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A B S T R A C T

Recent technological developments have resulted in two techniques for estimating surface velocity with
higher resolution than can be achieved from presently available nadir altimeter data: (1) Geostrophically
computed estimates from high-resolution sea surface height (SSH) measured interferometrically by the wide-
swath altimeter on the Surface Water and Ocean Topography (SWOT) Mission with a planned launch in 2021;
and (2) Measurements of ocean surface velocity from a Doppler scatterometer mission that is in the early
planning stages, referred to here as a Winds and Currents Mission (WaCM). In this study, we conduct an
analysis of the effects of uncorrelated measurement errors and sampling errors on the errors of the measured
and derived variables of interest (SSH and geostrophically computed velocity and vorticity for SWOT, and
surface velocity and vorticity for WaCM). Our analysis includes derivations of analytical expressions for the
variances and wavenumber spectra of the errors of the derived variables, which will be useful to other studies
based on simulated SWOT and WaCM estimates of velocity and vorticity. We also discuss limitations of the
geostrophic approximation that must be used for SWOT estimates of velocity.

The errors of SWOT and WaCM estimates of velocity and vorticity at the full resolutions of the measured
variables are too large for the unsmoothed estimates to be scientifically useful. It will be necessary to smooth
the data to reduce the noise variance. We assess the resolution capabilities of smoothed estimates of velocity
and vorticity from simulated noisy SWOT and WaCM data based on a high-resolution model of the California
Current System (CCS). By our suggested minimum threshold signal-to-noise (S/N) variance ratio of 10 (a
standard deviation ratio of 3.16), we conclude that the wavelength resolution capabilities of maps of velocity
and vorticity constructed from WaCM data with a swath width of 1200 km are, respectively, about 60 km and
90 km in 4-day averages. For context, the radii of resolvable features are about four times smaller than these
mesoscale wavelength resolutions. If the swath width can be increased to 1800 km, the wavelength resolution
capabilities of 4-day average maps of surface velocity and vorticity would improve to about 45 km and 70 km,
respectively. Reducing the standard deviation of the uncorrelated measurement errors from the baseline value
of � spd = 0:50 m s*1 to a value of 0.25 m s*1 would further improve these resolution capabilities to about
20 km and 45 km.

SWOT data will allow mapping of the SSH field with far greater accuracy and space�time resolution than
are presently achieved by merging the data from multiple nadir altimeter missions. However, because of its
much narrower 120-km measurement swath compared with WaCM and the nature of the space�time evolution
of the sampling pattern during each 21-day repeat of the SWOT orbit, maps of geostrophically computed
velocity and vorticity averaged over the 14-day period that is required for SWOT to observe the full CCS
model domain are contaminated by sampling errors that are too large for the estimates to be useful for any
amount of smoothing considered here. Reducing the SSH measurement errors would do little to improve SWOT
maps of velocity and vorticity. SWOT estimates of these variables are likely to be useful only within individual
measurement swaths or with the help of dynamic interpolation from a data assimilation model. By our criterion,
in-swath SWOT estimates of velocity and vorticity have wavelength resolution capabilities of about 30 km and
55 km, respectively.
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In comparison, in-swath estimates of velocity and vorticity from WaCM data with � spd = 0:50 m s*1 have a
wavelength resolution capability of about 130 km for both variables. Reducing the WaCM measurement errors
to � spd = 0:25 m s*1 would improve the resolution capabilities to about 50 km and 75 km for velocity and
vorticity, respectively. These resolutions are somewhat coarser than the in-swath estimates from SWOT data,
but the swath width is more than an order of magnitude wider for WaCM. Instantaneous maps of velocity and
vorticity constructed in-swath from WaCM data will therefore be much less prone to edge effect problems in
the spatially smoothed fields.

Depending on the precise value of the threshold adopted for the minimum S/N ratio and on the details
of the filter used to smooth the SWOT and WaCM data, the resolution capabilities summarized above may
be somewhat pessimistic. On the other hand, aspects of measurement errors and sampling errors that have
not been accounted for in this study will worsen the resolution capabilities presented here. Another caveat
to keep in mind is that the resolution capabilities deduced here from simulations of the CCS region during
summertime may differ somewhat at other times of year and in other geographical regions where the signal
variances and wavenumber spectra of the variables of interest differ from the CCS model used in this study.
Our analysis nonetheless provides useful guidelines for the resolutions that can be expected from SWOT and
WaCM.

1. Introduction

Presently available global sea-surface height (SSH) fields
constructed from satellite altimeter data by Collecte Localis Satellites
(CLS) and archived by Archivage, Validation, Interprétation des don-
nées des Satellite Océanographiques (AVISO) are able to resolve time
scales of about a month and wavelength scales of about 200 km,
corresponding to feature radius scales of about 50 km (see Appendix
A.3 of Chelton et al., 2011). The 25+ year CLS/AVISO record of SSH
fields (Pujol et al., 2016) has been extremely useful for studies of
mesoscale eddies, large-scale ocean circulation variability and sea level
rise (e.g., Fu et al., 2010; Lee et al., 2010; Willis et al., 2010; Chelton
et al., 2011). Notwithstanding the many successful applications of this
dataset, it is clear from high-resolution numerical simulations and
satellite infrared and visible observations of sea surface temperature
(SST) and ocean color that energetic variability exists on smaller scales
than can be resolved by the CLS/AVISO SSH fields. Of particular
interest are wavelength scales smaller than í50 km (radius scales less
than í10 km), which is a commonly used definition for submesoscale
variability. Numerical models have shown that submesoscale variability
is important to the physics and biology of the ocean (e.g., Capet et al.,
2008; Klein and Lapeyre, 2009; Lévy et al., 2001). There is thus a strong
interest in high-resolution satellite observations of surface velocity and
its associated vorticity to complement the modeling. The objective of
this study is to investigate the prospects for future high-resolution
satellite measurements of small-scale velocity and vorticity variability.

In addition to the interest in submesoscale variability, much remains
to be learned about mesoscale ocean dynamics. Velocity and vorticity
can be estimated geostrophically from the CLS/AVISO SSH fields, but
with a very coarse spatial resolution imposed by the í200 km wave-
length resolution limitation of the SSH fields. The improved resolutions
that are anticipated from the two satellite technologies considered in
this study are likely to advance understanding of mesoscale variability
in a manner similar to the advances achieved from the CLS/AVISO
multi-altimeter merged SSH dataset compared with the single-altimeter
observations obtained from TOPEX/Poseidon (see, for example, Fig. 1
of Chelton et al., 2011).

Our particular interest here in satellite estimation of surface velocity
and vorticity is motivated in part by their effect on local wind-driven
vertical velocities (Ekman pumping). It is well known that surface cur-
rents contribute to Ekman pumping in mesoscale eddies through their
effects on the relative wind and hence the surface stress. The surface
velocity within a rotating eddy generates a curl of the surface stress
with sign opposite that of the vorticity of the eddy, thus attenuating
the eddy and generating an Ekman pumping velocity that is often
larger on mesoscales and smaller scales than that from the curl of
the large-scale background wind stress field (e.g., Dewar and Flierl,
1987; Martin and Richards, 2001; McGillicuddy et al., 2007; Gaube
et al., 2015). Mesoscale eddies also generate Ekman pumping to an

even greater degree through their effects on the gradient of the total
vorticity (planetary plus relative vorticity) that generates horizontal
divergences of Ekman transport and hence vertical velocities (Stern,
1965; Mahadevan et al., 2008; McGillicuddy et al., 2008; Gaube et al.,
2015). This vorticity-gradient-induced Ekman pumping is sometimes
referred to as nonlinear Ekman pumping. The two effects of surface
currents on Ekman pumping increase rapidly with decreasing scale
and increasing Rossby number (see Fig. 7 ofGaube et al., 2015). A
small-scale cutoff for this increase presumably exists, but both effects
are likely important into at least the upper range of submesoscale
variability.

Determination of Ekman pumping on mesoscale and smaller scales
thus depends critically on accurate knowledge of the surface ocean
velocity at these scales. Recent technology developments have resulted
in two techniques for estimating ocean surface velocity that promise
higher resolution than is presently achieved from the CLS/AVISO SSH
fields. One of these is the Surface Water and Ocean Topography (SWOT)
Mission (Fu and Ferrari, 2008; Durand et al., 2010) that is slated
for launch in 2021. SWOT will measure SSH altimetrically by radar
interferometry (Fu and Rodriguez, 2004) with a footprint size of about
1 km. Surface velocity can then be estimated geostrophically. The
other technology for estimating ocean surface velocity is based on the
Doppler shift of radar returns from the moving sea surface (Chapron
et al., 2005; Rodríguez et al., 2018; Rodríguez, 2018). An important
distinction of Doppler radar systems is that they provide direct mea-
surements of ocean surface velocity, rather than the indirect estimates
computed geostrophically from measurements of SSH as in the case of
SWOT.

Satellite-based Doppler radar systems for measuring surface ocean
currents are in the early stages of development, both in Europe and in
the U.S. The European Doppler scatterometer mission concept summa-
rized by Chapron et al. (2005) has evolved to a proposed Doppler radar
system called the Sea surface KInematics Multiscale (SKIM) mission
(Ardhuin et al., 2018) that has been designed to measure surface
currents, ice drift and ocean waves across a swath width of 320 km. A
primary goal of SKIM is to measure the wave spectrum. The incidence
angles of the SKIM radar measurements have therefore been chosen to
be 6ý and 12ý in order to maximize the sensitivity to surface wave tilt
while minimizing the sensitivity to winds. The SKIM radar thus cannot
measure surface vector winds.

The Doppler radar in the mission under development in the U.S. will
have a much wider measurement swath than SKIM (at least 1200 km,
and possibly as much as 1800 km) and will measure radar backscatter
at much higher incidence angles that will provide collocated mea-
surements of surface currents and vector winds, but not the wave
spectrum. Wind speed and direction are inferred from the roughness
of the sea surface by conventional scatterometry (see, for example,
Sec. 2 of Chelton and Freilich, 2005, for a summary of the QuikSCAT
scatterometer). An aircraft version called DopplerScatt has been built
by the National Aeronautics and Space Administration Jet Propulsion
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Fig. 1. Snapshots for a region off the central California coast from ROMS models of the California Current System (CCS) with grid resolutions of 4, 1.5 and 0.5 km (left to right):
Row (a) Sea surface height; Row (b) Sea surface temperature; and Row (c) Normalized vorticity � _f , where f is the local Coriolis parameter at each grid point.

Laboratory (NASA/JPL) and has been flown in several field campaigns
(Rodríguez et al., 2018) as a proof of concept for a future satellite
Doppler scatterometer mission that we refer to in this study as a
Winds and Currents Mission (WaCM). In the recent decadal survey
of recommended Earth-observing satellite missions by the National
Academies of Sciences, Engineering, and Medicine (NASEM,2018),
WaCM is one of seven recommended NASA Earth System Explorer
missions. The baseline performance of WaCM that is assumed in this
study (see Section4.2) is supported by the actual performance of the
airborne DopplerScatt instrument (Rodríguez et al., 2018).

The collocated WaCM measurements of surface currents and vector
winds are expected to have footprint sizes of about 5 km. For the
wind measurements, this is much smaller than the footprint sizes of
about 25 km for the QuikSCAT and ASCAT scatterometers. The smaller
footprint size for WaCM will be achieved with a larger antenna size and
the use of a Ka-band radar (35.8 GHz), rather than the Ku-band radar
(13.4 GHz) used for QuikSCAT or the C-band radar (5.3 GHz) used for
ASCAT. This study considers only the surface ocean velocity estimates.
Our baseline simulations of WaCM measurements of surface currents

assume a swath width of 1200 km. Recent engineering studies suggest
that it may be possible to broaden the swath width to 1800 km, which
would greatly improve the sampling. The benefits of the wider swath
width are investigated as part of this study.

