where a huge amount of data needs to be processed.

This study provides a new application of NN in non-spherical aerosol optical properties simulation to replace 
traditional LUT, where an inaccurate interpolation method needs to be used. The expression of NN Jacobians 
and the improved method of Jacobians training in this study also provide a possibility to compute the derivatives 
of aerosol optical properties with respect to aerosol size and index of refraction without any approximation 
compared with the finite difference method. Since the true Jacobians used are only for small particles where a 
linearized EBCM T-matrix could be used, this NN model deserves more training in the future to include more 
particle sizes and shapes. This framework of this method, however, can be generalized beyond the remote sensing 
problem to many inversion problems that use gradient descent for optimization.

Data Availability Statement
The data used for the training can be obtained via the website of our co-author Dr. Dubovik's group by free 
registration (https://www.grasp-open.com/products/spheroid-package-release/). The Jacobians derived from the 
linearized T-matrix model and used in training, validation, and test process are available at zenodo via https://doi.
org/10.5281/zenodo.5770687. Version 0.0.2 of the python codes used to make NN predictions and compare with 
test data from T-matrix is preserved at https://doi.org/10.5281/zenodo.5770738.
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