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Abstract Two empirical algorithms are developed for wave mode images measured from the synthetic
aperture radar aboard Sentinel-1 A. The first method, called CWAVE_S1A, is an extension of previous efforts
developed for ERS2 and the second method, called Fnn, uses the azimuth cutoff among other parameters to
estimate significant wave heights (Hs) and average wave periods without using a modulation transfer func-
tion. Neural networks are trained using colocated data generated from WAVEWATCH III and independently
verified with data from altimeters and in situ buoys. We use neural networks to relate the nonlinear
relationships between the input SAR image parameters and output geophysical wave parameters.
CWAVE_S1A performs well and has reduced precision compared to Fnn with Hs root mean square errors
within 0.5 and 0.6 m, respectively. The developed neural networks extend the SAR’s ability to retrieve useful
wave information under a large range of environmental conditions including extratropical and tropical
cyclones in which Hs estimation is traditionally challenging.

1. Introduction

Since the launch of Seasat in 1978, it has been known that synthetic aperture radar (SAR) can measure two-
dimensional (2-D) (wavenumber-direction) wave spectra from space. Two-dimensional wave spectra esti-
mated from spaceborne SAR have important applications in research and have aided in the improvement
of numerical models. For example SAR 2-D wave spectra improved global forecast models using assimilation
[Aouf and Lefevre, 2015], improved wave model performance [Ardhuin et al., 2010; Stopa et al., 2015a],
enabled study of swell evolution [Collard et al., 2009; Ardhuin et al., 2009; Stopa et al., 2016], and enabled
study of crossing seas [Li, 2016]. The imaging mechanisms in SAR over the ocean surface include tilt modu-
lation, hydrodynamic modulation, and velocity bunching which is a nonlinear distortion [Alpers et al., 1981;
Hasselmann et al., 1985]. There has been significant efforts in understanding the image to wave spectrum
transformation [Alpers et al., 1981; Hasselmann et al., 1985; Hasselmann and Hasselmann, 1991; Krogstad
et al., 1994; Engen and Johnsen, 1995]. Wave spectra are estimated using two approaches. The first uses the
full nonlinear inversion and requires external information often taken from numerical wave models to esti-
mate a full wave spectrum [Hasselmann et al., 1996; Schulz-Stellenfleth, 2005]. The second method uses the
quasi-linear inversion and does not need ancillary wave information, but produces a wave spectrum that
cannot fully resolve high-frequency waves [Chapron et al., 2001; Collard et al., 2005]. Therefore, 2-D wave
spectra from SAR cannot be used to independently estimate integral wave parameters such as the signifi-
cant wave height (Hs), the most widely used sea state parameter. This limits the applications of the SAR
data.

Velocity bunching causes a distortion along the motion of the satellite called the azimuth cutoff. This quan-
tity is effectively a minimum observable wavelength that the SAR can image under the given sea state [Ker-
baol et al., 1998] and is proportional to the total variance of the orbital wave velocity [Stopa et al., 2015b].
Consequently in high sea states common to extratropical and tropical storms when the cutoff is large (e.g.,
>450 m), the majority of the wave spectral components will be unreliable. In Figure 1 we illustrate this effect
with example ocean wave signatures in Sentinel-1 A (S1A) sea surface roughness images. In the left plot,
there is a uniform backscatter with swell clearly visible and is aligned from the lower left to upper right con-
sistent with the image spectrum (bottom left plot). In the middle plot, the cutoff is strong and the image
appears blurred. The resulting image spectrum cannot resolve wavelengths below 431 m and the energy is
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distorted into the range direction. In the right plot, we demonstrate a poorly contrasted ocean scene where
the SAR imaging of waves is distorted by atmospheric effects and will make the inversion difficult.

Instead of using an image-to-wave inversion scheme, alternative approaches were developed to empirically
estimate integral wave parameters from SAR ocean scenes. Schulz-Stellenfleth et al. [2007] were the first to
develop a technique to derive wave parameters without explicit retrieval of wave spectra for the ERS2 mis-
sion (1996–1999), called CWAVE_ERS. Following their approach, Li et al. [2011] developed CWAVE_ENV for
ENVISAT (2003–2012). Romeiser et al. [2015] use a similar method to estimate wave parameters with data
from RADARSAT in tropical cyclones where observations are sparse and the extreme wind and wave condi-
tions coupled with atmospheric features make the nonlinear SAR mapping challenging. In this paper, we
extend these previous efforts to estimate integrated wave parameters for the recently launched Sentinel
missions: S1A in April 2014 and S1B in May 2016. Integrated wave parameters will bring additional informa-
tion with respect to the existing ocean swell parameters already included in the European Space Agency
(ESA) Level-2 (L2) product. In addition, this will allow wave information to be retrieved from a broader range
of sea states including storm conditions when the azimuth cutoff is large.

In this study, we develop empirical functions that estimate the Hs from SAR image parameters. We require
that our algorithms rely only on SAR data without any ancillary information, remain computationally effi-
cient, and adopt compact notation. We take two approaches. In the first, we extend the framework of
Schulz-Stellenfleth et al. [2007] and we decompose the SAR image spectra into a set of 20 orthogonal com-
ponents, which describe the shape of the SAR image spectrum and contain information about integral
wave parameters [Alpers et al., 1981; Hasselmann and Hasselmann, 1991]. In the second approach, we exploit
the azimuth cutoff among other parameters to measure the sea state, since this parameter is dependent on
the near surface wind speed (U10) and wave conditions [Beal et al., 1983; Vachon et al., 1994; Kerbaol et al.,
1998]. The azimuth cutoff estimated from ENVISAT shows a strong dependence between U10 and Hs at
buoy colocations [Stopa et al., 2015b]. Furthermore Bruck and Lehner [2015] and Grieco et al. [2016] show
the parameter can be used to estimate Hs for TeraSARX and S1A, respectively. In this method, we use less
input parameters than CWAVE and the input parameters are included by a systematic inclusion of each. We

Figure 1. (top) S1A sea surface roughness (dB) and (bottom) normalized image spectra for (left) WV1 with small distortion, (middle) large distortion, and (right) poorly contrasted. The
value for r0 represents the normalized radar cross section see text for other variable definitions.
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use neural networks, which are an efficient machine learning technique, to describe the nonlinear relation-
ships between our SAR input parameters and output geophysical parameters. Our approach is analogous to
the well-developed techniques used for scatterometers which relate ocean wind vectors to measured sea
surface roughness (called geophysical model functions, GMFs) [Stoffelen and Anderson, 1997; Mouche and
Chapron, 2015].