The viability of SWOT and WaCM estimates of surface velocity for
investigation of small-scale variability clearly depends on the signal-
to-noise ratios of the measurements (SSH for the case of SWOT and
surface velocity for the case of WaCM). For SWOT, the utility of the
data also depends on the validity of the geostrophic approximation.
The objectives of this study are to investigate these issues and assess
the resolution capabilities for mapping of the surface velocity and
vorticity fields for both SWOT and WaCM. The approach is based on
simulated SWOT and WaCM sampling of, respectively, the SSH and
surface velocity fields from 30 days of twice-daily snapshots from a
high-resolution model of the California Current System (CCS).

Our focus is on the limitations imposed by the baseline science
requirements for the cross-swath averages of the standard deviations
of uncorrelated instrumental measurement errors. In reality, the instru-
mental errors for both SWOT and WaCM vary across the measurement
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Fig. 2. A representative summertime snapshot of sea surface temperature (SST) from the ROMS model of the CCS on 5 June (left panel) in latitude�longitude coordinates at the
full 0.5 km • 0.5 km grid resolution of the model. The model was forced by the seasonal cycle wind stress derived from QuikSCAT scatterometer data, which is shown for the
month of June in the right panel. The box in each panel delineates the truncation of the full model domain to mitigate edge effects in the analyses of spatially smoothed fields
considered in this study.

swaths (seeFig. F.1 in Appendix F for the case of SWOT), with smallest
errors near the centers of the swaths and increasing errors toward
both edges of the swaths. The measurement errors also depend on
the significant wave height (see again Fig. F.1 in Appendix F for the
case of SWOT). The significant wave height (SWH) dependence and
cross-track variations of the instrumental errors are not considered in
the simulations presented in this study. Rather, we consider the cross-
swath average instrumental measurement errors for the conditions of
2-m significant wave height that are specified for the baseline design
requirements of the measurement errors.

We note that the error characteristics of SWOT data could have
been simulated more accurately and completely for this investigation
by using the simulator software available from the SWOT Project
Office (Gaultier et al., 2017; see alsoQiu et al., 2016; Gaultier et al.,
2016). Simulator software is not yet available for WaCM. Moreover,
the dependencies of WaCM measurement errors on swath location
and SWH have not yet been fully quantified, although it is known
that WaCM measurement errors will increase toward the edges of the
measurement swaths in a manner similar to the cross-track variations
of SWOT measurement errors (Rodríguez,2018). For consistency in our
treatments of SWOT and WaCM measurement errors, we have therefore
chosen to use our simpler simulations of SWOT measurement errors to
be consistent with our simulations of WaCM measurement errors.

Measurements from both SWOT and WaCM are also subject to
larger-scale errors from geophysical corrections for a variety of envi-
ronmental effects. While important, these larger-scale errors are not ad-
dressed in the analysis presented here as they are generally secondary
to the effects of uncorrelated instrumental errors for the purposes
of estimating surface velocity and vorticity on the mesoscales and
submesoscales that are of primary interest in this study.

We are also not able to address the importance of internal gravity
waves, which are underrepresented in the CCS model used to sim-
ulate SWOT and WaCM data in this study (see Sections2 and 3).
This internal wave variability is one of several ageostrophic processes
that affect the accuracy of SWOT estimates of surface velocity and
vorticity. The contributions of ageostrophic processes to contamination
of geostrophically computed surface velocity and vorticity from SWOT
measurements of SSH cannot be fully assessed from the CCS model
used in this study since it was forced with seasonally varying winds,

heat fluxes and freshwater fluxes and lacks tidal forcing. This issue is
addressed to a limited degree in Section3 and Appendix F (seeFigs. 10,
11 and F.4) from a pair of simulations of the Gulf Stream region off the
southeastern seaboard of the U.S.

It is noteworthy that the seasonally forced CCS model that is used
in this study may also misrepresent larger-scale geostrophic processes.
Mesoscale and submesoscale variability might be stronger with more
realistic wind forcing that includes synoptic atmospheric variability.
The analysis presented here is based on model simulations for a 30-
day period in early summertime. Since weather systems over the CCS
are usually not very energetic at this time of year, inclusion of synoptic
atmospheric forcing may have only modest effects on the model simu-
lation for the geographical location and time of year considered here.
This potential limitation of the model should nonetheless be kept in
mind in the interpretation of the results presented in this study.

Because of the various aspects of measurement errors summarized
above that are not taken into consideration in this study, the conclu-
sions about the effects of measurement errors presented here are likely
somewhat optimistic assessments of the resolution capabilities of SWOT
and WaCM. On the other hand, if the uncorrelated instrumental errors
can be reduced from the baseline science requirement values used in
our simulations, the effects of instrumental errors in the simulations
presented here may prove to be somewhat pessimistic assessments
of the resolution capabilities for the baseline consideration of 2-m
significant wave height.

In addition to the effects of internal gravity waves and other small-
scale ageostrophic processes, the ability to map the space�time evo-
lution of the surface velocity field depends on the swath width over
which the measurements are made. For SWOT, the swath width will be
120 km with a nadir gap of 20 km. For the analysis in Section 8, we
have assumed that velocity estimates will be obtained by WaCM across
a swath width of 1200 km with a nadir gap of 100 km. The sampling
coverage in each satellite overpass of a given region will thus be more
than an order of magnitude better for WaCM than for SWOT. The SWOT
orbit will have an exact repeat period of 21 days. For the simulations
in this study, we have assumed that WaCM will have the same 4-day
repeat orbit as QuikSCAT. The net effect of the different swath widths
and orbit repeat periods for SWOT and WaCM is that a given location
within the CCS region considered here is sampled on average about
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Fig. 3. Snapshots from the ROMS model for the same time as the SST map inFig. 2
at the full 0.5 km • 0.5 km grid resolution of the model: Column (a) the speed of the
total surface velocity; and Column (b) the normalized vorticity � _f computed from the
total surface velocity, where f is the local Coriolis parameter at each grid point. The
maps in the top panels are for the truncated domain delineated by the boxes in Fig. 2
in the model x, y coordinate system that is rotated by a polar angle of 24ý relative
to latitude�longitude coordinates. The bottom panels are enlargements of the Central
California Current System (CCCS) region delineated by a box in each of the top panels.

once a day by WaCM with a 1200-km swath width and about once
a week by SWOT (see Section7). Extending the WaCM swath width
to 1800 km with the same nadir gap of 100 km would increase the
sampling to an average of more than 1.5 samples per day over the
CCS model domain. Our analysis includes an assessment of the impact
of this improved sampling on the resolution capability of space�time
smoothed velocity and vorticity fields constructed from WaCM data.

The resolution limitations of maps of geostrophically computed
surface velocity and vorticity constructed from simulated SWOT data
have previously been considered by Fu and Ubelmann (2014), Qiu
et al. (2016) and Gaultier et al. (2016). In this study, we extend
these previous investigations of the resolution capabilities of simulated
SWOT data and compare the results with the resolution capabilities of
maps of velocity and vorticity constructed from simulated WaCM data.
Our approach is more systematic than has been used in past studies.
In particular, we propose a specific criterion for defining resolution
capability and we partition the mapping errors between instrumen-
tal measurement errors and sampling errors. By sampling errors, we
mean the errors in mapped fields of surface velocity and vorticity that
are imposed by the limited swath widths of the SWOT and WaCM
measurements and by the discrete and irregular temporal sampling of
the rapidly evolving submesoscale features in the velocity and vor-
ticity fields at a given location. The ability to distinguish between

Fig. 4. (a) The scale dependencies of the 80th, 90th, 95th and 99th percentile points of
the distributions of absolute values of the normalized vorticity � _f as functions of half-
power filter cutoff wavelength; the dashed line corresponds to the root-mean squared
value of � _f . (b) The scale dependencies of selected percentage points symmetric about
the median (i.e., the 50th percentile point) in the distributions of � _f as functions of
half-power filter cutoff wavelength; the dashed line corresponds to the mean value
of � _f , which is indistinguishable from zero. For both panels, � was computed from
error-free model fields of total surface velocity for the complete CCS model domain at
the full 0.5 km • 0.5 km grid resolution of the model after 2-dimensional isotropic
smoothing with the half-power filter cutoff wavelengths indicated along the abscissa.

measurement and sampling errors in maps constructed from simulated
satellite data provides insight into the relative benefits of reducing the
measurement noise versus improving the sampling, either by increasing
the measurement swath widths or by combining the measurements
from multiple satellites.

This paper is organized as follows. The CCS model from which sim-
ulated SWOT and WaCM data are derived is summarized in Section2.
The limitations of the geostrophic approximation that must be used
for SWOT estimates of surface velocity and vorticity are discussed in
Section 3. The uncorrelated measurement errors for SWOT and WaCM
and their effects on the errors of the derived quantities (geostrophically
computed velocity and vorticity for SWOT and vorticity for WaCM)
are examined in detail in Section 4, including determination of the
wavenumber spectral characteristics of the errors.

The strategy adopted in this study to assess the resolution capabil-
ities for estimates of surface velocity and vorticity from noisy SWOT
and WaCM data is presented in Section5. The procedure is first applied
in Section 6 to instantaneous maps of the velocity and vorticity fields
constructed from SWOT and WaCM data for the idealized case of mea-
surement errors alone without consideration of sampling errors from
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Fig. 5. The same asFig. 3, except snapshots from the ROMS model for: Column (a) SSH; Column (b) the magnitude of geostrophically computed velocity; and Column (c)
normalized geostrophically computed vorticity � g_f .

the limited swath widths of the SWOT and WaCM measurements. This
analysis of the effects of measurement errors alone can be interpreted
as the best possible resolution capabilities within a single measurement
swath.

For mapping of the velocity and vorticity fields over regions larger
than the width of an individual measurement swath, sampling errors
can be as important as, or even more important than, measurement
errors to the overall accuracies of the mapped variables. The space�time
sampling characteristics of SWOT and WaCM data are summarized in
Section 7. The combined effects of measurement and sampling errors
on the resolution capabilities of maps of surface ocean velocity and
vorticity estimated from space�time smoothed SWOT and WaCM data
are then investigated in Sections 8�10.

The conclusion of Section 8 is that the resolutions of maps of
geostrophically computed velocity and vorticity constructed from
SWOT data are limited almost totally by sampling errors. Improving
the SWOT measurement accuracy would therefore have very little effect
on the resolution capabilities of the variables considered in this study.
The resolutions of maps of velocity and vorticity constructed from
WaCM data are primarily limited by measurement errors but sampling
errors are not negligible. The benefits of increasing the WaCM swath
width (thus reducing the sampling errors) and reducing the WaCM

measurement noise are investigated separately and in combination in
Section 10.

Supporting technical details for the calculations in Sections 4, 6 and
8�10 are provided in a series of nine appendices.

The error analysis in Section 4 merits special mention since the
results will be useful to other studies. Analytical expressions for the
variances of the errors of SWOT estimates of velocity and vorticity
computed geostrophically from SSH are derived in Appendix G.1 in
terms of the variance � 2

h of the uncorrelated errors of pre-processed
SWOT estimates of SSH. By ``pre-processed'', we mean the satellite data
that will be distributed to general users after smoothing of the raw data
onboard the satellite, possibly with additional ground-based smoothing
to achieve a specified footprint size. The numerical results presented in
this study are based on the SSH error standard deviation of� h = 2:74cm
that is derived in Appendix F for the case of pre-processed data with a
footprint size of 1 km. It would be straightforward to obtain numerical
results from the analytical expressions for any specified value of � h.

