Detection and attribution of aerosol-cloud interactions in large-domain large-eddy simulations with the ICOsahedral Non-hydrostatic model - INSU - Institut national des sciences de l'Univers Accéder directement au contenu
Article Dans Une Revue Atmospheric Chemistry and Physics Année : 2020

Detection and attribution of aerosol-cloud interactions in large-domain large-eddy simulations with the ICOsahedral Non-hydrostatic model

Montserrat Costa-Surós
  • Fonction : Auteur
Claudia Acquistapace
  • Fonction : Auteur
Holger Baars
Cintia Carbajal Henken
  • Fonction : Auteur
Christa Genz
  • Fonction : Auteur
Jonas Hesemann
  • Fonction : Auteur
Cristofer Jimenez
  • Fonction : Auteur
Marcel König
  • Fonction : Auteur
Jan Kretzschmar
  • Fonction : Auteur
Nils Madenach
  • Fonction : Auteur
Catrin I. Meyer
  • Fonction : Auteur
Roland Schrödner
Patric Seifert
  • Fonction : Auteur
Fabian Senf
  • Fonction : Auteur
Matthias Brueck
  • Fonction : Auteur
Guido Cioni
  • Fonction : Auteur
Jan Frederik Engels
  • Fonction : Auteur
Kerstin Fieg
  • Fonction : Auteur
Ksenia Gorges
  • Fonction : Auteur
Rieke Heinze
  • Fonction : Auteur
Pavan Kumar Siligam
  • Fonction : Auteur
Ulrike Burkhardt
  • Fonction : Auteur
Susanne Crewell
Corinna Hoose
  • Fonction : Auteur
Axel Seifert
  • Fonction : Auteur
Ina Tegen
  • Fonction : Auteur
Johannes Quaas
  • Fonction : Auteur

Résumé

Clouds and aerosols contribute the largest uncertainty to current estimates and interpretations of the Earth's changing energy budget. Here we use a new-generation large-domain large-eddy model, ICON-LEM (ICOsahedral Non-hydrostatic Large Eddy Model), to simulate the response of clouds to realistic anthropogenic perturbations in aerosols serving as cloud condensation nuclei (CCN). The novelty compared to previous studies is that (i) the LEM is run in weather prediction mode and with fully interactive land surface over a large domain and (ii) a large range of data from various sources are used for the detection and attribution. The aerosol perturbation was chosen as peak-aerosol conditions over Europe in 1985, with more than fivefold more sulfate than in 2013. Observational data from various satellite and ground-based remote sensing instruments are used, aiming at the detection and attribution of this response. The simulation was run for a selected day (2 May 2013) in which a large variety of cloud regimes was present over the selected domain of central Europe.

It is first demonstrated that the aerosol fields used in the model are consistent with corresponding satellite aerosol optical depth retrievals for both 1985 (perturbed) and 2013 (reference) conditions. In comparison to retrievals from ground-based lidar for 2013, CCN profiles for the reference conditions were consistent with the observations, while the ones for the 1985 conditions were not.

Similarly, the detection and attribution process was successful for droplet number concentrations: the ones simulated for the 2013 conditions were consistent with satellite as well as new ground-based lidar retrievals, while the ones for the 1985 conditions were outside the observational range.

For other cloud quantities, including cloud fraction, liquid water path, cloud base altitude and cloud lifetime, the aerosol response was small compared to their natural variability. Also, large uncertainties in satellite and ground-based observations make the detection and attribution difficult for these quantities. An exception to this is the fact that at a large liquid water path value (LWP > 200 g m-2), the control simulation matches the observations, while the perturbed one shows an LWP which is too large.

The model simulations allowed for quantifying the radiative forcing due to aerosol-cloud interactions, as well as the adjustments to this forcing. The latter were small compared to the variability and showed overall a small positive radiative effect. The overall effective radiative forcing (ERF) due to aerosol-cloud interactions (ERFaci) in the simulation was dominated thus by the Twomey effect and yielded for this day, region and aerosol perturbation -2.6 W m-2. Using general circulation models to scale this to a global-mean present-day vs. pre-industrial ERFaci yields a global ERFaci of -0.8 W m-2.

Fichier principal
Vignette du fichier
acp-20-5657-2020.pdf (5.22 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

insu-03686300 , version 1 (03-06-2022)

Licence

Paternité

Identifiants

Citer

Montserrat Costa-Surós, Odran Sourdeval, Claudia Acquistapace, Holger Baars, Cintia Carbajal Henken, et al.. Detection and attribution of aerosol-cloud interactions in large-domain large-eddy simulations with the ICOsahedral Non-hydrostatic model. Atmospheric Chemistry and Physics, 2020, 20, pp.5657-5678. ⟨10.5194/acp-20-5657-2020⟩. ⟨insu-03686300⟩
36 Consultations
17 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More