The paper is organized as follows. We describe our data sources in section 2, including subsections dedicat-
ed to S1A, numerically derived wave data from WAVEWATCH III, and observations from altimeters and
buoys. In section 3, we describe our model to retrieve ocean wave parameters from SAR. In section 4, we
provide an independent verification with observations and demonstrate the added benefit of being able to
estimate reliable significant wave heights from SAR. Our discussion and conclusions are given in sections 5
and 6, respectively.

2. Data Sources

This study uses wave data from satellites, buoys, and the spectral wave model WAVEWATCH III (hereinafter
WW3). To train the GMFs, we use a colocated data set of approximately 500,000 S1A SAR images matched
with wave spectra generated from WW3. To independently verify the developed functions we use observa-
tions from altimeters and buoys. All data sets are described in the following.

2.1. Sentinel-1 A Wave Mode
Sentinel-1 A was launched in April 2014 and is the first satellite equipped with a SAR in the ESA Sentinel
constellation. For this study, we use data acquired in ‘‘wave mode’’ which has a nominal spatial resolution of
4 m with an approximate satellite footprint of 20 3 20 km (see Figure 1). S1A operates in the C-Band at two
incidence angles of 23� (WV1) and 36� (WV2) and an acquisition is made every 100 km along the orbit. S1A
alternates between WV1 and WV2 along its track and vignettes with the same incidence angle are separat-
ed by 200 km. The sensor has the ability to acquire data for both VV (default) and HH polarization. S1A went
into routine wave mode acquisition starting in July 2015. Accordingly, our results are based on data
acquired from July 2015 to July 2016. There are roughly 260,000 images for both WV1 and WV2. It should
be mentioned that all the results presented in this paper have been obtained using ESA Wave Mode L2
products acquired in VV polarization. Indeed, parameters such as r0, azimuth cutoff, incidence angle, image
skewness, image kurtosis, and the 2-D image spectrum are included in the ESA L2 product.

SAR image processing relies on the backscattered signal phase analysis assuming a homogeneous and
immobile surface to achieve high resolution. Over the ocean, scatterers with high-frequency displacements
cannot be properly resolved by the SAR imaging mechanism. This leads to a cutoff value where waves with
higher frequencies than the cutoff cannot be retrieved. Accordingly, the imaged SAR ocean scene is shifted
proportionally to the orbital wave velocity which is related to the sea state (U10 and Hs) [Kerbaol et al., 1998;
Stopa et al., 2015b]. The effect is illustrated in Figure 1 (middle plot). Using linear wave theory the azimuth
cutoff, (kc) in m can be written

kc5p
R
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1
0

x2Fðf Þdf

s
(1)

where R is the range of the satellite to target calculated using the platform altitude of 713 km and incident
angle h as sinðhÞ, V is the satellite velocity of 7570 m/s, x52pf , f is the wave frequency, and F is the wave
spectrum. Three different SAR scenes collected during the integration dwell-time are used to calculate cross
spectra to reduce the speckle noise [Engen and Johnsen, 1995]. The real component of the average cross
spectra in the azimuth direction is used to estimate the azimuth cutoff by minimizing the residuals between
a Gaussian function. The azimuth cutoff is then approximated as

kc5
ffiffiffi
2
p

pr (2)

where r is the standard deviation of the Gaussian fit.

The normalized radar cross-section r0 is an important parameter that is typically related to wind speed and
direction [Quilfen et al., 1999; Mouche and Chapron, 2015]. The normalized radar cross section, r0 (in dB), is
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calculated from the original digital number (DN) from the L1 product by using a look up table (sigma-
Nought) which includes the absolute calibrated constant

r05jDNj2=sigmaNought2: (3)

In addition, the normalized variance from the image intensity, hIi

nv5var
I2hIi
hIi

� �
(4)

gives information regarding the image homogeneity as well as sea state. Both of these parameters calculat-
ed from the SAR images are important in deriving the integrated wave parameters [Schulz-Stellenfleth et al.,
2007; Li et al., 2011].

2.2. WAVEWATCH III
The success of developing robust empirical algorithms depends on the accuracy and the range of environ-
mental conditions we can associate to observations. Therefore to maximize the number of colocations, we
use data generated by WW3. Spectral wave models have improved their accuracy by the development of
the physical source term parameterizations [Ardhuin et al., 2010; Stopa et al., 2015a]. Our model implemen-
tation uses a 0:5� global grid with 24 directions and 32 frequencies ranging 0.0373–0.7159 Hz exponentially
spaced with an increment of 1.1. WW3 is driven by 3 hourly winds and ice concentrations from the opera-
tional ECMWF product at 0:125� and uses the physical parameterizations of Rascle and Ardhuin [2013].
Frequency-direction wave spectra are colocated by linearly interpolating the model in time and using the
closest point in space to match the S1A acquisitions. Co-located S1A/WW3 wave spectra from July 2015 to
July 2016 are used to train the GMFs and cover the majority of the global ocean as observed in Figure 2.
The top plot of Figure 2 shows the data density in 2� bins for WV1 with 260,0001 colocations and is approx-
imately the same for WV2.

2.3. Observations: Altimeters and Buoys
Observations from both satellite altimeters and in situ buoys are used as independent data sources to com-
pare the derived wave parameters from our models. The altimeter data set is composed of three missions:
CRYOSAT, JASON2, and SARAL and have been quality controlled and corrected using in situ buoys by Quef-
feulou and Croize-Fillon [2016] and [Sepulveda et al., 2015]. Approximately 16,000 colocations are found
using 100 km and 2 h as spatial and temporal constraints for both WV1 and WV2 with approximately 10
observations per 3� bin for July–December 2015 (see Figure 2). Buoy colocations are limited to 1 h and
100 km from NOAA Nation Data buoy center (NDBC), the Canadian Marine Environmental Data Service
(MEDS), and the Coastal Data Information Program (CDIP) networks. Wave frequency spectra from 0.385 to
0.5 Hz are used to calculate integral wave parameters that were created by a 30 min average. There were
347 colocations found for WV1 and 225 colocations for WV2 and are mostly situated in the Northern Hemi-
sphere (see Figure 2).