An analytical expression for the variance of errors of WaCM esti-
mates of vorticity is similarly derived in Appendix G.2 in terms of the
variances � 2

u and � 2
v of the uncorrelated errors of WaCM estimates of

each orthogonal velocity component u and v. The result is therefore
valid for any application of WaCM data, given specifications of the
velocity component error variances. The analysis in this study assumes
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Fig. 6. Column (a) Maps of the ageostrophic velocity vectors defined to be the vector differences of the total surface velocity minus the geostrophically computed velocity with
the magnitudes of the differences shown in color. Note that the left half of the color bar is not used in this figure. Column (b) The large-scale ageostrophic velocity defined to
be the vector differences and their magnitudes in (a) smoothed isotropically with a half-power filter cutoff wavelength of 150 km, referred to here as the Ekman ageostrophic
velocity field. Column (c) The magnitudes of the non-Ekman ageostrophic velocity vectors defined to be the total ageostrophic velocities in Column (a) minus the large-scale
ageostrophic velocities in Column (b). The bottom panels are enlargements of the CCCS region delineated by a box in each of the top panels. The vectors in Columns (a) and (b)
were subsampled on a 15 km • 15 km grid in the top panels and a 7.5 km • 7.5 km grid in the bottom panels.

an equal error standard deviation of � u;v = 0:354 m s*1 for each
velocity component. If the errors of the two velocity components are
uncorrelated with each other, this corresponds to current speed errors
with a standard deviation of � spd = 0:50 m s*1 , which is the present
baseline design for WaCM.

Our analysis includes determinations of the wavenumber spectral
characteristics of errors of velocity and vorticity computed geostroph-
ically from pre-processed SWOT measurements of SSH, as well as the
wavenumber spectral characteristics of velocity components and vor-
ticity estimated from pre-processed WaCM data. Analytical expressions
for these wavenumber spectra of the errors are derived for SWOT and
WaCM in Appendices I.1 and I.3, respectively. Analytical expressions
are also derived in Appendices I.2 and I.4 for the wavenumber spectra
of the errors of all of the variables of interest after 2-dimensional
smoothing is applied in simulated ground-based post-processing. As
with the equations for the error variances discussed above, the equa-
tions derived in Appendix I for the error spectra are all expressed in
terms of the measurement error variances � 2

h for SWOT and � 2
u and

� 2
v for WaCM. The results are therefore valid for any specification of

the uncorrelated errors of SWOT and WaCM measurements of SSH and
surface velocity.

Throughout this study, the surface vorticity fields are computed
from the components of the total velocity fields from simulated WaCM
data and from the components of surface velocity fields computed
geostrophically from simulated SWOT measurements of SSH. We are
also interested in the surface ocean velocity fields themselves, which
are characterized here by the magnitude of the total or geostrophically
computed vector surface velocity field, rather than by the vector com-
ponent fields. For the 4-day and 14-day time averages considered in
Sections 8�10, the analysis is based on the magnitudes of the vector
averaged velocity fields. While it would be straightforward to consider
each velocity component separately constructed from instantaneous
maps and time averages of simulated SWOT measurements of SSH
and WaCM measurements of surface velocity, the results are more
difficult to interpret than the scalar velocity magnitude field because
of the highly anisotropic and geographically inhomogeneous nature of
the velocity field in the CCS region. Because the velocity errors are
random in each component, direction errors will generally decrease
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as the signal-to-noise ratio of satellite estimates of velocity magnitude
increases.

2. The CCS model

A detailed description and validation of the CCS model used in this
study can be found in Molemaker et al. (2015). Since the model rep-
resentation of submesoscale variability is an important consideration
for simulating SWOT and WaCM data in this investigation, a summary
of the model is provided here. The computational code was ROMS,
the Regional Oceanic Modeling System (Shchepetkin and McWilliams,
2005, 2009), which solves the hydrostatic primitive equations for the
velocity, potential temperature, and salinity with a seawater equation
of state. To simulate local flows in a realistic large-scale environment,
the model was configured for the CCS utilizing open boundary condi-
tions and a sequence of three nested subdomains (Marchesiello et al.,
2003; Penven et al., 2006).

Because the primary target is submesoscale currents with horizontal
scales of <10 km near the eastern topographic slope, an aggressive
approach to nesting was taken with successively finer resolution in
a sequence of steps where each ``child'' grid utilizes ``parent'' grid
data at the open boundaries of the regional domains (Mason et al.,
2010). The procedure consists of off-line, one-way nesting from larger
to finer scales without feedback from the child grid solution onto the
parent grid. It is implicitly assumed that a numerical ``zoom'' around a
specific phenomenon is valid when it has an essentially local dynamical
behavior, albeit with important influences from its environment of
basin and regional circulation.

Bottom topography was defined from the SRTM30-plus bathymetry
dataset based on the 1-minute Smith and Sandwell (1997) global
dataset but using higher resolution data where available. A Gaussian
smoothing kernel with a width of 4 times the topographic grid spacing
was applied to avoid aliasing wherever the topographic data are avail-
able at higher resolution than the computational grid. The maximum
depth for all grids was set to 6000m, which is not a serious distortion
for the U.S. west coast region. Models formulated with a terrain-
following coordinate such as ROMS have computational restrictions
with regard to the steepness and roughness of the topography (Beck-
mann and Haidvogel, 1993). Where the steepness of the topography
exceeded these criteria, additional local smoothing was applied. The
above procedure results in topography that is increasingly well resolved
in the nested grids with successively higher resolution but may differ
significantly from the original data in the coarser grids. Following
Mason et al. (2010), the topography near the boundaries of the nested
domains is matched with the parent topography.

The largest-scale simulation used in this study covers the full Pacific
basin (see Fig. 1 of Molemaker et al., 2015). This grid, as well as
the nested grids described below, is orthogonal based on an oblique
Mercator projection and designed to have nearly uniform spacing in
both horizontal dimensions. For the Pacific basin, the grid spacing
varies from 12.5 km at the central latitude of the grid to 8.5 km at
the north and south extremes of the grid near 40ýS and 55ýN; this is
comparable to what is used in global mesoscale eddy-resolving models.

The simulation was forced at the surface by the QuikSCAT-based
mean-monthly Scatterometer Climatology of Ocean Winds (SCOW;
Risien and Chelton, 2008), and monthly heat and freshwater fluxes
from the Comprehensive Ocean�Atmosphere Data Set (COADS;Da Silva
et al., 1994), using a weak feedback from SST (Barnier et al., 1995).
The open boundary information and initial state were taken from the
Simple Ocean Data Assimilation monthly climatology (SODA; Carton
and Giese,2008). The model SST fields have both gyre-scale contrasts
and mesoscale eddy fluctuations visible in regions of high SST gradients
(see Figs. 1 and 2 in Molemaker et al., 2015; see alsoFigs. 1 and 2).
It should be noted that inertial motions are poorly represented in our
model because of the lack of high-frequency atmospheric forcing.

The Pacific basin model was spun-up from interpolated SODA data
for 2 years, by which time an approximate statistical equilibrium was

reached for kinetic energy. The model was then run for an additional
10 years. The mean-monthly climatology over this 10 years was used
to force the first nested grid along the U.S. west coast (see Fig. 2 of
Molemaker et al., 2015) at its open boundaries. The climatological
monthly boundary information from SODA forced the outermost Pacific
basin model with a seasonal cycle. Mesoscale eddy activity was passed
through boundary conditions to the first nested grid with an update
time scale of five days. The successive nested models were boundary
forced at increasingly shorter time scales, with boundary updates every
12 h for the CCS nested model analyzed in this study (see below).
This was verified by comparing maps of surface eddy kinetic energy
with altimetry-derived eddy kinetic energy. With open boundary con-
ditions in nested grids, it is important to avoid computational artifacts
associated with boundary-trapped features (e.g., rim currents) and
noisy fields. In the ROMS-to-ROMS nesting interface, these artifacts are
largely avoided, even for realistic flows with high mesoscale activity
(Mason et al., 2010).

The three nested grids along the U.S. west coast are rotated by a
polar angle of 24ý so that the x and y axes are aligned approximately
cross-shore and alongshore, respectively. As with the grid for the full
Pacific basin, each of the three nested grids is discretely orthogonal,
and they vary even less in their spacing over their relatively smaller
domains. The first nested subdomain has a grid spacing that varies from
4 km to 3.97 km. The grids for the two smaller domains have average
horizontal spacings of 1.5 km, and 0.5 km, respectively. The successive
levels of grid refinement spontaneously exhibit an increasing amount
of submesoscale variability (c.f., Capet et al., 2008).

The importance of the grid resolution for model representation of
the submesoscale variability in the inner nested grid is readily apparent
from Fig. 1. Submesoscale variability in the SST and vorticity fields
is visibly much more energetic with a grid spacing of 0.5 km, even
compared with a grid spacing of 1.5 km. The choice of model grid
resolution is clearly an important consideration in the assessment of the
resolution capabilities of SWOT and WaCM estimates of surface velocity
and vorticity. This issue is discussed further in Section 11.

In all of the grids, there were 40 stretched vertical levels with a
resolution of a few meters near the surface. The time step was 1600 s
for the full Pacific basin model with í10 km grid spacing and decreased
to 600 s, 240 s and 90 s for the nested models with successively smaller
grid spacings of 4 km, 1.5 km and 0.5 km, respectively. Dissipation was
imposed in the model by a hyper viscous term, which is a by-product
of the 3rd-order upwind advection. The effective hyper viscosity scales
with the local velocity and the grid scale. The stepping procedure also
includes a damping term that is much smaller than the hyper viscous
term.

An important point for this study is that the high dissipation in the
model significantly attenuates internal gravity waves compared with
observations. While the internal gravity wave energy increases with
the increased resolution of each nested grid, it is much weaker than
in the real ocean, even at the highest grid resolution. In addition to the
high dissipation, the lack of high-frequency atmospheric forcing and the
absence of ocean tidal forcing contribute to the weak internal gravity
wave energy in the CCS model used in this study. The effects of higher
internal gravity wave energy are briefly considered in Section 3 from a
pair of models of the Gulf Stream region off the southeastern seaboard
of the U.S., one with weak internal waves like the CCS model used here
and the other with energetic internal waves forced by high-frequency
winds and tides (see Figs. 10 and 11).

For the investigation of the resolution capabilities of SWOT and
WaCM in this study, we consider only the inner nested model, which
extends from Point Conception in the south to approximately the
Oregon/California border in the north. There are 1200 • 1800 grid
points. With the 0.5-km grid spacing of this inner nested model, this
corresponds to 600 km in the cross-shore dimension by 900 km in
the alongshore dimension. For the analysis in this study, we consider
only the 30-day period from day 141 to day 171, which corresponds
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Fig. 7. Maps showing the scale dependence of the magnitudes of the non-Ekman ageostrophic velocities on the 0.5 km• 0.5 km model grid for the CCCS region after 2-dimensional
isotropic smoothing with half-power filter cutoff wavelengths of 10, 20, 30, 40, 60 and 80 km. Note the different color bars for the upper and lower rows of panels and that the
left half of the color bars are not used in either set of panels.

to the early summertime period from 21 May through 20 June when
submesoscale variability is fully developed. The climatological average
wind stress field for the month of June is shown in the right panel of
Fig. 2. For this study, the model output was subsampled at intervals
of 0.5 days. It will be seen from Fig. 24 below that this sample
interval is too coarse to fully resolve the rapidly evolving submesoscale
variability. Since the time interval between successive measurements
by both SWOT and WaCM is longer than this (see Section7), the rapid
evolution of submesoscale variability is even less well resolved in the
satellite data.

A representative map of the model SST field on 5 June is shown
in the left panel of Fig. 2 for the full domain of the 0.5-km inner
nested model in latitude�longitude coordinates. The map reveals a
rich distribution of scales of variability. The cold water near the coast
is associated with wind-driven upwelling forced by the summertime
equatorward winds. The meandering ribbon of upwelled cold water
that separates from the coast at the northern corner of the model
domain is the core of the equatorward flowing California Current.
Submesoscale features are evident along SST fronts throughout the
model domain.

The speed and vorticity of the surface currents associated with the
SST field in Fig. 2 are shown in the rotated model grid coordinates in
Fig. 3. The relative vorticity � = )v_)x * )u_)y (referred to hereafter
as just the vorticity) was computed from the cross-shore (u, positive
onshore) and alongshore (v, positive poleward) velocity components

using centered differences on the 0.5 km • 0.5 km model grid. Except
in the alongshore wavenumber spectra in Figs. 13�15, the vorticity is
normalized throughout this study by the local Coriolis parameter f at
each grid point. A mesoscale anticyclonic eddy can be seen in the north-
west corner of the Central California Current System (CCCS) region in
the bottom panels of Fig. 3. An additional mesoscale anticyclone and a
mesoscale cyclone can be seen in the northwest corner of the full CCS
model domain in the top panels. Most of the rest of the model domain
is dominated by submesoscale variability, the most energetic of which
is associated with the core of the meandering equatorward-flowing
California Current that separates from the coast near Cape Blanco, just
to the north of the model domain. Energetic submesoscale features are
also associated with two offshore jets, one near the center of the model
domain and the other near the southern boundary of the model.

The highly energetic vorticity field at submesoscales in Fig. 3b can
be quantified by characterizing the scale dependence of the distribu-
tion of the magnitude of the normalized vorticity � _f , which can be
interpreted as a Rossby number. The scale dependence ofð�ð_f was
determined by isotropic smoothing of the map in the top panel of
Fig. 3b using a Parzen smoother (seeAppendix A) with successively
longer half-power filter cutoff wavelengths ranging from 0 to 150 km.
To reduce edge effects in the smoothed fields along the northern,
southern and offshore boundaries of the model domain, the analysis
throughout the remainder of this study was restricted to the region
delineated by the black lines in both panels of Fig. 2.
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Fig. 8. The scale dependencies of the 80th, 90th, 95th and 99th percentile points of
the distributions of the magnitudes of the non-Ekman ageostrophic velocities on the
full 0.5 km • 0.5 km model grid for the full CCS model domain after 2-dimensional
isotropic smoothing with the half-power filter cutoff wavelengths indicated along the
abscissa. The dashed line corresponds to the root-mean squared (RMS) value of the
non-Ekman ageostrophic velocities.

The distributions of ð�ð_f from the smoothed fields of normalized
vorticity are shown in Fig. 4a as a function of the half-power filter
cutoff wavelength of the smoothing. The four solid lines correspond
to the 80th, 90th, 95th and 99th-percentile points of the cumulative
probability distribution of ð�ð_f . The root mean squared (RMS) value of
ð�ð_f is about 0.5 in the unsmoothed field and decreases to about 0.1 at
large scales (see the dashed line inFig. 4a) and coincides approximately
with the 80th percentile point of the distribution at all scales. It would
correspond to the 68th-percentile if the distribution were Gaussian.
The distribution of Rossby numbers ð�ð_f in the unsmoothed fields is
thus long-tailed toward large magnitudes with values exceeding 0.85 at
about 5% of the grid points and exceeding 1.7 at about 1% of the grid
points. The high values of ð�ð_f are concentrated geographically in the
regions of strongest ocean velocity (seeFig. 3). Much of the small-scale
variability in these regions is thus highly nonlinear and ageostrophic.
The long-tailed nature of the distributions of ð�ð_f decreases rapidly
with increasing scale. All of the percentile points and the RMS decrease
very slowly for filter cutoff wavelengths longer than about 100 km.

From a close inspection of the vorticity maps in Fig. 3b, it can be
seen that small-scale features with positive vorticity are more intense
than their counterparts with negative vorticity. This is most easily seen
from the enlargement in the bottom panel of Fig. 3b. This asymmetry
of the vorticity distribution is quantified as a function of scale in
Fig. 4b. At the full resolution of the model grid, the vorticity is skewed
toward positive values. This skewness decreases with increasing scale,
becoming very small for half-power filter cutoff wavelengths longer
than about 50 km. The average values of � _f are very close to zero
at all scales (see the dashed line inFig. 4b).

3. Limitations of geostrophically computed velocity

The high incidence of large Rossby numbersð�ð_f at small scales
in Fig. 4a is indicative of limitations of the validity of the geostrophic
approximation. This is investigated in this section from comparisons
of the surface currents and vorticity from the total velocity field (as in
Fig. 3) with the surface currents and vorticity computed geostrophically
from the model SSH fields.1 The derivatives for the geostrophically
computed velocity components ug = * gf *1 )h _)y and vg = gf *1 )h _)x

1 For estimation of surface velocity from SWOT data, it is important to
distinguish the velocity computed from SSH data by the geostrophic equations
from the truly geostrophic velocity that is valid only for small Rossby number.
To clarify this subtle but pedagogically important point, we use the somewhat
cumbersome terminology ``geostrophically computed velocity'' rather than
``geostrophic velocity''.

were approximated using centered differences of sea surface heighth
on the 0.5 km • 0.5 km model grid. The geostrophically computed
vorticity � g = )v g_)x * )ug_)y was then approximated using centered
differences of the geostrophically computed velocity components. Maps
of SSH, the magnitudes of geostrophically computed surface velocity
and normalized geostrophically computed vorticity are shown in Fig. 5.

To the untrained eye, the existence of energetic submesoscale vari-
ability is not easily discerned in the SSH map in Fig. 5a. The prepon-
derance of highly energetic submesoscale variability evident in the map
of normalized geostrophically computed vorticity in Fig. 5c attests to
the extreme spatial high-pass filtering effects of double differentiation
of the SSH fields. Irrespective of the validity of the geostrophic approx-
imation, the ability to estimate vorticity from SWOT measurements of
SSH clearly depends critically on the magnitudes of small-scale errors
in the SSH measurements. This is investigated in Section6 from con-
sideration of uncorrelated measurement errors alone. The added effects
of sampling errors from the limited swath width and discrete overpass
times of the SWOT satellite on maps of the spatially and temporally
evolving velocity and vorticity fields computed geostrophically from
space�time smoothed simulated SWOT data are considered in Section8.
In this section, we consider only error-free SSH fields and their spatial
derivatives.

Qualitatively, the geostrophically computed surface current speed
and the normalized geostrophically computed vorticity in Figs. 5b and
c look very similar to the surface current speed and normalized vorticity
in Figs. 3a and b that were computed from the total velocity. The vector
differences between the total and geostrophically computed surface
velocity (referred to hereafter as the ageostrophic velocity 2), are shown
in Fig. 6. From the unsmoothed velocity differences in Fig. 6a it can be
seen that the ageostrophic velocity field on large scales is dominated by
the expected wind-driven surface Ekman velocity associated with the
climatological wind stress used to force the model. The ageostrophic
velocity field smoothed using a Parzen smoother with a half-power
filter cutoff wavelength of 150 km is shown in Fig. 6b. These large-scale
ageostrophic velocity vectors are predominantly aligned approximately
52ý to the right of the equatorward alongshore direction, which is at
least qualitatively consistent with expectations from the equatorward
alongshore winds during the early summertime period considered in
this study (see the right panel of Fig. 2). The magnitudes of these
large-scale ageostrophic currents are typically about 0.1 m s*1 . For
the purposes of the analysis in this section, we will define the 150-km
smoothed ageostrophic velocity field in Fig. 6b to be the wind-driven
Ekman velocity.

The small-scale features in the ageostrophic velocity field in Fig. 6a
that are superimposed on the large-scale wind-driven Ekman velocity
field in Fig. 6b coincide with the regions of energetic submesoscale
variability noted above from Figs. 3 and 5. This becomes apparent after
subtracting the 150-km smoothed ageostrophic velocity field in Fig. 6b
from the unsmoothed ageostrophic velocity field in Fig. 6a. The mag-
nitudes of the resulting ``non-Ekman ageostrophic velocities'' (Fig. 6c)
often exceed 0.05 m s*1 and differences in excess of 0.15 m s*1 are
common in regions of the CCS with energetic submesoscale variability.

The scale dependence of the non-Ekman ageostrophic velocities is
shown in Fig. 7 for the CCCS region after isotropic smoothing using
a Parzen smoother with selected half-power filter cutoff wavelengths
ranging from 10 to 80 km. The non-Ekman ageostrophic features dimin-
ish in magnitude rather slowly with increasing scale because of the tight

2 The attribution ``ageostrophic velocity'' is not strictly correct. Some
of the apparent velocity structures computed geostrophically from SSH are
not representative of actual features in the velocity field. For example, the
geostrophically computed velocity field associated with a long-crested internal
gravity wave consists of opposing parallel velocity jets that straddle the wave
crests and troughs. This is a glaring misrepresentation of the surface manifes-
tation of internal wave velocities. This contamination of SWOT estimates of
the surface velocity field is discussed in more detail at the end of this section.
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clustering of small-scale features. The residual non-Ekman ageostrophic
velocities exceed 0.1 m s*1 in many small-scale features, even after
smoothing with a half-power filter cutoff wavelength of 40 km. Several
patches of non-Ekman ageostrophic velocities of 0.03 m s*1 still exist
with the maximum smoothing of 80 km shown in the bottom right
panel of Fig. 7. Bearing in mind the gradual rolloff of the filter transfer
function of the Parzen smoother (see Appendix A), the magnitudes
of the band-pass filtered non-Ekman ageostrophic velocities in Fig. 7
must be considered lower-bound estimates of the true values. The
imperfections of the band-pass filtering become progressively more of
an issue as the filter cutoff wavelength approaches the 150 km filter
cutoff used to define the Ekman ageostrophic velocity in Fig. 6b from
which the smoothed non-Ekman ageostrophic velocity magnitudes in
Fig. 7 were derived by band-pass filtering.

The statistics of the scale dependence of the magnitudes of the
non-Ekman ageostrophic velocities are summarized in Fig. 8 from the
80th, 90th, 95th and 99th-percentile points in the distributions of the
magnitudes of the non-Ekman ageostrophic velocities over the full
CCS model domain as functions of half-power filter cutoff wavelength.
On all scales, the RMS value corresponds very closely to the 80th-
percentile point in the distributions. The distributions of smoothed
residual non-Ekman velocities are thus long-tailed toward large mag-
nitudes, especially at small scales. In the unsmoothed fields, the RMS
value of the magnitudes of the non-Ekman ageostrophic velocities is
about 0.05 m s*1 and values in excess of 0.1 m s*1 occur at about
5% of the grid points over the full CCS model domain. It is evident
from Fig. 6c that high non-Ekman ageostrophic velocities are highly in-
homogeneous geographically, occurring over much higher percentages
of the grid points within the regions of most energetic submesoscale
variability.

As expected from the maps in Fig. 7, the distribution points of
the magnitudes of residual non-Ekman ageostrophic velocities decrease
rather slowly with increasing scale. Even after smoothing with a half-
power filter cutoff wavelength of 50 km, for example, values in excess
of 0.02 m s*1 and 0.05 m s*1 occur at, respectively, about 20% and 2%
of the grid points over the full CCS model domain and at much higher
percentages of the grid points within the localized regions of energetic
submesoscale variability.

The submesoscale features in the ageostrophic velocity field in
Figs. 6 and 7 are attributable mostly to contributions of cyclostrophic
motion to the total velocity field in the CCS model used for this
study. This can be shown by considering the force balance between
geostrophy and centripetal acceleration in the steady-state momentum
equation, referred to in meteorology as the gradient wind balance.
The cyclostrophic momentum balance for axially symmetric flow in
cylindrical coordinates is

* fV *
V 2

R
= *

1
�

)P
)r

; (1)

where r is radial distance, R is the radius to the center of curvature,
� is the water density, P is pressure, and V is the angular velocity,
which is defined to be positive for counterclockwise rotation and neg-
ative for clockwise rotation. For the northern hemisphere considered
here, the angular velocity is thus positive in cyclones and negative in
anticyclones.

The momentum equation (1) can be rearranged into the form

Vg = V +
V 2

fR
; (2a)

where Vg = .�f /*1 )P _)r is the geostrophically computed angular veloc-
ity. Since the second term on the right side of (2a) is always positive,
it is evident that Vg > V for any nonzero cyclostrophic velocity V . The
angular velocity Vg computed geostrophically is thus an overestimate of
the positive cyclostrophic velocity in cyclones and an underestimate of
the magnitude of the negative cyclostrophic velocity in anticyclones. As
a consequence, the vorticity computed geostrophically is overestimated
in cyclones and underestimated in anticyclones.