3. SAR Sea State Models

In the following subsections, we describe our training approach and define our input parameters for both
algorithms: (1) CWAVE_S1A which follows Schulz-Stellenfleth et al. [2007] orthogonal decomposition and (2)
Fnn which relies on the azimuth cutoff.

3.1. Training Using Neural Networks
Neural networks are a convenient and versatile method to predict an outcome. We train our functions using
a multi-layer perceptron (MLP) with backward propagation of errors [Hagan et al., 2014]. This technique was
used to derive wind speeds for altimeters [Gourrion et al., 2002] and relate ocean surface wind vectors to
SAR normalized radar cross section and geophysical Doppler centroid anomalies [Mouche and Chapron,
2015; Mouche et al., 2012]. The advantage of the MLP is a relatively compact solution and fast computational
speed. Thus, the number of coefficients is reduced compared to Schulz-Stellenfleth et al. [2007] and Li et al.
[2011] who used linear regression with the possibility of having 625 different coefficients for CWAVE_ERS
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and CWAVE_ENV making it nearly impossible for other researchers to replicate their results. Our networks
consist of three layer MLP with an input layer, one hidden layer, and an output layer. A more detailed
description is included in Appendix A. The number of neurons in the hidden layers is varied until an optimal
solution is found, this is described in more detail for both CWAVE_S1A and Fnn.

The MLP network is not trained in the traditional manner of dividing the data set into two subsections for
training and independent testing and validation. This is due to the fact there is a relatively sparse distribu-
tion of the data at the extreme sea states as shown in the probability distributions in the top plots of Figure
3 for the colocated S1A/WW3 data set. This data set excludes the colocations between S1A/buoy and S1A/
altimeter. We also discard the month of September 2015 in the training because we use it for independent
verification. Notice there is a 47% chance of having a 2 m wave height and 13% chance of having a 7 m/s
wind speed compared to other sea states. If we used this entire data set for training, the large differences in
data density would lead to solutions that are biased towards higher density regions and result in poorly
functioning GMFs [Hagan et al., 2014].

Therefore, we partition the data into 0.25 m/s bins for U10 and 0.5 m bins for Hs from 0 to 30 m/s and 0 to
15 m, respectively. We select 100 random samples from the equally spaced U10 bins and then further
equalize across Hs bins. If a U10 bin contains fewer than 100 samples, all points are included. We reverse

Figure 2. Colocated S1-A data with WW3 given in data density for 2
�

bins with (top) WV1 July 2015 to July 2016, altimeters including CRY-
OSAT, JASON2, and SARAL given in data density for 3

�
bins with (middle) WV1 July 2015 to December 2016, and buoys locations for WV1

and WV2 from July 2015 to July 2016.
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the order by first subsampling with Hs and then U10 but the resulting functions had nearly identical perfor-
mance. This subsample is only 3.5% of the entire WW3 training data set. Another benefit of the data reduc-
tion is an decrease of the computational time to train the GMFs. We repeated the same procedure to create
the validation data set used in the MLP back propagation routine and implement the Levenberg-Marquardt
algorithm to train the models. During training we assess the performance of the developed neural network
using the mean square error (mse) for the GMF output xm and the independent known output in the valida-
tion data set xv for n points

mse5
1
n

Xn

i51

ðxmi2xviÞ2: (5)

3.2. Filtering
SAR captures all ocean features including slicks, atmospheric gravity waves, and sea ice which contaminate
the computation of wave parameters if not removed. In addition, if the image has low backscatter and is
poorly contrasted like in right plot of Figure 1, wave features are difficult to resolve. We remove data with
the following criteria:

1. We use data within the latitudes 660� to avoid sea ice, 7% of original data set
2. We ensure homogeneity by limiting the normalized variance 1 � nv � 2 for WV1 and 1 � nv � 1:4 for

WV2, 1.98% of original data set.

Figure 3. Probability density functions of (left) Hs and (right) U10 colocated S1-A data with (top) WW3 for WV1 July 2015 to July 2016 and (bottom) subset used in training excluding
matchups between S1A/buoy and S1A/altimeter. The Hs data uses a 0.5 m bin and the U10 data has a 1 m/s bin.
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3. Last we ensure the image is of good quality by comparing the calculated azimuth cutoff from the fitting
the Gaussian function to an empirically derived GMF that is described in the following paragraph, 1–2%
of original data set.

We created an empirical algorithm using the same training method described above to estimate the azi-
muth cutoff. We used two input parameters: r0 and nv with two neurons in the hidden layer. We trained
the data set using the azimuth cutoff computed from WW3 2-D wave spectra and include the geometri-
cal effects and high-frequency contributions to make the WW3 azimuth cutoff comparable to S1A [Stopa
et al., 2015b]. Scatter plots of both WV1 and WV2 are given in Figure 4. There is a significant degradation
in the performance of WV2 apparent by the larger dispersion. The bottom plots compare the SAR meas-
urements and the empirical functions. Our purpose here is not to predict the most accurate azimuth cut-
off nor to discuss the quality of this estimate in the ESA L2 product. We simply use the derived empirical
functions to remove extreme cases where the difference between data and model is larger than 2 stan-
dard deviations of the residuals. One standard deviation of the residuals (kcEmpirical2kcWW3) for WV1 and
WV2 is 30 and 37 m. The grey points in the bottom plots of Figure 4 represent the anomalous points
removed.

Figure 4. Comparison of WW3 kc and an empirically derived function based on r0 and nv for (top left) WV1 and (top right) WV2. Comparison of kc from the empirical model and mea-
sured by SAR for (bottom left) WV1 and (bottom right) WV2. The color denotes Hs in m from WW3. (bottom) The grey points are two standard deviations of the kc residuals between SAR
and the empirical estimates about the one-to-one line.
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3.3. CWAVE_S1A Model
We follow the approach of Schulz-Stellenfleth et al. [2007] and decompose the SAR image spectrum in
orthogonal harmonic components based on Gegenbauer polynomials and use r0, and nv. The full descrip-
tion of the decomposition is given in Appendix B. The 20 orthonormal parameters are computed from a
normalized SAR wavenumber image spectra and capture the shape of the image spectra which contains
information about the Hs as previously noted by [Hasselmann and Hasselmann, 1991]. We optimize the solu-
tion by varying the number of neurons and then computed standard error metrics such as the bias (BIAS),
root mean square error (RMSE), correlation coefficients (R), the scatter index (SI), and the standard deviation
of the residuals:

BIAS5xm 2xt (6)

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i51

xmi2xtið Þ2
s

(7)

R5
Xn

i51

xmi2xmð Þ xti2xtð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i51

xmi2xmð Þ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Xn

i51

xti2xtð Þ2
s

;

" #
(8)

SI5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i51

xmi2xmð Þ2 xti2xtð Þ½ �2
s

=xt

" #
3100 (9)

STDres5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i51

xmi2xtið Þ2 xm2xtð Þ
� �2

s
(10)

where xm and xt are the developed model and independent testing data set that was not used in the train-
ing of the GMF. We varied the number of hidden neurons from 2 to 22 and found the RMSE were generally
the same however we achieved the lowest SI of 18.29% with 10 nodes. Therefore we use Nn 5 10 for the
development of our final neural networks. Since the radar response is dependent on incidence angle, sepa-
rate functions are created for WV1 and WV2.