The positive bias of geostrophically computed vorticity can be
shown mathematically by rewriting (2a) as

Vg = .1 + � R/ V ; (2b)

where

� R =
V

fR
(3)

is the Rossby number of the rotational flow. The average relative
vorticity within the circular area of the assumed axially symmetric flow
with radius R can be obtained from Green's Theorem, which gives

� =
Í C

’v � d’l

ÊAC

dA
=

V 2�R
�R 2

=
2V
R

: (4)

It is thus apparent that (3) can be expressed alternatively as

� R =
1
2

�
f

: (5)

Multiplication of (2b) by 2_R and substitution of (4) for 2V_R gives

� g = .1 + � R/ � = � +
1
2

� 2

f
; (6)

where � g = 2Vg_R is the average vorticity computed geostrophically
within the circular area of axially symmetric flow with radius R. Since
the second term on the right side of (6) is positive, the geostrophically
computed vorticity � g is larger than the true vorticity � , thus confirming
that the geostrophically computed vorticity overestimates the positive
vorticity in cyclones and underestimates the magnitude of negative
vorticity in anticyclones.

After division of both sides by f , (6) can be rearranged into the
form

� g

f
*

�
f

=
1
2

H
�
f

I 2

; (7)

For cyclostrophic flow, the differences between the normalized
geostrophically computed vorticity � g_f and the normalized vorticity
� _f are thus related quadratically to the latter. The validity of the
cyclostrophic relation (7) is shown in the left panels of Fig. 9. The top
left panel is a map of .� g * � /_f in the CCCS region computed from the
bottom panels of Figs. 5c and 3b after a small amount of smoothing
with a half-power filter cutoff wavelength of 20 km. The bottom left
panel shows binned averages of the normalized differences in the top
left panel as a function of the normalized vorticity � _f . The curve in
the bottom left panel corresponds to the quadratic relation (7). The
quadratic fit is quite good. The discrepancies of the binned averages
from the theoretical quadratic relation (7) are presumably attributable
to deviations of the flow field from the axially symmetric flow assumed
in the derivation of (7).

It is noteworthy that the features in the top left panel of Fig. 9 that
are most compact and have the largest magnitudes are all positive. This
is also evident from the asymmetry of the distribution of adequately
sampled bins in the binned scatter plot in the bottom left panel of
Fig. 9. The most energetic ageostrophic features in the vorticity field
are thus cyclonic and the positive vorticities � of these features are
overestimated by the geostrophically computed vorticities � g. The lack
of compact anticyclonic features is likely because small-scale anticy-
clones are susceptible to inertial instability (e.g., Rayleigh, 1916; Flierl,
1988; Kloosterziel and van Heijst, 1991; Kloosterziel et al., 2007). The
most intense small-scale features in the ageostrophic vorticity field are
therefore associated almost exclusively with submesoscale cyclones.

The relevance of cyclostrophic flow can be further investigated
from the ratios � g_� . For the axially symmetric flow assumed in the
derivation above, the ratio obtained from (6) is

� g

�
= 1 +

1
2

�
f

: (8)
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Fig. 9. Maps of the differences (left) and ratios (right) of the normalized geostrophically computed vorticity � g_f in Fig. 5c and the normalized total vorticity � _f in Fig. 3b
after smoothing with a half-power filter cutoff wavelength of 20 km. The bottom panels show binned averages of the gridded values in the maps in the top panels as functions of
� _f . The vertical bar on each binned average represents the,1 standard deviation of the data values within the bin and the smooth lines correspond to the theoretical solutions
derived in the text for cyclostrophic motion.

The validity of this cyclostrophic relation is shown in the right panels of
Fig. 9. The top right panel is a map of � g_� in the CCCS region computed
from the bottom panels of Figs. 5c and 3b after a small amount of
smoothing with a half-power filter cutoff wavelength of 20 km. The
bottom right panel shows binned averages of the ratios in the top right
panel as a function of the normalized vorticity � _f . Note again the
predominance of positive values of � . The line in the bottom right panel
corresponds to the linear relation (8). The discrepancies of the binned
averages from the theoretical linear relation (8) are again presumably
attributable to deviations of the flow field from the axially symmetric
flow assumed in the derivation of (8). The differences are especially
evident in the regions of large-scale flow where ð�ð_f is small.

The conclusion of the preceding analysis is that the errors from
the effects of cyclostrophic motion on surface velocities computed
geostrophically from SWOT data may often exceed 0.1 m s*1 in the
regions of high velocity where small-scale vorticity magnitudes are
strongest. These non-Ekman ageostrophic velocities can mostly be re-
duced to less than 0.05 m s*1 by smoothing with a half-power filter
cutoff wavelength of 50 km or more. The small-scale cyclostrophic
motions that are responsible for these residual errors in the geostrophic
approximation result in geostrophically computed velocities that over-
estimate the positive vorticity of cyclonic features and underestimate
the magnitudes of the negative vorticity of anticyclonic features. The
former occurs more commonly than the latter because of the tendency
for anticyclonic features to become unstable.

In addition to errors from the existence of small-scale cyclostrophic
motions, velocity estimates computed geostrophically from SWOT mea-
surements of SSH will be contaminated by the SSH signatures of
ageostrophic internal gravity waves. Hints of such features are evident

from close inspection of Fig. 5c in the form of subtle wavy striations
in the geostrophically computed vorticity. These are most clearly seen
in the central northern area of weak submesoscale variability in the
bottom panel. As discussed in Section 2, internal gravity waves are
underestimated in the CCS model used in this study. Artifacts from
internal waves are therefore likely to be worse in actual geostrophically
computed SWOT estimates of velocity than is suggested fromFig. 5c.

Present understanding of the sea-surface height signatures of the
oceanic internal gravity wave field is limited, and consequently the ex-
tent of this contamination of estimates of surface velocity and vorticity
computed geostrophically from SWOT data is not addressed systemati-
cally here. Its potential importance can be illustrated, however, through
comparison of the ageostrophic velocity fields from two high-resolution
ROMS simulations of the Gulf Stream region off the southeastern
seaboard of the U.S., both with a grid spacing of 0.75 km • 0.75 km.
Similar to the CCS model used in this study, one of the North Atlantic
simulations (referred to here as the LF simulation) was forced at low
frequencies with monthly smoothed winds and does not include ocean
tides (Gula et al., 2015). The other (referred to here as the HF simu-
lation) was forced at high frequencies with hourly winds and includes
boundary forcing by ten ocean tidal constituents. Although the region
of the North Atlantic model domain is very different dynamically from
the CCS region considered in this study, the availability of the HF and
LF simulations provides useful insight into the contamination of SWOT
data that can be expected from internal waves forced by high-frequency
winds and ocean tides.

Snapshots of the magnitudes of the total surface velocities, the
geostrophically computed surface velocities and their differences (the
``ageostrophic velocities'') over the full model domain are shown in
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Fig. 10. Snapshot maps of the magnitudes of the total velocity, the geostrophically computed velocity and the ageostrophic velocity (top to bottom) for the HF and LF simulations
(left and right columns, respectively) of a region of the North Atlantic Ocean off the southeastern seaboard of the U.S. The grid resolution was 0.75 km • 0.75 km in both
simulations. The HF simulation was forced with high-frequency (hourly) winds and tides. The LF simulation was forced with monthly winds and did not include tides. The ribbons
of high velocity in the western and northern regions of each map are the Gulf Stream as it flows northward off the Florida coast and then turns northeastward along the continental
slope to Cape Hatteras at the northern corner of the model domain. The x and y axis labels are longitude in degrees east and latitude in degrees north and the box in each panel
is the area over which the non-Ekman ageostrophic velocities were computed for Fig. 11. Note that the left half of the color bar is not used in the bottom panels.

Fig. 10. As in the CCS model used for this study (Figs. 3a and 5b),
the geostrophically computed velocity is qualitatively very similar to
the total surface velocity in each of the two North Atlantic simulations.
Moreover, the total and geostrophically computed velocity fields are
qualitatively similar between the two North Atlantic simulations. But
the ageostrophic velocity fields are dramatically different in the HF
and LF simulations. Features resembling the cyclostrophic motions
discussed above from the CCS model are evident in the ageostrophic

velocity field from the LF model, especially in the immediate vicinity
of the Gulf Stream. Such features are swamped in the HF model by
striated internal gravity wave structures. The geostrophically computed
velocities associated with these internal waves are a gross misrep-
resentation of the actual surface velocities associated with internal
waves. We nonetheless refer to these striated features as ``ageostrophic
velocities'' since they would be misinterpreted as velocity structures in
geostrophically computed SWOT estimates of the velocity field.
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Fig. 11. Maps showing the scale dependence of the magnitudes of smoothed non-Ekman ageostrophic velocities (defined as inFig. 6c) from the subregions of the two North
Atlantic simulations indicated by the boxes in Fig. 10. The left and right columns correspond to the results for the HF and LF models, respectively, after 2-dimensional isotropic
smoothing with half-power filter cutoff wavelengths of 20, 40, 60 and 80 km (top to bottom). The x and y axis labels are distance in kilometers. Note that the left half of the
color bar is not used in this figure.

To assess the effects of internal gravity waves on SWOT estimates of
the surface velocity fields, the ``non-Ekman ageostrophic velocity field''
was computed from each North Atlantic simulation in the same manner
as in Fig. 6c, i.e., as the differences of each of the total ageostrophic

velocity fields from their respective 150-km smoothed ageostrophic
field (not shown here). The residual velocity fields were then smoothed
with various half-power filter cutoff wavelengths as in Fig. 7. The
magnitudes of the resulting smoothed non-Ekman ageostrophic velocity
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fields are shown in Fig. 11 for the region southeast of the Gulf Stream
indicated by the boxes in Fig. 10. Features suggestive of internal gravity
waves can be faintly seen in the LF simulation with 20-km smoothing
but are not readily apparent with higher smoothing. In contrast, in-
ternal waves are highly energetic in the HF simulation and decrease
in magnitude rather slowly with increased spatial smoothing. Fig. 11
suggests that significant contamination of the geostrophically computed
velocity field by the SSH signatures of internal waves persist in some
regions even after smoothing with a half-power filter cutoff wavelength
of 80 km.

In principle, the internal wave contamination that is evident in
Figs. 10 and 11 can be reduced by time averaging as in the simulations
of geostrophically computed SWOT estimates of space�time smoothed
velocity and vorticity in Section 8. In practice, the interleaved sampling
pattern during each repeat of the 21-day orbit of SWOT (see Figs. 21�
23) restricts the geographical distribution of locations with repeat
sampling, thus limiting the benefits of time averaging to mitigate con-
tamination by internal gravity waves. Qiu et al. (2018) note that it may
be possible to remove some of the internal wave contamination based
on model estimates of the stationary part of diurnal and semidiurnal
tidal signals. Contamination by nonstationary internal gravity waves is
much more problematic.

A thorough analysis of the effects of internal gravity waves on
interpretation of geostrophically computed SWOT estimates of space�
time smoothed velocity and vorticity is beyond the scope of this study.
For present purposes, the contrasting velocity fields from the two
North Atlantic simulations in Figs. 10 and 11 serve as a cautionary
warning that the assessments of the resolution capabilities for SWOT
estimates of velocity and vorticity in Sections 6, 8 and 9 may be
somewhat optimistic since our simulations are based on a CCS model
with unrealistically weak internal gravity waves. A rigorous analysis
of the effects of contamination of geostrophically computed velocity
estimates by internal gravity waves is needed to fully understand the
limitations of future use and interpretation of SWOT data.

It should be noted that other effects of synoptic-scale wind forcing
besides internal gravity waves may also not be adequately represented
in the CCS model used in this study since it was forced by seasonally
varying winds. High-frequency wind forcing can also affect mesoscale
and submesoscale variability. For this and other reasons, the resolution
capabilities of actual SWOT and WaCM data are likely to be somewhat
worse than the estimates presented here.

4. The error characteristics of measured and derived variables
from SWOT and WaCM data

For our investigation of the resolution capabilities of SWOT and
WaCM estimates of surface velocity and vorticity, the measurement
characteristics that are of interest are the footprint sizes of the data that
will be distributed to general users (referred to here as pre-processed
data), the standard deviations of the uncorrelated measurement errors
for the specified footprint size, and the space�time sampling patterns
that are imposed by the measurement swath width and the orbit
configuration for each instrument. The effects of footprint size and
uncorrelated measurement errors on SWOT and WaCM estimates of
velocity and vorticity are summarized in this section. Discussion of
the equally important consideration of sampling patterns on the ability
to map the velocity and vorticity fields (especially an issue for SWOT
because of its much narrower swath width) is deferred to Section 7.

4.1. SWOT errors

The measurement characteristics for the SWOT altimeter are docu-
mented in a suite of project reports published by the Jet Propulsion Lab-
oratory and available online at https://swot.jpl.nasa.gov/documents.
htm. The most germane of these reports are the Science Requirements
Document (Rodríguez and Callahan, 2016), the Onboard Processing

and Algorithm Theoretical Basis Document (Peral, 2016), and the
Mission Performance and Error Budget Document (Esteban Fernandez,
2017). While the versions of these documents that are listed in the
references may undergo revisions between now and the planned launch
date in 2021, no major changes are expected in the instrumental
measurement errors and orbit configuration that are crucial to the
simulations of SWOT data used in this study.

The baseline science requirements for SWOT are for SSH measure-
ments with a footprint size of 1 km on a 1 km • 1 km grid across the
measurement swath. SWOT will also include a nadir altimeter, but that
is not considered in this study because it has a very different footprint
size and measurement accuracy compared with the Ka-band Radar
Interferometer (KaRIn). KaRIn will measure SSH with unprecedented
resolution and spatial coverage across two parallel measurement swaths
with 50-km widths separated by a 20-km gap centered on the satellite
ground track (see Section 7).

In addition to uncorrelated errors from instrument noise, the KaRIn
estimates of SSH will be contaminated by spatially correlated (long-
wavelength) errors from orbit errors and various environmental effects,
including significant wave height (SWH) and the effects of dry gases,
water vapor and ionospheric free electrons on atmospheric refraction.
Of particular note, the validity of the so-called inverted barometer
correction of 1 cm hPa*1 for sea level pressure effects on SSH is
unknown on the small scales measurable by KaRIN. The uncertainties
of the sea level pressure fields from the atmospheric model that will be
used as a basis for the inverted barometer correction are also unknown
on these small scales.

Consideration of the complete error budget for SWOT is beyond the
scope of this study. Readers are referred toRodríguez and Callahan
(2016) for a discussion of the present understanding of the various
aspects of SWOT measurement errors. Our focus is on SWOT estimates
of small-scale surface velocity and vorticity variability, both of which
are spatially high-pass filtered versions of the SSH field (see Fig. 5)
since they are computed from spatial derivatives of SSH. With the
possible exception of the inverted barometer correction mentioned
above, most of the spatially correlated errors have relatively large scale
and are thus expected to be of secondary importance. We therefore
consider only the effects of uncorrelated measurement errors in this
study.

In its low-resolution mode over the ocean, the raw radar measure-
ments by the KaRIn instrument will have a footprint size of about
100 m. To reduce the measurement errors, while at the same time re-
ducing the unnecessarily large data volume over the ocean, the present
official plan as summarized by Peral (2016) and Esteban Fernandez
(2017) is to smooth the raw measurements of SSH in an onboard
processor to achieve the SWOT science requirements for a footprint
size of 1 km for ocean observations.3 It is shown in Appendix B.1 that
this footprint size can be achieved by smoothing the raw measurements
using a 2-dimensional Parzen smoother with a half-power filter cutoff
wavelength of 2 km. It is further shown in Appendix B.1 that pre-
processed SWOT estimates of SSH obtained in this manner are spatially
uncorrelated on a 1 km • 1 km grid.

For the simulations of SWOT data in this study, a critically impor-
tant characteristic of the pre-processed SWOT estimates of SSH is the

3 The SWOT Algorithm Development Team has recently recommended
changing the onboard processing to a smaller footprint size of 0.5 km posted
on a 0.25 km • 0.25 km grid. This higher resolution increases the standard
deviation of the uncorrelated measurement errors in the onboard estimates of
SSH by a factor of two compared with a footprint size of 1 km. It will be
shown in Section 6 that even the science requirement of 1-km footprint size
used for the simulations in this study exceeds the signal resolution capability
by more than an order of magnitude for in-swath SWOT estimates of surface
velocity and vorticity computed geostrophically from SSH. The results of the
additional smoothing in ground-based post-processing that will be needed to
achieve an adequate signal-to-noise ratio would therefore be essentially the
same for either footprint size.
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standard deviation of the uncorrelated instrumental errors. As discussed
in detail in Appendix F, it is not possible to determine this unambigu-
ously from the SWOT documentation. In part, this is because the actual
science requirement is specified in terms of the wavenumber spectrum
of SSH after 2-dimensional smoothing in ground-based post-processing,
rather than in terms of the measurement accuracy itself in units of SSH
(see Appendix F). On the few occasions where a standard deviation
of the uncorrelated measurement errors is stated, inconsistent values
are given (see Appendix F), perhaps because the stated value is for an
evolving ``present best estimate'' of what will actually be achieved from
SWOT on-orbit, rather than for the baseline science requirement that is
considered in this study. The former is slightly better than the science
requirement and may continue to improve somewhat as the techniques
for processing the KaRIn data are refined between now and the launch
date.

The wavenumber spectral specification of the measurement errors in
the SWOT science requirements is ``reverse engineered'' in Appendix F
to determine the corresponding standard deviation of the uncorrelated
errors of the pre-processed SWOT estimates of SSH. The derived value
for the swath-averaged science requirement for conditions of 2-m SWH
and a footprint size of 1 km is shown to be � h = 2:74 cm.

The smallest value cited in the SWOT documentation for the swath-
averaged standard deviation of uncorrelated errors is � h = 2:4 cm for
2-m SWH, which is somewhat better than the value of 2.74 cm derived
in Appendix F. The dependencies of the present projected estimate of
SWOT measurement errors on swath location and SWH are shown in
Fig. F.1 in Appendix F. Our assumed swath-averaged error standard
deviation of � h = 2:74 cm appears to be more representative of the
projected estimate for 4-m SWH.

The difference between 2.74 cm and 2.4 cm is a minor distinction
for this investigation. A more significant issue is that the analysis
presented in this study does not simulate the cross-track variation of
the SWOT measurement errors. As shown inFig. F.1, the measurement
errors increases toward both edges of the measurement swath, result-
ing in cross-track variations that are much larger than the difference
between 2.74 cm and 2.4 cm. For 2-m SWH, for example, the estimates
of SSH errors inFig. F.1 range from 1.9 cm at the center of the swath to
3.0 cm at the inner edge of the swath and more than 4 cm approaching
the outer edge of the swath. It will be seen in Sections 6, 8 and 9
that geostrophically computed SWOT estimates of velocity and vorticity
must be smoothed considerably to achieve adequate signal-to-noise
ratio. This smoothing leads to edge effects that would be exacerbated
by the larger measurement errors near the swath edges.

As noted in the introduction, the error analysis in this study could
have been carried out using the simulator software available from the
SWOT Project Office (Gaultier et al., 2017). Analogous simulator soft-
ware is not yet available for WaCM (Rodríguez, 2018). For consistency
in our analysis of the effects of SWOT and WaCM measurement errors,
we have therefore chosen to simulate the error standard deviation
for simulated SWOT data as spatially constant with a swath-averaged
value of � h = 2:74 cm. Because our simulations do not account for
the higher measurement errors near the edges of the measurement
swaths, the analysis presented here likely underestimates the overall
effects of measurement errors on space�time smoothed fields of velocity
and vorticity constructed geostrophically from SWOT measurements of
SSH. The results presented in Sections6, 8 and 9 should therefore
be considered optimistic assessments of the resolution capabilities of
actual SWOT data.

For SWOT, the velocity and vorticity fields that are the focus of
this investigation must be estimated geostrophically, which requires
differentiation of SSH for velocity and double differentiation of SSH for
vorticity. The spatial derivatives are estimated in this study by centered
differences of the discrete SSH values. The effects of the uncorrelated
errors of SWOT measurements of SSH on geostrophically computed
velocity and vorticity are derived in Appendix G.1 using propagation-
of-error analysis. The results are summarized in the first column of

Table 1
The standard deviations of errors of SWOT estimates of sea surface height h,
the geostrophically computed cross-shore and alongshore velocity components ug =
*gf *1 )h_)y and vg = gf *1 )h_)x, the magnitude .u2

g + v2
g/1_2 of the geostrophically

computed velocity and the geostrophically computed vorticity � g = )v g_)x * )ug_)y
normalized by the Coriolis parameter f . The calculations are all based on the value of
f = 8:75 • 10 *5 s*1 at the central latitude 37 ýN of the California Current model domain
shown in Fig. 2. The results for the pre-processed SWOT estimates of SSH with 1-km
footprint on a 1 km • 1 km grid and the science requirement of � h = 2:74 cm for
the standard deviation of the uncorrelated errors of the SSH measurements are listed
in the first column. The reduction of error that can be achieved by smoothing with
half-power filter cutoff wavelengths of � c = 10 km and 50 km are listed in the second
and third columns. The error estimates in the first and second columns are derived
in Appendices G.1 and G.3 by propagation-of-error analysis. The error estimates in
the third column were obtained by integrating the analytical expressions for the error
spectra derived in Appendix I.2 with � c = 50 km.

Variable SWOT with SWOT with SWOT with
1-km footprint 5-km footprint 50-km smoothing

(10-km smoothing)

SSH 2.74 cm 0.55 cm 0.11 cm
ug; vg 2.17 m s*1 0.26 m s*1 0.013 m s*1

Speed 3.07 m s*1 0.37 m s*1 0.018 m s*1

� g_f 39.1 3.2 0.045

Table 1, which shows that the � h = 2:74-cm standard deviation of
SSH measurement errors for a footprint size of 1 km results in a large
standard deviation of 2.17 m s*1 for the errors of SWOT estimates
of each geostrophically computed velocity component at the central
latitude 37 ýN of the CCS model domain where the Coriolis parameter
is f = 8:75 • 10*5 s*1 . This error increases by about 11% at the 32.5ýN
southern corner of the CCS model domain where f = 7:81 • 10*5 s*1

and decreases by about 11% at the 42ýN northern corner of the model
domain where f = 9:73 • 10*5 s*1 . The � h = 2:74-cm SSH measurement
errors result in an extraordinarily large standard deviation of 39:1f for
the errors of geostrophically computed SWOT estimates of vorticity at
37ýN.

Because of these large errors, SWOT estimates of velocity and
vorticity computed geostrophically from the unsmoothed pre-processed
data are likely of little value for most oceanographic applications. The
errors listed in the first column of Table 1 are much larger than the
errors summarized for WaCM estimates of velocity and vorticity in
Section 4.2, but the footprint size of 5 km for pre-processed WaCM
estimates of surface velocity is a factor-of-5 coarser than the 1-km
footprint size for SWOT. The large errors of SWOT estimates of velocity
and vorticity obtained from the pre-processed SWOT data can be re-
duced by smoothing commensurately with the half-power filter cutoff
wavelength of 10-km that corresponds to the 5-km footprint size of
pre-processed WaCM estimates of surface velocity (seeAppendix B.2).

The effects of smoothing the pre-processed SWOT estimates of SSH
isotropically with a half-power filter cutoff wavelength of 10 km in
ground-based post-processing, i.e., the same smoothing applied in pre-
processing of WaCM estimates of velocity, are derived in Appendix G.3
using propagation-of-error analysis. The results are summarized in
the second column of Table 1. The standard deviations of errors of
geostrophically computed SWOT estimates of velocity and vorticity are
reduced by factors of about 8 and 12, respectively. The resulting un-
certainties are comparable to the uncertainties of velocity and vorticity
derived below in Section 4.2 based on pre-processed WaCM data with
the same footprint size of 5 km (see Table 2).