The final GMFs are created using approximately 3.5% of the WW3 colocations using the sampling approach
described in section 3.1. Several GMFs are created and the best GMF is determined by minimizing the error
metrics between the WW3 and satellite matchups that are not used in the development of the functions
(the remaining 96.5%). The r0 does not include a correction for the additive noise contribution from the
antenna (equation (3)), which can be large for low wind speeds. When we include noise, there were only
negligible differences in the performance of the GMFs. Therefore noise was not included in r0 and in the
final GMFs. It should be noted that, we observed a reduction of the GMF’s scatter at low wave heights when
the antenna noise is included in r0 (not shown). The top plots of Figure 5 shows the entire data set includ-
ing the training and validation samples used to create the GMFs. There is nearly a zero bias, high correlation
of 0.92, scatter index of 18%, and RMSE of 0.5 m for WV1 and WV2. There is a small but discernible
decrease in the performance of WV2. The least squares regression line agrees nicely with the one-to-one
fit. We also analyzed the outliers defined when the residual is larger than 3 standard deviations
(HsCWAVE2HsWW3 > 3STDðHsCWAVE2HsWW3Þ). We found no spatial relationships and the points were uniformly
dispersed across the globe (not shown). These results are similar with prior works of Schulz-Stellenfleth et al.
[2007] and Li et al. [2011].

3.4. Fnn Model
In addition to the CWAVE approach, we propose another method which relies on a reduced number of
inputs that have more physical meaning. If we only consider r0 and nv as already tested by Schulz-Stellen-
fleth et al. [2007], we find values of the same order of magnitude for correlation (0.87) and RMSE (0.66 m)
(see Table 1). However, despite the fact, that the r0, which is the intensity of the backscattered signal, is
strongly related to the ocean surface wind speed and that the nv reflects the intensity modulation due to
the waves in the SAR image, these two parameters do not fully capture the nonlinearity of the imaging
mechanism and the ocean wave response. To this aim, we add the azimuth cutoff since the parameter is a
key indicator of the nonlinearities involved in the imaging mechanism and reflects the potential distortion
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Figure 5. Hs comparison of WW3 and developed empirical functions excluding points colocated with buoys and altimeters: (top row) CWAVE_S1A and (bottom row) Fnn for (left column)
WV1 and (right column) WV2. The color represents the azimuth cutoff estimated from SAR, the contours represent 95, 75, 50, and 10% of data, solid red line represents a least square lin-
ear regression and the dashed lines represent 90% of the data.

Table 1. Hs WV1 Error Metrics for Development of Different Neural Networks Varying the Input Parameters Using WW3 Independent
Colocations Not Used in Training of the Neural Networka

Model Nn BIAS (m) RMSE (m) SI (%) R STDres (m)

F(r0,nv) 2 0.08 0.66 23.84 0.87 0.44
F(r0,nv,skew) 3 0.03 0.64 22.52 0.88 0.43
F(r0,nv,kurt) 3 0.03 0.64 22.62 0.88 0.43
F(r0,nv,skew,kurt) 4 0.02 0.63 22.72 0.88 0.43
F(kc,r0,nv) 3 0.03 0.62 22.49 0.88 0.43
F(kc,r0,nv,skew) 4 0.01 0.61 22.30 0.89 0.42
F(kc,r0,nv,skew,kurt) 5 0.00 0.61 22.36 0.89 0.42
F(kc,r0,nv,skew,kp) 5 0.00 0.58 21.33 0.90 0.40
F(kc,r0,nv,skew,cosð2/Þ) 5 0.01 0.59 21.48 0.90 0.40
F(kc,r0,nv,skew,kurt,cosð2/Þ) 6 0.01 0.59 21.51 0.90 0.40
F(kc,r0,nv,skew,cosð2/Þ,kp) 6 0.00 0.58 21.19 0.90 0.40
F(kc,r0,nv,kurt,cosð2/Þ,kp) 6 0.00 0.58 21.25 0.90 0.40
F(kc,r0,nv,skew,kurt,cosð2/Þ,kp) 7 0.00 0.61 21.21 0.90 0.40

aThe errors metrics are the average of 25 different functions.
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of the ocean waves spectrum. Previous studies show kc is related to Hs [Vachon et al., 1994; Kerbaol et al.,
1998; Stopa et al., 2015b]. In addition, studies from Bruck and Lehner [2015]; Grieco et al. [2016]; Shao et al.
[2016] rely on the strong relationship between kc and Hs to attempt a direct retrieval of Hs from the cutoff
parameter. Both Grieco et al. [2016] and Shao et al. [2016] have a large range of incidence angles to consider
and were strongly limited by the number of samples available to create robust estimators of wave heights
in broad range of sea states. For a given cutoff, the distortion of observed ocean waves is not same with
respect to the propagation direction of the wave system and peak wavelength. Therefore we include the
peak direction (/—defined relative the satellite’s range direction) and peak wavelength (kp) of the 2-D
image spectrum coupled with the azimuth cutoff in our analysis. The peak wavelength and direction are
computed from the absolute value of the cross spectrum from the SAR imagette and correspond to the
maximum energy. Finally the important higher-order features are considered by skewness and kurtosis of
the radar cross section

skew5
1
n

Xn

i51

r0i2r0
� �3

=s3 (11)

kurt5
1
n

Xn

i51

r0i2r0
� �4

=s4 (12)

where s is the standard deviation of r0.

Table 1 shows the error metrics from various developed neural networks based on different sets of input
parameters. Using either skewness or kurtosis improved the predictability, however the inclusion of both
parameters simultaneously is not necessary to improve the performance suggesting the information is
redundant. When the azimuth cutoff is used as input, there is a significant improvement compared to the
other functions that use three input parameters owing the strength of using kp as a sea state predictor. The
use of either the skewness or kurtosis with kc, r0, and nv improved the performance of the function. Finally
the introduction of the angle and wavelength of the dominant wave energy significantly improved the per-
formances by reducing the SI. We use cosð2/Þ since Kerbaol et al. [1998] shows its important influence on
kc. We find that using kc, r0, nv, skewness, cosð2/Þ, and kp has the best performance with the lowest scatter
index of 21.19% and RMSE of 0.58 m. Finally, we varied the number of hidden neurons and find that Nn 5 6
gave the best results. The coefficients of the developed functions for both WV1 and WV2 are given in the
supporting information.

The results from the final functions are given in the bottom plots of Figure 5 containing the training, valida-
tion data sets, but excluding the points used for independent validation. Similar to the results obtained
with CWAVE, this approach gives better results for WV1 than for WV2. We did not find any spatial biases
when we analyzed the outliers of the residuals (HsFnn2HsWW3 > 3STDðHsFnn2HsWW3Þ) (not shown). Com-
pared to CWAVE the error metrics are slightly worse with correlation coefficients of 0.9, scatter index of
21%, and RMSE of 0.6 m. However, this algorithm only uses six input parameters instead of 22 for CWAVE. It
should be mentioned that the training data sets used to create CWAVE and Fnn span the same sea states
and thus we expect the sampling to have little impact on the resulting GMFs.

4. Validation and Applications

Now with the developed functions we first compare the results to independent observations from altime-
ters and buoys. Second we analyze the GMFs performances through their ability to capture climate-scale
statistics and represent wave heights larger than 8 m for both tropical and extratropical cyclones.

4.1. Comparison With Independent Observations
Figure 6 shows the Hs comparison for the colocated altimeter data set. The results are similar to the WW3
comparison. For both approaches, WV1 performs better than WV2 and CWAVE_S1A performs better than
Fnn. The lower performances for WV2 are due to its weaker tilt modulation as well as lower signal to noise
ratio which results in larger values of noise in r0 and kc. Both techniques attain correlation coefficients larg-
er than 0.90. The CWAVE_S1A method provides very reliable wave heights with a RMSE of 0.5 m and SI less
than 18% with nearly a zero bias. On the other hand, Fnn achieves a RMSE of 0.64 m and SIs less than 22.5%.
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There is a positive bias of 16 and 10 cm from WV1 and WV2 for Fnn. The dispersion of the errors is larger
using Fnn (1.1 m) compared to CWAVE (0.85 m) shown by the dashed lines which contain approximately
90% of the data.

The same data are analyzed as a function of sea state and the residuals are computed for a given altimeter Hs

shown in Figure 7. CWAVE performs well with nearly a zero bias from 1 to 8 m for both WV1 and WV2. When
Hs is greater than 8 m a negative bias begins along with an decrease in the precision as shown by the error
bars representing one standard deviation of the residuals. Notice that for the most common sea state of 2 m,
CWAVE works very well with high precision with errors of 60:25 m. The 10 cm positive bias of Fnn WV1 is now
easily seen and for the range 1–6 m. In Fnn the positive bias of WV2 is reduced. When Hs > 6 m a negative
bias begins and gradually increases as the sea state becomes larger with a bias of 0.8 m for Hs > 9 m. Also
notice that all models have a small positive bias for 4 � Hs � 6 m and this feature is more pronounced in Fnn.

We provide error metrics for different environmental conditions in Table 2. For small sea states (Hs < 1 m)
we see that the GMFs have reduced performances with correlation coefficients less than 0.3 and reduced
precision shown by the larger SIs. We expect that if the antenna noise is included in the r0 then the scatter
will reduce. When the sea state is large (Hs > 8 m), all GMFs underestimate the wave heights by at least
0.75 m with RMSE of 1.3 m. Despite these larger errors both techniques provide reliable Hs estimations

Figure 6. Hs comparison of the developed empirical functions: (top row) CWAVE_S1A and (bottom row) Fnn for (left column) WV1 and (right column) WV2 with altimeter observations.
The color represents the data density in 0.1 m bins, solid red line represents a least square linear regression, and the dashed lines represent 90% of the data.
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shown by the SIs that are less than 13%. In shallow water environments (when the depth, Z< 100 m), all
GMFs perform well suggesting the methods works well near coastlines where engineering applications are
more common. Actually for CWAVE there is improved performance compared to the overall statistics while
for Fnn the performance worsens. As a last comparison the distance of the colocations is limited to 50 km
and the overall statistics are nearly the same which is typical of wave conditions which tend to evolve on
slow time scales.

Finally, we compare the developed GMFs to in situ buoy Hs observations in Figure 8. The error metrics have
similar correlation coefficients but have larger RMSEs of 0.6–0.7 m and SIs of 20–24% and are comparable

Figure 7. Hs residuals as a function of sea state from altimeters and developed empirical functions: (top row) CWAVE_S1A and (bottom row) Fnn for (left column) WV1 and (right column)
WV2. The color represents the data density on a logarithmic scale, the line represents the bias for each bin, and the error bars represent the standard deviation of residuals.

Table 2. Hs Error Metrics Using Altimeter Data Various Conditions for CWAVE_S1A and Fnn (in Parentheses) for WV1 and WV2

N BIAS (m) RMSE (m) SI (%) R STDres (m)

WV1 CWAVE (Fnn)
All 15,504 20.01 (10.16) 0.49 (0.63) 16.71 (20.96) 0.94 (0.91) 0.33 (0.43)
Hs <1 m 66 10.16 (10.28) 0.26 (0.41) 22.72 (34.37) 0.16 (0.16) 0.15 (0.25)
Hs> 8 m 118 20.76 (20.96) 1.23 (1.53) 10.69 (13.27) 0.50 (0.40) 0.83 (1.04)
Z< 100 m 37 20.07 (10.13) 0.37 (0.54) 16.62 (23.43) 0.94 (0.89) 0.24 (0.32)
DX< 50 km 7801 20.01 (10.16) 0.47 (0.63) 16.07 (20.56) 0.95 (0.91) 0.31 (0.42)

WV2 CWAVE (Fnn)
All 14978 20.04 (10.09) 0.51 (0.65) 17.73 (22.35) 0.93 (0.90) 0.33 (0.42)
Hs< 1 m 65 10.30 (10.30) 0.46 (0.48) 40.99 (43.65) 0.24 (0.30) 0.29 (0.32)
Hs> 8 m 80 20.79 (20.94) 1.16 (1.34) 9.64 (10.71) 0.44 (0.42) 0.78 (0.82)
Z< 100 m 20 20.04 (10.12) 0.40 (0.69) 17.00 (29.05) 0.96 (0.88) 0.23 (0.47)
DX< 50 km 7501 20.04 (10.09) 0.50 (0.64) 17.23 (21.95) 0.93 (0.90) 0.32 (0.42)
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to Li et al. [2011]. In all cases, the upper wave heights are underestimated causing the negative slope of the
linear regression line. In general both algorithms provide reliable Hs retrievals.