Eqs. (G.2), (G.5), (G.8), (G.17a) and (G.20) in Appendices G.1
and G.3 from which the error estimates in the first two columns of
Table 1 were computed are all expressed in terms of the variance
� 2

h of the errors of the pre-processed SWOT estimates of SSH for a
footprint size of 1 km. It is therefore straightforward to recompute the
standard deviations of the errors of geostrophically computed velocity
components and vorticity based on any specified value of � 2

h.
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Table 2
The standard deviations of errors of WaCM estimates the cross-shore and alongshore
velocity components u and v, the velocity magnitude .u2 + v2/1_2 and the vorticity
� = )v_)x * )u_)y normalized by the Coriolis parameter f at the central latitude 37 ýN of
the California Current model domain shown in Fig. 2. The results for the pre-processed
WaCM estimates of the velocity components with 5-km footprint size on a 5 km • 5 km
grid and the baseline standard deviation of � spd = 0:50 m s*1 for uncorrelated speed
errors, which corresponds to � u;v = 0:354 m s*1 for the uncorrelated measurement errors
of each orthogonal component of velocity, are listed in the first column. The results
for the same footprint size of 5 km oversampled on a 1 km • 1 km grid are listed
in the second column. The reduction of error that can be achieved by smoothing with
a half-power filter cutoff wavelength of � c = 50 km are listed in the third column.
The error estimates in the first and second columns are derived in Appendix G.2 by
propagation-of-error analysis. The error estimates in the third column were obtained
by integrating the analytical expressions for the error spectra derived in Appendix I.4
with � c = 50 km.

Variable WaCM with WaCM with WaCM with
5-km footprint 5-km footprint 50-km smoothing
and 5-km grid and 1-km grid and 1-km grid

u; v 0.35 m s*1 0.35 m s*1 0.071 m s*1

Speed 0.50 m s*1 0.50 m s*1 0.10 m s*1

� _f 0.81 2.4 0.12

4.2. WaCM errors

As WaCM is not yet a proposed NASA mission, there is no formal
documentation of the details of the Doppler measurements of surface
velocity. The technical aspects of WaCM are summarized byRodríguez
(2018). A Doppler radar measures the radial component of velocity
parallel to the antenna pointing angle. Estimation of vector velocity
requires measurements from multiple look angles. This is achieved
using a spinning pencil-beam antenna that measures a given location
on the sea surface from several different look angles over a short period
of time as the satellite moves along its orbit.

Issues with the geometrical transformations of pooled measure-
ments of radial velocity from multiple look angles to estimate two
orthogonal components of velocity are not addressed in our simulations
of WaCM data. We have assumed that the two orthogonal velocity
components have already been estimated in onboard and ground-based
pre-processing of the measurements pooled over 5 km• 5 km areas and
that the uncorrelated errors of surface current speed in these pooled
estimates have a standard deviation of � spd = 0:50 m s*1 in the baseline
design for WaCM. In reality, the errors will differ for the two velocity
components (seeRodríguez, 2018). Because of limited azimuthal di-
versity of the Doppler measurements of radial velocity near the swath
edges, the errors of the cross-track velocity component increase toward
the inner edges of the two parallel measurement swaths. Likewise, the
errors of the along-track component increase toward the outer edges of
the measurement swaths.

It is shown in Appendix B.2 that an effective footprint size of
5 km can be achieved by smoothing high-resolution data using a
2-dimensional Parzen smoother with a half-power filter cutoff wave-
length of 10 km. The estimates of surface velocity that we refer to
here as pre-processed WaCM data were therefore simulated from the
CCS model output based on isotropic 2-dimensional smoothing of noisy
velocity components on the full 0.5 km • 0.5 km resolution of the
model grid with a half-power filter cutoff wavelength of 10 km.

Since velocity will be estimated directly by WaCM, the only derived
quantity is the vorticity, which is computed from spatial derivatives
of the velocity components. We assume throughout this study that
the speed measurement uncertainties are equally partitioned between
orthogonal velocity components and that the errors of each velocity
component are uncorrelated with each other. The baseline standard
deviation of � spd = 0:50 m s*1 for the speed measurement errors
therefore corresponds to a standard deviation of � u;v = 0:354 m s*1

for the uncorrelated errors of pre-processed WaCM estimates for each
orthogonal velocity component u and v.

For a footprint size of 5 km, pre-processed WaCM estimates of
surface velocity are spatially uncorrelated on a 5 km • 5 km grid
(seeAppendix B.2). The effects of the uncorrelated velocity component
errors on WaCM estimates of vorticity computed on a 5 km • 5 km grid
are derived in Appendix G.2 using propagation-of-error analysis. The
results are summarized in the first column of Table 2, which shows that
the standard deviation of � u;v = 0:354m s*1 for the velocity component
errors results in a standard deviation of 0:807f for the errors of WaCM
estimates of vorticity at the central latitude 37 ýN of the CCS model
domain.

It is advantageous to oversample the WaCM estimates of surface
velocity on a 1 km • 1 km grid in order to retain more of the
high-wavenumber variability of the vorticity signal in the centered
differences used here to estimate the derivatives in the definition of
vorticity (see Appendix H). For the simulations in this study, over-
sampling the WaCM data on a 1 km • 1 km grid has the additional
practical advantage of giving a spatial gridding that is equivalent to the
1 km • 1 km gridding assumed here for the pre-processed SWOT data.
The footprint size from the filtering in the pre-processing of WaCM data
is still 5 km. The standard deviation of the errors of WaCM estimates
of each velocity component is therefore still � u;v = 0:354 m s*1 , but
the velocity component errors on a 1 km • 1 km grid are spatially
correlated.

The effects of correlation of the measurement errors on the vorticity
estimated from WaCM data on a 1 km • 1 km grid are incorporated
in the propagation-of-error analysis in Appendix G.2. The results are
summarized in the second column of Table 2. The oversampling in-
creases the standard deviation of the vorticity errors by about a factor
of 3 to a value of about 2.4 f at 37ýN. While this increase of the
errors is undesirable, the standard deviation of the vorticity signal
also increases in the centered difference estimates of the derivatives
on the oversampled grid. It is shown in Appendix H that this retains
more of the short-wavelength vorticity variability where much of the
signal variance lies (seeFigs. 3b and 4). The net effect of oversampling
the WaCM data on a 1 km • 1 km grid is to improve the signal-to-
noise ratio, even though the noise standard deviation is higher on the
1 km • 1 km grid.

The standard deviation of the errors of WaCM estimates of velocity
with 5-km footprint (i.e., with smoothing with a half-power filter cutoff
wavelength of 10 km) in the first two columns of Table 2 is somewhat
larger than the standard deviation of geostrophically computed SWOT
estimates of velocity with 10-km smoothing listed in the second column
of Table 1. On the other hand, the errors of WaCM estimates of
vorticity on a 1 km • 1 km grid are somewhat smaller than the errors
of geostrophically computed SWOT estimates of vorticity with 10-km
smoothing to achieve a footprint size of 5 km (compare the bottom
elements in the second columns ofTables 1 and 2). The apparent con-
tradiction of higher velocity errors but lower vorticity errors for WaCM
is attributable to the different wavenumber spectral characteristics of
the errors of SWOT and WaCM estimates of the velocity components
and vorticity (see Section 4.4) that arise from the different orders of
differentiation required to obtain the estimates.

Eqs.(G.10), (G.12) and (G.15) in Appendix G.2 from which the error
estimates in the first two columns of Table 2 were computed are all
expressed in terms of the variances� 2

u and � 2
v of the errors of the pre-

processed WaCM estimates of the velocity components. It is therefore
straightforward to recompute the standard deviations of the vorticity
errors based on any specified values of� 2

u and � 2
v .

4.3. Error reductions from smoothing in ground-based post-processing

The errors of SWOT and WaCM estimates of velocity and vorticity
listed in the first two columns of Tables 1 and 2 are too large for
the data to be useful for most applications, even with the 10-km
smoothing to achieve a footprint size of 5 km. SWOT and WaCM data
will have to be further smoothed in ground-based post-processing to
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reduce the effects of measurement errors. The reductions of the errors
of the measured and derived variables that are achieved with this
additional smoothing could be derived analytically, albeit tediously, by
the propagation-of-error analysis procedure used in Appendix G.3 for
the case of smoothing of the SWOT data with a half-power filter cutoff
wavelength of 10 km. For SWOT, this would require determination of
the autocorrelations of smoothed SSH errors at the three spatial lags
of 2�x, 2

ù
2�x and 4�x that appear in Eqs. (G.17a) and (G.21) in

Appendix G for each choice of half-power filter cutoff wavelength � c.
A similar propagation-of-error analysis could be carried out for WaCM
estimates of smoothed velocity and vorticity.

The variances of the residual errors after isotropic 2-dimensional
smoothing with a given � c are much more easily determined for each
variable of interest from the analytical expressions for the wavenumber
spectra of the measured and derived variables that are derived for
SWOT and WaCM inAppendices I.2 and I.4, respectively.

The procedure for determining the standard deviation of residual
errors from the wavenumber spectrum after smoothing in ground-
based post-processing is based on Parseval's Theorem, which relates the
variance of a variable to the integral of the power spectral density of
the variable. For finite record length, this integral becomes the discrete
sum (D.1) in Appendix D. The residual error variance after isotropic
2-dimensional smoothing was obtained by integrating the analytical
expression for the wavenumber spectra of the residual errors for half-
power filter cutoff wavelengths � c ranging from 10 km to 150 km.
Examples of these wavenumber spectra are presented and discussed
below in Section 4.4 for � c = 20 km, 50 km and 80 km. The standard
deviation of the residual errors is the square root of the residual error
variance computed from the integrated spectrum for each choice of � c.

The residual error standard deviations obtained in this manner are
shown in Fig. 12 for SSH from SWOT (panel a) and for velocity and
vorticity (panels b and c, respectively) estimated from both SWOT and
WaCM data on 1 km • 1 km grids. These estimates assume complete
instantaneous sampling of the full CCS model domain, i.e., without the
sampling errors discussed in Sections7�10. The errors initially drop
very quickly with increased smoothing and then more gradually as the
smoothing is further increased. In the case of SSH, the residual errors in
Fig. 12a decrease as� *1

c . The velocity errors in Fig. 12b decrease as� *2
c

and � *1
c for SWOT and WaCM, respectively. The corresponding vorticity

errors in Fig. 12c decrease as� *3
c and � *2

c . The more rapid decreases
for SWOT than for WaCM are because of attenuation of the variance of
the geostrophically computed velocity component errors from the band-
pass filtering operation of the response function for centered difference
estimates of the geostrophic derivatives (seeAppendices H and I and
the discussion in Section4.4 of the wavenumber spectral characteristics
of the residual errors of the smoothed variables).

To provide some quantitative numbers for the error reductions
achieved with isotropic 2-dimensional smoothing in ground-based post-
processing, the values of the standard deviations for the case of a filter
cutoff wavelength of � c = 50 km are listed for SWOT and WaCM in
the third columns of Tables 1 and 2, respectively. The errors of SWOT
estimates of SSH and geostrophically computed velocity components
and vorticity are reduced by factors of 25, 167 and 875, respectively,
compared with estimates from the pre-processed SWOT data. Compared
with the 10-km smoothing applied to SWOT data in Section 4.1 to
match the 5-km footprint size of WaCM data (see the second column
of Table 1), the errors of geostrophically computed SWOT estimates
of velocity and vorticity with 50-km smoothing are further reduced
by factors of 21 and 81, respectively. The errors of WaCM estimates
of velocity components and vorticity on a 1 km • 1 km grid with
5-km footprint, the baseline speed noise of � spd = 0:50 m s*1 and
50-km smoothing are reduced by more modest factors of 5 and 20,
respectively, compared with the 10-km smoothing in the pre-processing
(see the second and third columns of Table 2).