4.2. Applications: Climate and Case Studies
In this section, we demonstrate the added benefit of using our proposed GMFs to describe wave statistics
on long-time scales and retrieve wave information in high sea states. First, we compare monthly averages
obtained with our developed GMFs to altimeter data. In Figure 9 we display the monthly average of July
and December 2015 to represent the seasonal variations in the wave field. The statistics are computed
using 2:5� bins for both satellite technologies. The altimeters have approximately 650 points per bin while
S1A has approximately 30 per bin using both WV1 and WV2. To equalize the sampling and allow a fair com-
parison between the two, we take a random permutation of 30 samples from the altimeter data set. The
procedure is repeated 25 times and these results are averaged and used to represent the altimeter data. In
December the wave heights are largest in the Northern Hemisphere and the GMFs match the Hs magni-
tudes. Qualitatively the GMFs match the altimeter observations well. In the Southern Indian Ocean CWAVE
and Fnn have larger wave heights than the altimeter data and this is more pronounced in Fnn. In July, the
pattern reverses and larger wave heights are observed in the Southern Hemisphere. These results have simi-
lar magnitudes and patterns as presented for December–January–February and June–July–August using a

Figure 8. Hs comparison of the developed empirical functions: (top row) CWAVE_S1A and (bottom row) Fnn for (left column) WV1 and (right column) WV2 with buoy observations. The
color represents the azimuth cutoff estimated from SAR, solid red line represents a least square linear regression, and the dashed lines represent 90% of the data.
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wave hindcast of CFSR [Stopa et al., 2013]. Both CWAVE and Fnn qualitatively match the wave heights
despite the missing data. Therefore we expect the developed algorithms to effectively aide in the descrip-
tion of statistics for long-time series, by complementing existing SAR and altimeter archives.

Next we provide two case studies in September 2015 to demonstrate the added benefit of using our devel-
oped GMFs to retrieve wave information in poorly sampled high sea states. These cases were not used in
the training of the GMFs. The 2015 Pacific tropical cyclone season was the second most active Pacific season
on record. Three of these major Hurricanes: Kilo, Ignacio, and Jimena were active from 20 August through
10 September. S1A crosses Hurricane Jimena in the North Tropical Pacific on the first of September shown
in Figure 10. The background color represents the Hs computed from WW3 using ECMWF wind forcing. Kilo
near 180�W and Ignacio near 154�W can be seen in the western portion of the basin. The bottom two plots
compare the derived Hs from both algorithms. We can see that both techniques reproduce the increase of
the sea state due to the tropical cyclone generated waves. However, for WV1 both SAR models underesti-
mate the peak of the event by approximately 2 m. In WV2, the proposed algorithms are slightly overesti-
mating the peak of the event by 1 m. Since WV1 and WV2 are, respectively, underestimating and
overestimating the waves in their respective tracks it suggests the location of the storm is incorrect in the
global model of ECMWF. We should also mention that our model setup using ECMWF winds underestimates
the maximum wind speeds compared to satellite observations from scatterometers and L-band radiometers
of Reul et al. [2016] (not shown). Furthermore, the spatial resolution of the global wave model at 0:5� is not
able to properly describe the storm’s important features because the storms have an approximate radius of
maximum winds near 30–50 km. From our previous analysis in section 4.1, it is clear that the GMFs underes-
timate the largest Hs. Notice far from the storm, CWAVE and Fnn match the wave heights well and are typi-
cally within 635 cm of WW3. We were not able to find any satellite passes in the GlobWave altimeter
database within close time and space constraints (<3 h) that could cross validate these results.

Figure 9. Hs averages for (left) December and (right) July 2015 from (top row) altimeters and developed empirical functions: (middle row) CWAVE and (bottom row) Fnn combining WV1
and WV2 in 2:5

�
bins.
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The second event shows a rather typical extratropical storm in the Southern Ocean in the Indian Ocean sec-
tor in Figure 11. Compared to the previous example the wave field is much smoother and the region of
wave heights above 10 m is much larger. In this case for both WV1 and WV2, CWAVE and Fnn match the
magnitude of the event very well and are within 25 cm of the 9.5 m wave height. In this case the SARAL
altimeter passed over the same area 1 h earlier at 11:00 UTC. Notice that the peak of the event is in agree-
ment between the altimeter, SAR, and WW3 for WV1 noting the difference in timing between SARAL and
S1A. The middle plots of Figure 1 correspond to the event maximum for WV1 seen in the second point of
Figure 11 at 54�S. The azimuth cutoff is large (430 m) and does not allow any waves below this value to be
properly resolved. So in this case, the quasi-linear approach to retrieve ocean swell spectra cannot provide
any reliable wave estimates. This shows the added benefit of using these empirical methods to estimate

Figure 10. S1A and WW3 Hs comparison for Hurricane Jimena on 1 September 2015. The colors represent Hs and arrows represent average
wave directions from WW3 with (top) S1A satellite pass, (middle) WV1 transect, and (bottom) WV2 transect containing CWAVE, Fnn, and
WW3.
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wave properties in severe sea states. The ECMWF wind field and WW3 certainly do not capture the detailed
features far from the storm and model outputs are relatively smooth compared to the satellites. For
latitudes from 45 to 358S both GMFs disagree with WW3 and estimate the wave heights 2 m larger
than WW3. Otherwise the GMFs and WW3 Hs are within 61 m. There is no noticeable bias between
CWAVE and Fnn.

5. Discussion

Both empirical methods, CWAVE and Fnn, estimate reliable significant wave heights. The CWAVE approach
effectively decomposes the shape of the image spectrum into different components that contain useful sea
state information extending the works of Schulz-Stellenfleth et al. [2007] and Li et al. [2011] to S1A. Our error
metrics are similar to these two works which were based on ERS2 and Envisat. The S1A sensor has a larger
footprint and higher nominal spatial resolution; however, this does not seem to drastically improve the
results. The lower wavelength used for CWAVE_ERS2 and CWAVE_ENV was 60 m. We lowered this value to

Figure 11. S1A and WW3 Hs comparison for a storm in the Southern Indian Ocean 19 September 2015. The colors represent Hs and arrows
represent average wave directions from (top) WW3 with S1A and SARAL satellite passes, (middle) WV1 transect, and (bottom) WV2 transect
containing CWAVE, Fnn, and WW3. The black ‘‘x’’ and ‘‘*’’ correspond to the middle and right plots of Figure 1, respectively.
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30 m since the S1A is able to resolve these wavelengths, but we did not see any improvement in the perfor-
mance of the resulting GMFs.

CWAVE performs better than Fnn with improved error metrics but has nearly four times the amount of input
parameters. In the future, it is beneficial to systematically assess the most important input parameters from
CWAVE to reduce the number of inputs. This might provide new insights between the environmental condi-
tions and the observation SAR image spectra. Ultimately this might improve our understanding of the SAR
imaging process. This was already one of the motivations to create Fnn which relies on a reduced number of
physical parameters. For this GMF, we use the azimuth cutoff, r0, nv, skewness, peak wave length, and peak
direction of the SAR image to estimate Hs. These input parameters seem to capture most of the essential
sea state information to derive Hs.

While we only focused on Hs in the text, we developed similar empirical functions to estimate wave periods
like Tm-10, Tm01, and Tm02. See the Appendix C for further information. The proposed methods cannot
estimate wave periods as accurately as Hs. This might be due to the multivalued nature of average wave
periods. Like Schulz-Stellenfleth et al. [2007], Tm02 performed worse than other estimates of the wave period
and might be due to the stronger dependence on higher wave frequencies. Our wave period error metrics
agree with those of both Schulz-Stellenfleth et al. [2007] and Li et al. [2011]. However the scatter plots pre-
sented in Li et al. [2011] seem to have reduced scatter compared to our results. In the future, we will pursue
efforts in estimating wave periods and also other important wave parameters like wave energy, the wind
sea component, and the Stokes drift. These are important parameters for engineering and scientific com-
munities interested in renewable energy and air-sea dynamics.

ECWMF wind speeds, which are similar to ERA-Interim are expected to underestimate the large wave events
[Stopa and Cheung, 2014]. In addition, the WW3 grid resolution of 0:5� might be too coarse to describe
important space-time features associated with wave development important for extreme events. Therefore,
we expect some of the underestimation when Hs> 8, is related to the using this model setup. In the future,
it may become possible to better resolve the extreme waves with WW3 by directly forcing with more realis-
tic winds such as composite satellite winds from radiometers as SMOS [Reul et al., 2016] and AMSR-2 [Zabo-
lotskikh et al., 2016] or by using wind models that assimilate these products. We placed a lot of emphasis on
adequately sampling the extreme wave events in the training of our GMFs. Our initial data set was com-
posed of 260,000 colocations between WW3 and S1A. Despite this extensive number of colocations, we still
had only few events with Hs > 12 m; so it is expected that the GMFs may perform poorly with larger wave
heights. On the contrary, the case studies shown in Figures 10 and 11 demonstrate that both algorithms
can estimate wave heights larger than 9 m, which is encouraging.

In addition to training with WW3, we also developed GMFs using the altimeter data set with 16,000 data
pairs collected over 6 months. The altimeter Hs probability distribution is similar to the top plots of Figure 3
and there is a 40% chance of having 1:5 � Hs � 2:5 and only a 0.6% change of having a wave height larger
than 8 m. The altimeter-trained GMFs have a significant degradation in performance. Despite differences
between WW3 and altimeter measurements, we believe that the undersampling explains the poor
altimeter-trained GMF performance. The recent launch of Sentinel-3 A and JASON-3 (2016) and the forth-
coming launches of Sentinel-3 B (2017), CFOSAT (2018) will certainly offer the possibility to rely on sufficient
amount of altimeter data for future work.

Compared to Schulz-Stellenfleth et al. [2007] and Li et al. [2011], we use neural networks instead of a linear
regression with cross terms. It seems that this reduces the number of coefficients needed and allows for a
more compact solution. Otherwise the performance is nearly identical.

The proposed empirical models clearly extend the number of geophysical variables related to waves that
are available from the ESA OCN L2 SAR product. The monthly averages seem to reasonably match the statis-
tics of the altimeter data set and the continued operation of the Sentinel missions will allow for climate
studies especially when merged with data from altimeter missions. The Hs can be retrieved for a larger
range of sea state conditions than ESA’s swell spectra. This includes situations with strong distortion created
by the azimuth cutoff and would prevent any accurate ocean swell spectrum retrieval. There are certainly
opportunities to use this new information in the ocean swell spectrum inversion scheme such as the retriev-
al of the wind sea component. Furthermore the independent estimation of wave parameters from SAR may
improve the quasi-linear inversion scheme by more precisely estimating the non-linear (wind-sea)
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component. We demonstrate through two examples the ability of the GMFs to estimate wave heights in
tropical and extra tropical storms. Effectively this allows the SAR sensor to complement existing wave obser-
vations from buoys, altimeters, and ship observations. Finally, it should be noted that our GMFs can directly
be applied to the identical S1B SAR.

6. Conclusions

We successfully estimated significant wave heights and wave periods using two different empirical
approaches without external information. The first approach, CWAVE, effectively decomposes the shape of
the image spectrum into orthogonal components that capture the important effects distorted by the SAR
imaging. The second approach uses a reduced number of input parameters including the azimuth cutoff
and is able to replicate the results with reasonable accuracy. Both methods can be applied globally and are
expected to predict the sea state parameters when 0:25 � Hs � 13 m. When the wave heights were larger,
we were not able to effectively address the performance of the GMFs, but as more data are routinely col-
lected from S1A and now from the identical S1B we will be able to refine the proposed model performances
in the near future. We use variables included in ESA’s L2 product and the neural networks are computation-
ally efficient allowing ease of computing the parameters.