4.4. Wavenumber spectral characteristics of the errors

Alongshore wavenumber spectra of the signals and errors in sim-
ulated SWOT and WaCM estimates of the velocity components and
vorticity from the CCS model provide insight into the significant chal-
lenges in mapping small-scale variability from the satellite data. In the
case of SWOT, velocity and vorticity are computed geostrophically and
the alongshore wavenumber spectra of SSH signal and errors are also
considered. The error spectra provide wavenumber decompositions of
the error standard deviations presented in Sections 4.1�4.3. As noted
previously, we consider only the effects of uncorrelated measurement
errors in this study since they are the primary limitation for SWOT and
WaCM estimates of velocity and vorticity. The error spectra presented
below assume a standard deviation of � h = 2:74 cm for the errors of pre-
processed SWOT estimates of SSH and a standard deviation of� u;v =
0:354 m s*1 for the errors of pre-processed WaCM estimates of each
velocity component. The latter corresponds to a standard deviation of
� spd = 0:50 m s*1 for speed errors equally partitioned between the two
veloctiy components.

A minor caveat to the general applicability of the analytical equa-
tions in Appendix I for the theoretical wavenumber spectra of the errors
of velocity components and vorticity computed geostrophically from
SSH is that they are based on a specified constant value of the Coriolis
parameter f . For the calculations in this section, we have used the value
of f at the central latitude 37 ýN of the CCS model domain. At the
northern extent of the model domain, the Coriolis parameter is 11%
larger than its value at 37 ýN; at the southern extent, it is 11% smaller.

The use of a constant value of f in the analytical expressions for
the geostrophically computed velocity and vorticity error variances is
a minor issue in this study. This is confirmed in Figs. 13a, b and14 from
the very close agreement between the spectra of the errors computed
theoretically based on the analytical expressions in Appendix I with
constant f (the green lines in each panel of the above-noted figures)
and the spectra determined empirically from errors of velocity compo-
nents and vorticity computed geostrophically from maps of simulated
SWOT SSH measurement errors using the local value off at each grid
point (the blue lines in each panel of the figures).

Before presenting the alongshore wavenumber spectra of the vari-
ables of interest, we pause to point out one other very minor issue in
the error spectra presented for both SWOT and WaCM in Figs. 13�
15. The 2-dimensional smoothing applied in simulated ground-based
post-processing of the SWOT and WaCM error fields from which the
error spectra were computed empirically (the blue lines in Figs. 13�15)
was applied truly isotropically using a 2-dimensional Parzen weighting
function (see Appendix A) that depends only on the radial distance
of each data point from the estimation location. It is shown in Ap-
pendix C that essentially equivalent isotropic 2-dimensional smoothing
can be achieved through sequential 1-dimensional smoothing using the
Parzen filter in each of two orthogonal dimensions. The advantage
of sequential 1-dimensional smoothing is that it facilitates the deriva-
tions in Appendix I of the analytical expressions for the wavenumber
spectral characteristics of residual errors in smoothed fields that are
shown by the green lines in Figs. 13�15. The essential equivalence of
true isotropic 2-dimensional smoothing and sequential 1-dimensional
smoothing can be inferred from these figures by the very close agree-
ment between the theoretical spectra computed from the analytical
expressions in Appendix I and the spectra computed empirically from
the simulated error fields.

4.4.1. Error spectra from pre-processed SWOT data
The alongshore wavenumber spectra of error-free SSH from the CCS

model and uncorrelated SSH measurement errors from unsmoothed
simulated pre-processed SWOT estimates of SSH are shown in the top
panel of Fig. 13a. The spectrum of uncorrelated SSH measurement
errors computed empirically from the simulated SWOT data is shown
by the blue line. The theoretical spectrum of SSH measurement errors
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Fig. 12. The standard deviations of residual errors as functions of half-power filter cutoff wavelength with 2-dimensional isotropic Parzen smoothing for footprint sizes of 1 km and
5 km for SWOT and WaCM, respectively: (a) SWOT estimates of SSH; (b) Geostrophically computed SWOT estimates of each of the components of velocity (thin lines, which are
indistinguishable for the two components), and WaCM estimates of each component of the total velocity (thick lines, which are again indistinguishable for the two components);
and (c) geostrophically computed SWOT estimates of vorticity (thin line) and WaCM estimates of the total vorticity (thick lines), normalized by the Coriolis parameter f at the
central latitude 37 ýN of the CCS model domain. The thick solid lines in (b) and (c) are for WaCM with the baseline speed noise of � spd = 0:50 m s*1 and the thick dashed lines
are for the smaller speed noise of � spd = 0:25 m s*1 considered in Section 10. The residual standard deviations in these figures were computed from the error variances determined
for SWOT and WaCM, respectively, by integrating the analytical formulas in Appendix I.3 and I.4 for each filter cutoff wavelength � c. The power-law dependencies on � c that are
labeled on each curve were determined from log�log versions of each panel (not shown here).

given by the analytical expression (I.2) derived in Appendix I.1 is
shown by the green line, which agrees very well with the empirical
error spectrum. These error spectra intersect the SSH signal spectrum at
a wavenumber of about 0.022 cycle per km (cpkm), which corresponds
to a wavelength of about 45 km. The relevance of this intersection
of the signal and noise spectra to the resolution capability of SWOT
estimates of SSH is discussed later in the context of the interpretation
of Fig. 13b.

The alongshore wavenumber spectra of signals and errors for SWOT
estimates of cross-shore and alongshore velocity componentsug and vg
computed geostrophically from centered difference estimates of deriva-
tives of simulated pre-processed SWOT estimates of SSH are shown in,
respectively, the second and third panels of Fig. 13a. The error spectra
computed empirically from the simulated SWOT data based on the local
value of the Coriolis parameter f at each grid point are again shown
by blue lines in these panels. The analytical expressions(I.5) and (I.10)
derived in Appendix I.1 for the error spectra are shown by the green
lines, which again agree very well with the empirical error spectra. A
notable feature of the vg spectra is that the spectral power of vg errors
exceeds the spectral power of thevg signal at all wavenumbers. The vg
signal is thus undetectable from unsmoothed pre-processed SWOT data.
In the case of the ug spectra, the signal power exceeds the error power
for wavenumbers below about 0.02 cpkm but this signal variance will
be masked in maps of ug by the order-of-magnitude higher power of
the errors at higher wavenumbers.

The dramatic differences between the wavenumber characteristics
of the alongshore wavenumber spectra of the errors of ug and vg merit
some discussion. The spectrum is ``white'' (constant with alongshore
wavenumber) for vg errors but ``blue'' (dominated by high alongshore
wavenumber variability) for ug errors. The spatial high-pass filtering of
ug errors implied by this blueness occurs because the white noise SSH is
differentiated in the alongshore dimension, i.e., in the same dimension
as the wavenumber spectrum. (The dropoff of spectral power at the
highest wavenumbers arises because of the response function for the
centered difference approximation of the geostrophic derivatives; see
Fig. H.1 in Appendix H.)

The vg errors are similarly spatially high-pass filtered, but from
differentiation of SSH in the cross-shore dimension. This cross-shore
high-pass filtering would be evident in the cross-shore wavenumber
spectrum of vg, but is not manifest in its alongshore wavenumber
spectrum because the centered difference estimates of the derivative
of SSH in the geostrophic equation for vg are perpendicular to the
alongshore dimension. It is shown in Appendix I, however, that the

blueness of the cross-shore spectrum ofvg nonetheless has a large effect
on the spectra of error fields smoothed 2-dimensionally in ground-based
post-processing. (The cross-shore spectrum ofug is white for the same
reason that the alongshore spectrum of vg is white, namely that the
alongshore centered difference estimates of the derivative of SSH in
the geostrophic equation for ug are perpendicular to the cross-shore
dimension.)

The alongshore wavenumber spectra of signal and errors for SWOT
estimates of vorticity � g computed geostrophically from second deriva-
tives of simulated pre-processed SWOT estimates of SSH are shown
in the bottom panel of Fig. 13a. The spectrum of � g errors computed
empirically from the simulated SWOT data (the blue line) again agrees
very well with the theoretical spectrum of � g errors (the green line)
computed by the analytical expression (I.24) in Appendix I based on
the constant value of f = 8:75 • 10*5 s*1 at the central latitude 37 ýN
of the CCS model domain. In this case, the error spectra are nearly
three orders of magnitude more energetic than the � g signal spectrum
at all wavenumbers. The vorticity signal estimated from unsmoothed
pre-processed SWOT data is thus completely swamped by the errors at
all wavenumbers.

For comparison with the wavenumber spectra of errors of estimates
of velocity components and vorticity computed from pre-processed
WaCM data that are discussed below, the alongshore wavenumber
spectra of signals and errors for SWOT estimates of SSH,ug, vg and
� g are shown in Fig. 13b for isotropic 2-dimensional smoothing with
a half-power filter cutoff wavelength of � c = 10 km in simulated
ground-based post-processing of the pre-processed SWOT data. This
10-km smoothing is the same as the smoothing applied in this study
to simulate the 5-km footprint size in pre-processing of WaCM data
(see Appendix B.2). The error spectra computed empirically from the
smoothed SWOT data (the blue line in each panel) again agree very well
with the theoretical spectra (the green lines) that were computed by the
analytical expressions (I.29), (I.31), (I.33) and (I.35) in Appendix I.2
for isotropic 2-dimensional smoothing with a filter cutoff wavelength
� c = 10 km.

Since the wavenumber spectra of error-free SSH,ug, vg and � g
signals are red, nearby values of each of these variables are correlated.
The power of the signal spectra after 2-dimensional smoothing is
therefore attenuated only at wavenumbers higher than � *1

c . (The small
attenuation at wavenumbers smaller than � *1

c is from imperfections of
the filter transfer function of the Parzen smoother used here to smooth
the 2-dimensional fields of interest.) The spectral power of the errors
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Fig. 13. Alongshore wavenumber power spectral densities of simulated satellite estimates of the signals and errors for: Column (a) SWOT estimates of (top-to-bottom) SSH and
geostrophically computed cross-shore and alongshore velocity and vorticity obtained from simulated pre-processed SWOT data; Column (b) the same as Column (a), except after
isotropic smoothing using a Parzen smoother with the same half-power filter cutoff wavelength of 10 km used in the pre-processing of WaCM data; and Column (c) WaCM estimates
of (top-to-bottom) cross-shore velocity, alongshore velocity and vorticity obtained from simulated pre-processed WaCM data. The red lines are the signal spectra computed from
the model after applying the pre-filtering for SWOT (columns a and b, with additional 10-km smoothing in the latter) and WaCM (column c). The blue lines are the spectra
computed empirically from the simulated error fields, which were computed geostrophically based on the local value of the Coriolis parameter f at each grid point in the case
of SWOT. The green lines are the theoretical spectra of errors derived in Appendix I, which are based on the constant value of f at the central latitude 37 ýN of the CCS model
domain in the case of SWOT. All of the spectra were smoothed by ensemble averaging over the individual spectra computed from alongshore grid lines that extend the full length
of the model domain with a cross-shore spacing of 5 km. For reference, selected power-law rolloff dependencies on alongshore wavenumber l are labeled in the top panels of
Columns a and b. Note that the rolloff of l *7_2 is not significantly different from the rolloff of l *11_3 that was deduced from along-track altimeter data by Le Traon et al. (2008)
and is consistent with the l *5_3 spectral rolloff of velocity in surface quasigeostrophic (SQG) theory (Held et al., 1995). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

of SWOT estimates of these variables is also attenuated at wavenum-
bers higher than � *1

c . Because the errors are spatially uncorrelated
in the cross-shore direction, 2-dimensional smoothing also attenuates
the power of the along-track wavenumber spectra of the errors by an
additional factor of 2�x_� c at all wavenumbers. This is discussed in
detail in Appendix E [see Eq. (E.11)] and Appendix I. For the grid
spacing of �x = 1 km and filter cutoff wavelength of � c = 10 km,

this multiplicative factor is approximately 2�x_� c = 0:2. Note that the
vorticity errors with 10-km smoothing in the bottom panel of Fig. 13b
are still more than an order of magnitude larger than the signal at all
wavenumbers.

Because of the overall reduction of the spectral power of the
measurement errors at all wavenumbers when applying isotropic 2-
dimensional smoothing, the intersection of the smoothed signal and
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