We trained using model data generated from WW3 and independently compared to both altimeter and
buoy measurements. This effectively demonstrated the ability of WW3 to resolve the sea state conditions
with zero bias under the most probable average sea states we encountered. We achieved RMS less than 0.5
and 0.6 m for CWAVE and Fnn, respectively, and the functions are expected to perform equally well for deep
and shallow waters.

Observations from space-borne remote sensing continually shape our understanding of the Earths dynam-
ics by providing important space-time information. The high resolution of SAR effectively resolves a large
amount of geophysical information that can be used for a large range of applications. For instance, the now
standard techniques of Hasselmann et al. [1996] and Chapron et al. [2001] to retrieve ocean wave spectra
from image spectra have aided in the understanding of the wave dynamics. However comparing SAR obser-
vations to other sources of information using the standard wave parameter of Hs is still not possible. This
motivated Schulz-Stellenfleth et al. [2007] among others to develop empirical functions to exploit useful
wave information contained in the SAR images. In this study, we demonstrate that integral wave parame-
ters can be retrieved from the S1A platform at the global scale. While our study was limited to the
Sentinel-1 SAR our methodology can be applied to any of the other currently available SAR data from
Radarsat-2 and Gaofen-3 (C-band), TerraSAR-X and Cosmo-SkyMed (X-band), and ALOS-2 (L-band) some
of which have a dedicated acquisition mode for measurements of ocean wave spectra. With the newly
available S1A and S1B measurements and the ability of the algorithms to provide reliable wave estimates
in a large range of environmental conditions we make better use of the SAR measurements for practical
applications.

Appendix A: Training Using Neural Networks

A multilayer perceptron (MLP) neural network is a widely used technique to predict any outcome. When the
technique is combined with backpropagation of errors, it provides a powerful solution to numerous applica-
tions [Hagan et al., 2014]. We empirically determined that a three layer MLP consisting of an input layer,
one hidden layer, and an output layer performs well. The number of neurons for each developed neural net-
work in the hidden layer are determined empirically by reducing errors. We use a tan-sigmoid function
transfer function

tansigðxÞ52 11exp 22xð Þ½ �21
21 (A1)

between both the hidden and output layers where x is the input vector. The tan-sigmoid function is chosen
because the outputs become asymptotic at the input extremes, therefore in each layer can only saturate to
0 or 1 and will not overwhelm the following MLP stage. This attenuating property of the tan-sigmoid func-
tion allows representation of the nonlinear relationships [Gourrion et al., 2002]. The input matrix, X, is orga-
nized by having M number rows and N number of columns with size (M,N). The input vector is normalized
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Xn52 ðX2X minOÞ=ðX maxO2X minOÞ½ �21
21 (A2)

where O is a vector of ones with size (1,N). The normalized output Yn is calculated

Yn5Lw tansig Iw Xn1B1ð Þ1B2 (A3)

where Iw are the input weights of size (Nn,1), Lw are the layer weights of size (1,Nn), B1 are the biases for the
first hidden layer of size (Nn,1) and B2 is the bias for the single output layer of size (1,1), and Nn is the num-
ber of hidden neurons that are determined by trial and error in order to minimize the overall error and pre-
cision of the fitted functions. Finally the output in the correct respective units is calculated

Fnn5½Ymin1ðYmax2YminÞðYn11Þ=2Þ�T (A4)

where Ymin and Ymax are the minimum and maximum of the training data set and T denotes the matrix
transpose.

Appendix B: Orthogonal Functions Used in CWAVE

We construct the following orthogonal functions based on the S1A image spectrum �P normalized by the
total energy as

�P5P=
X

P � dkx � dky
� �

(B1)

where dkx and dky are the wavenumber spacing. We compute the scalar products, S from �P using the
orthogonal functions hi

Sij5
X

�Pðkx ; kyÞhij ðkx; kyÞdkx dky (B2)

where 1 � i � n/nk . The orthogonal functions hij are composed of Gegenbauer polynomials giðakÞ and har-
monic functions fjða/Þ

Figure C1. Average wave period comparison for September 2015 for WV1. (top) CWAVE and (bottom) Fnn for three different average wave periods. The color represents the data density
in 0.1 s bins, solid red line represents a least square linear regression, and the dashed lines represent 90% of the data.

Journal of Geophysical Research: Oceans 10.1002/2016JC012364

STOPA AND MOUCHE EMPIRICAL WAVE PARAMETERS FOR SENTINEL-1 1845



hij ðak ; a/Þ5gðkx ; kyÞgiðakÞfjða/Þ; 1 � i � nk ; 1 � j � n/ (B3)

where g is the elliptic area. The four Gegenbauer polynomials are
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The five harmonic functions are

f1ða/Þ5
ffiffiffiffiffiffiffiffi
1=p

p
(B8)
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p
sinð2a/Þ (B9)
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ffiffiffiffiffiffiffiffi
2=p

p
cosð4a/Þ: (B12)

Finally the integration area in the wavenumber domain have an elliptic shape in the SAR azimuth direction

Figure C2. Average wave period comparison for September 2015 for WV2. (top) CWAVE and (bottom) Fnn for three different average wave periods. The color represents the data density
in 0.1 s bins, solid red line represents a least square linear regression, and the dashed lines represent 90% of the data.
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akðkx; kyÞ52
log
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where the parameters a1 and a2 are defined as
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The values for kmax, kmin, and c are

kmax5
2p

60m
(B17)

kmin5
2p

625m
(B18)

c52: (B19)

For a more detailed description refer to Schulz-Stellenfleth et al. [2007] and Li et al. [2011] who used the
same orthogonal functions.

Appendix C: Average Wave Period Retrievals

In addition, to developing models to predict Hs we also estimated average wave periods. There are various
definitions of the average wave period and we use

Tm2105
m21

m0
(C1)

Tm015
m0

m1
(C2)

Tm025
m0

m2
(C3)

where mn is a moment of the wave spectrum F

mn5

ð1
0
ð2pf ÞnFðf Þdf : (C4)

We implement same training procedure described in the main text. We compare the month of September
2015 that was not used in the training for validation in Appendix Figures Figure C1 and Figure C2 for WV1
and WV2, respectively. In general there is a large error dispersion. We relate some of this to the fact that
two very different sea states can have the same wave period. Both approaches are able to estimate the
average wave period with accuracy and RMSEs are usually less than 1 s. However, the SIs are mostly less
than 10%. This is a topic of future research.
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